JPH08176553A - Estimation of fluidity or the like of noncaking or slightly caking coal - Google Patents

Estimation of fluidity or the like of noncaking or slightly caking coal

Info

Publication number
JPH08176553A
JPH08176553A JP6320796A JP32079694A JPH08176553A JP H08176553 A JPH08176553 A JP H08176553A JP 6320796 A JP6320796 A JP 6320796A JP 32079694 A JP32079694 A JP 32079694A JP H08176553 A JPH08176553 A JP H08176553A
Authority
JP
Japan
Prior art keywords
coal
fluidity
coke
caking coal
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6320796A
Other languages
Japanese (ja)
Inventor
Seiji Sakamoto
誠司 坂本
Katsutoshi Igawa
勝利 井川
Kenichi Tanmachi
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6320796A priority Critical patent/JPH08176553A/en
Publication of JPH08176553A publication Critical patent/JPH08176553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE: To improve the accuracy of the blending index of a coal blend and reduce the dispersion of strength and stabilize the quality of metallurgical coke by estimating both the fluidity index, etc., of noncaking coal, etc., under specific conditions and the fluidity, etc., of noncaking or slightly caking coal. CONSTITUTION: The fluidity index or viscosity of noncaking or slightly caking coal is estimated from the ratio of tensile strength of coke obtained by carbonizing caking coal having a well-known fluidity index or viscosity to the tensile strength of coke prepared by carrying out the pressurized carbonization of noncaking or slightly caking coal in which the fluidity index or viscosity is unknown or immeasurable under conditions so as to provide the same expansion pressure as that of the caking coal. Thereby, the fluidity, etc., of the noncaking or slightly caking coal are estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冶金用コークスに用い
る配合炭の軟化溶融特性を評価するのに必要な原料炭の
流動性あるいは粘性の推定方法に関するものであり、コ
ークスの品質を安定化ならびに制御のために有利に用い
られる技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the fluidity or viscosity of coking coal necessary for evaluating the softening and melting characteristics of blended coal used in metallurgical coke, and stabilizing the quality of coke. It is also a technique that is advantageously used for control.

【0002】[0002]

【従来の技術】石炭乾留時の軟化溶融特性,例えば流動
性や膨張性は、コークス化性の重要な因子であると共
に、高炉内でのコークスの反応性や機械的強度などにも
大きく影響する。従って、コークスに用いる配合炭の軟
化溶融特性は、原料炭(銘柄)毎に評価する必要があ
る。
2. Description of the Related Art The characteristics of softening and melting during coal carbonization, such as fluidity and expandability, are important factors for coking property, and also have a great influence on coke reactivity and mechanical strength in a blast furnace. . Therefore, it is necessary to evaluate the softening and melting characteristics of blended coal used for coke for each coking coal (brand).

【0003】このような軟化溶融特性のうち、石炭の流
動性は、それの指標として、通常、ギーセラープラスト
メーターによる最大流動度(MF)が用いられている
(JIS M8801)。この指標によれば、粘結炭のよう
な容易に溶融する石炭は、最大流動度(MF)の測定に
よってその流動性を評価することができる。ところが、
配合炭のなかには、炭化度が高く流動性に乏しい非粘結
炭などの石炭、あるいは著しく溶融粘度の高い石炭のよ
うに、最大流動度(MF)の測定による流動性の評価が
困難なものがある。
Among such softening and melting characteristics, the fluidity of coal is usually indicated by the maximum fluidity (MF) by a Giessler plastometer (JIS M8801). According to this index, easily melting coal such as coking coal can be evaluated for its fluidity by measuring the maximum fluidity (MF). However,
Among coal blends, there are coals such as non-caking coals having a high degree of carbonization and poor fluidity, or coals having a significantly high melt viscosity, in which it is difficult to evaluate the fluidity by measuring the maximum fluidity (MF). is there.

【0004】そこで従来、このような流動性の評価が難
しい非粘結炭や微粘結炭(以下、単に「非・微粘結炭」
という。)のような石炭の流動性評価は、以下のような
工夫がなされている。すなわち、粘結炭に非・微粘結炭
を低配合率(≦30%)で配合し、乾留して得られたコー
クスの引張強度の低下率から非・微粘結炭100 %での引
張強度を推定して、引張強度と最大流動度(MF)の関
係から、非・微粘結炭の最大流動度(MF)を推定する
方法が知られている(図1参照、コークス・サーキュラ
ー,杉辺ら,29, No.3, 159-168 参照)。
[0004] Therefore, conventionally, non-caking coal or slight caking coal (hereinafter simply referred to as "non-slight caking coal") is difficult to evaluate such fluidity.
Say. The following measures have been taken to evaluate the fluidity of coal such as the above). That is, the coke obtained by blending the non-lightly coking coal with the non-lightly coking coal at a low compounding ratio (≤30%) and reducing the tensile strength of the coke obtained by dry distillation, A method of estimating the strength and estimating the maximum fluidity (MF) of non-slightly cohesive coal from the relationship between the tensile strength and the maximum fluidity (MF) is known (see FIG. 1, Coke Circular, Sugibe et al., 29, No. 3, 159-168).

【0005】しかしながら、この既知の方法は、非・微
粘結炭30%以下の低配合率のコークスの引張強度値を非
・微粘結炭100 %のコークスの引張強度値に当てはめ、
いわゆる非・微粘結炭の最大流動度(MF)を間接的に
推定する方法であるため、非・微粘結炭の流動性を精度
良く評価する方法とは言えない。そのため、流動性ある
いは粘性をより直接的に推定する方法を確立すること
が、安定した品質のコークスを製造する上で必要であっ
た。
However, this known method applies the tensile strength value of the coke having a low compounding ratio of 30% or less to the coke having a non-lightly caking coal content of 30% or less,
Since it is a method of indirectly estimating the maximum fluidity (MF) of so-called non-lightly caking coal, it cannot be said to be a method of accurately evaluating the fluidity of non-lightly caking coal. Therefore, it was necessary to establish a method for more directly estimating fluidity or viscosity in order to produce stable quality coke.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
課題を有利に解決できる推定方法を提案することにあ
り、特に、非・微粘結炭の最大流動度(MF)を、より
直接的な方法により推定することができる方法を確立
し、非・微粘結炭の流動性を精度良く評価して、良質の
製銑用コークスを安定して製造するのに有効な技術を提
案する。
An object of the present invention is to propose an estimation method capable of advantageously solving the above-mentioned problems. In particular, the maximum fluidity (MF) of non-slightly cohesive coal can be directly measured. Method to estimate the fluidity of non-slightly caking coal with high accuracy, and propose an effective technology for stable production of high quality pig iron coke. .

【0007】[0007]

【課題を解決するための手段】発明者らは、上記目的実
現に向け鋭意研究した結果、以下に示す内容を要旨構成
とする推定方法に想到した。すなわち、本発明は、流動
性指数または粘度が既知である粘結炭を乾留して得られ
たコークスの引張強度と;流動性指数または粘度が未知
もしくは測定不能な非粘結炭または微粘結炭に、粘結炭
の膨張圧と同じ膨張圧となる条件の加圧乾留を施して得
られたコークスの引張強度と;の比から、非粘結炭また
は微粘結炭の流動性指数あるいは粘度を推定することを
特徴とする非・微粘結炭の流動性等推定方法である。
As a result of intensive research aimed at achieving the above object, the inventors have come up with an estimation method having the following contents as a gist configuration. That is, the present invention relates to the tensile strength of coke obtained by carbonization of caking coal having a known fluidity index or viscosity; and non-caking coal or fine caking with unknown or unmeasurable fluidity index or viscosity. From the ratio of the tensile strength of coke obtained by subjecting charcoal to pressure dry distillation under the same expansion pressure as that of cohesive coal, the fluidity index of non-caking coal or slightly cohesive coal or It is a method of estimating the fluidity of non-slightly caking coal, which is characterized by estimating the viscosity.

【0008】[0008]

【作用】さて、乾留時に石炭粒子が軟化溶融して融着す
る過程は、Gryaznovらによってモデル化されている(N.
S.Gryaznov, Coke and Chemistry USSR, vol.7, 4-7(19
75) 参照)。融着した石炭粒子の模式図を図2に示す。
この図は、初期の粒子半径がR0 であるニュートン粘性
を示す球形石炭粒子の融着モデルである。
[Function] The process of softening, melting and coalescence of coal particles during carbonization is modeled by Gryaznov et al. (N.
S.Gryaznov, Coke and Chemistry USSR, vol.7, 4-7 (19
75)). A schematic view of the coal particles fused is shown in FIG.
This figure is a fusion model of spherical coal particles exhibiting Newtonian viscosity with an initial particle radius R 0 .

【0009】この図において、2つの粒子が表面張力に
よって融着する際、融着面の外周円でのO−O1 軸方向
に作用する成分は、
In this figure, when two particles are fused by surface tension, the components acting in the O--O 1 axis direction on the outer circumference circle of the fused surface are:

【数1】 である。一般に、2つの粒子が応力を受けて融着し変形
する時、応力PV と相対歪みz/R0 の関係は、次式で
表される。
[Equation 1] Is. Generally, when two particles are stressed, fused, and deformed, the relationship between the stress P V and the relative strain z / R 0 is expressed by the following equation.

【数2】 [Equation 2]

【0010】従って、O−O1 軸方向の融着面に生じる
粘性抵抗力FV は、
Therefore, the viscous resistance force F V generated on the fusion surface in the OO 1 axis direction is

【数3】 となる。(Equation 3) Becomes

【0011】また、歪み速度が一定であるとすると、O
−O1 軸方向の表面張力が粘性抵抗力FV になるので、
以下の関係が導かれる。
If the strain rate is constant, O
Since the surface tension in the -O 1 axis direction becomes the viscous resistance force F V ,
The following relationships are derived.

【数4】 [Equation 4]

【0012】これを接触時間tが0の時は変位zが0で
あるという初期条件で解くと、以下の関係が導かれる。
If this is solved under the initial condition that the displacement z is 0 when the contact time t is 0, the following relationship is derived.

【数5】 (Equation 5)

【0013】2つの石炭粒子が、単位断面積当たりn個
の接触点を持ち、外部から圧力Pを受けて歪み速度一定
で融着するとすると、
When two coal particles have n contact points per unit cross-sectional area and are fused at a constant strain rate by receiving pressure P from the outside,

【数6】 となる。(Equation 6) Becomes

【0014】これを接触時間tが0の時は変位zが0で
あるという初期条件で解くと、
Solving this under the initial condition that the displacement z is 0 when the contact time t is 0,

【数7】 となる。(Equation 7) Becomes

【0015】以上のことから、融着した石炭粒子の引張
強度Fは、下記(6) 式のように、単位断面積当たりの接
触面積nπr2 と基質強度(石炭自体の強度)aで表わ
すことができる。
From the above, the tensile strength F of the coal particles fused is expressed by the contact area per unit cross-sectional area nπr 2 and the substrate strength (strength of coal itself) a as shown in the following formula (6). You can

【数8】 (Equation 8)

【0016】即ち、コークスの引張強度Fは、石炭粒子
の嵩密度に起因する4πR0 2 nの嵩密度項、石炭の膨
張圧あるいは外部圧に起因するPの圧力項、力を受けて
いる時間であり昇温速度に起因するtの時間項、石炭の
流動性に起因する1/ηの項で表わすことができるので
ある。
That is, the tensile strength F of coke is the bulk density term of 4πR 0 2 n due to the bulk density of coal particles, the pressure term of P due to the expansion pressure or external pressure of coal, and the time during which force is applied. And can be expressed by the time term of t caused by the temperature rising rate and the 1 / η term caused by the fluidity of coal.

【0017】本発明は、上述した乾留したコークスの引
張強度Fから、配合炭の流動性または粘性を推定するこ
とにより、コークスの粘結性を評価する方法である。そ
の非・微粘結炭の流動性,粘性を推定する方法は、流動
性指数または粘度が既知である粘結炭を乾留して得られ
たコークスの引張強度と;流動性指数または粘度が未知
もしくは測定不能な非・微粘結炭に、粘結炭の膨張圧と
同じ膨張圧となる条件の加圧乾留を施して得られたコー
クスの引張強度と;の比から推定するのである。一般
に、石炭配合の設計には、単味炭の流動性の評価が不可
欠である。従来、その評価が困難な石炭の場合には、前
述のように、粘結炭に非・微粘結炭を低配合率(≦30
%)で配合し、乾留して得られたコークスの引張強度の
低下率から、非・微粘結炭 100%の時の引張強度を外挿
して推定する方法が行われている。しかし、この方法で
の推定値は、非・微粘結炭の低配合率(≦30%)での結
果から、非・微粘結炭 100%での値まで外挿するため、
推定精度に問題があると考えられた。そこで、本発明で
は、 100%の非・微粘結炭で直接評価して、推定精度を
向上させるために、上記のような2つのコークス強度の
比に着目したのである。
The present invention is a method for evaluating the cohesiveness of coke by estimating the fluidity or viscosity of the blended coal from the tensile strength F of the above-mentioned dry-distilled coke. The method of estimating the fluidity and viscosity of the non-slightly caking coal is the tensile strength of coke obtained by carbonization of caking coal whose fluidity index or viscosity is known; the fluidity index or viscosity is unknown. Or, it is estimated from the ratio of the tensile strength of coke obtained by subjecting non-measurable non-fine coking coal to pressure dry distillation under the condition that the expansion pressure is the same as that of coking coal; In general, the evaluation of the flowability of plain coal is essential for the design of coal blends. Conventionally, in the case of coal that is difficult to evaluate, as described above, non- or slightly cohesive coal is added to the coking coal at a low blending ratio (≤30
%), And a method of extrapolating the tensile strength at 100% non- or slightly coking coal is used to estimate the tensile strength of the coke obtained by dry distillation. However, the extrapolated values by this method are extrapolated from the results at low blending ratios of non-lightly caking coal (≤30%) to the values at 100% non-lightly caking coal.
It was considered that there was a problem with the estimation accuracy. Therefore, in the present invention, 100% non-slightly caking coal is directly evaluated, and in order to improve the estimation accuracy, attention is paid to the ratio of the two coke strengths as described above.

【0018】即ち、粘度ηB あるいは流動度fB が未知
の非・微粘結炭と、粘度ηA あるいは流動度fA が既知
の粘結炭を、同一の嵩密度、昇温速度で乾留してコーク
スを製造した場合について考える。なお、非・微粘結炭
には粘結炭との膨張圧の差に相当する圧力を外部から加
えて乾留する(図3参照)。このようにして各石炭を乾
留して得られたコークスの引張強度Fの比(FA
B )は、前記の理論強度式(6) を用いて求めると、嵩
密度項、圧力項、時間項がいずれも同一であることか
ら、結局下記(7) 式に示すとおり、粘度の比(ηB/η
A )を示していることとなり、また同時に流動度の比
(fA /fB )を示しているということができる。従っ
て、上記の2つのコークスの強度FA ,FB が判れば、
非・微粘結炭の未知の粘度ηB あるいは流動度fB を計
算することができる。そしてさらには、これらの関係か
ら、最大流動度MFも推定できるのである。
That is, non-fine coking coal of unknown viscosity η B or fluidity f B and coking coal of known viscosity η A or fluidity f A are dry-distilled at the same bulk density and heating rate. Think about the case where coke is produced by doing so. In addition, the non-slightly caking coal is subjected to dry distillation by externally applying a pressure corresponding to the difference in expansion pressure from the caking coal (see FIG. 3). The coke tensile strength F ratio (F A /
F B), when determined by using the theoretical intensity formula (6), the bulk density term, as indicated pressure term, since it is time to claim both the same, the end following equation (7), the ratio of the viscosity (Η B / η
Will be showing the A), also can be said that at the same time shows the ratio of flow index (f A / f B). Therefore, if the strengths F A and F B of the above two cokes are known,
The unknown viscosity η B or fluidity f B of non-slightly caking coal can be calculated. Furthermore, the maximum fluidity MF can also be estimated from these relationships.

【0019】[0019]

【数9】 [Equation 9]

【0020】[0020]

【実施例】【Example】

(石炭の調製)本実施例では、表1に示す性状の各種石
炭を用いた。本実施例において、石炭は 420μm以下に
粉砕し、水分6%添加し、50mmφ×150mmHのルツボに嵩
密度0.8g/cm3で充填した。なお、石炭の膨張圧(内部ガ
ス圧)を測定する場合には、石炭をルツボ内に深さ100m
mHに充填し、中心に孔を設けた500gの重りを載せ、その
孔に沿って中心部に5mmφのステンレス製のパイプを挿
入して差圧計に接続し、乾留中の膨張圧(内部ガス圧)
を測定した(図3参照)。引張強度測定用のサンプルを
作製する場合には、石炭をルツボ内に深さ40mmHに充填
し、500gの重りを載せて乾留した。なお、加圧を行う場
合には、重りの重量を変えて乾留した。
(Preparation of coal) In this example, various coals having the properties shown in Table 1 were used. In this example, coal was crushed to 420 μm or less, added with 6% of water, and filled in a crucible of 50 mmφ × 150 mmH with a bulk density of 0.8 g / cm 3 . In addition, when measuring the expansion pressure (internal gas pressure) of coal, the coal is placed in a crucible at a depth of 100 m.
Fill the mH, put a weight of 500g with a hole in the center, insert a 5mmφ stainless steel pipe in the center along the hole and connect it to a differential pressure gauge, and expand the pressure (internal gas pressure) during carbonization. )
Was measured (see FIG. 3). When preparing a sample for measuring tensile strength, coal was filled in a crucible to a depth of 40 mmH, and a weight of 500 g was placed on the crucible for dry distillation. In addition, when pressurizing, the weight of the weight was changed and dry distillation was performed.

【0021】[0021]

【表1】 [Table 1]

【0022】(乾留条件)石炭の乾留は、上記のルツボ
が入る円筒型の電気炉を用い、まず、石炭を充填したル
ツボを電気炉に装入し、次いで、150 ℃に急速加熱して
その温度で2時間保持し、その後、昇温速度3℃/min
で750 ℃まで加熱し、その温度で1時間保持して放冷す
ることにより行った。
(Dry-distillation conditions) For the dry-distillation of coal, a cylindrical electric furnace containing the above crucible is used. First, the crucible filled with coal is charged into the electric furnace and then rapidly heated to 150 ° C. Hold at the temperature for 2 hours, then raise the temperature 3 ℃ / min
It was carried out by heating to 750 ° C., holding at that temperature for 1 hour, and allowing to cool.

【0023】(引張強度の測定)石炭を乾留して得られ
たコークスから10mmφ×10mmH の円柱形サンプルを切り
出して気孔率を測定した後、圧潰強度試験機を用いて試
験速度10mm/min で圧潰試験を行い、破壊荷重L(kg)
を測定し、次式から引張強度Fを求めた。
(Measurement of Tensile Strength) A columnar sample of 10 mmφ × 10 mmH was cut out from coke obtained by carbonization of coal to measure porosity, and then crushed at a test speed of 10 mm / min using a crushing strength tester. Tested, breaking load L (kg)
Was measured and the tensile strength F was calculated from the following equation.

【数10】 [Equation 10]

【0024】石炭A,B,C,Dの膨張圧測定結果と、
標準乾留条件で乾留して得られたコークスの引張強度F
0 の測定結果を表2に示す。併せて、石炭A,B,C,
Dとを同じ乾留条件とするため、基準炭A,B,Cとの
膨張圧の差に相当する荷重を加えて石炭B,C,Dを乾
留して得られたコークスの引張強度Fの測定結果を表2
に示す。表3には、上記引張強度Fの測定結果と(7) 式
とから得られる石炭B,C,Dの推定MF(最大流動
度)を示す。
Expansion pressure measurement results of coals A, B, C and D,
Tensile strength F of coke obtained by carbonization under standard carbonization conditions
The measurement result of 0 is shown in Table 2. In addition, coal A, B, C,
Measurement of tensile strength F of coke obtained by carbonizing coals B, C, D by applying a load corresponding to the difference in expansion pressure from standard coals A, B, C in order to make D and the same carbonization conditions The results are shown in Table 2.
Shown in Table 3 shows the estimated MF (maximum fluidity) of coals B, C, and D obtained from the measurement result of the tensile strength F and the equation (7).

【0025】この表に示す結果から明らかなように、石
炭B,Cの推定MFは実測MFとほぼ一致し、石炭Dの
推定MFは、基準炭A,B,Cのいずれを用いる場合も
ほぼ一定の値に推定されることがわかった。以上の結果
から明らかなように、本発明の推定方法を採用すれば、
最大流動度(MF)の測定が困難な非・微粘結炭のMF
を精度良く推定できることがわかった。
As is clear from the results shown in this table, the estimated MF of coals B and C substantially coincides with the measured MF, and the estimated MF of coal D is almost the same when any of the reference coals A, B and C is used. It was found to be estimated to be a constant value. As is clear from the above results, if the estimation method of the present invention is adopted,
MF of non-caking coal that is difficult to measure maximum fluidity (MF)
It has been found that can be accurately estimated.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】以上説明したように本発明の推定方法に
よれば、最大流動度(MF)の測定が困難な非・微粘結
炭のMFを、より直接的な方法により推定することが可
能になり、非・微粘結炭の流動性等を精度良く評価する
ことができる。これにより、配合炭の配合指標の精度が
向上し、ひいてはコークス強度のバラツキが低減し、コ
ークス品質の安定化を図ることができる。
As described above, according to the estimation method of the present invention, it is possible to estimate the MF of non-slightly caking coal, which is difficult to measure the maximum fluidity (MF), by a more direct method. This makes it possible to accurately evaluate the fluidity of non-slightly caking coal. This improves the accuracy of the blending index of the blended coal, reduces the variation in coke strength, and stabilizes the coke quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】非・微粘結炭の最大流動度(MF)を推定する
従来方法を説明する図である。
FIG. 1 is a diagram illustrating a conventional method for estimating a maximum fluidity (MF) of non-slightly caking coal.

【図2】ニュートン粘性を示す球形石炭粒子の融着モデ
ル図である。
FIG. 2 is a fusion model diagram of spherical coal particles exhibiting Newtonian viscosity.

【図3】(a) 乾留中の膨張圧の測定方法、(b) 加圧しな
がら乾留する方法、を説明する図である。
FIG. 3 is a diagram for explaining (a) a method for measuring an expansion pressure during carbonization, and (b) a method for carbonization while pressurizing.

【符号の説明】[Explanation of symbols]

1 石炭 2 ルツボ 3 電気炉 4 重り 1 coal 2 crucible 3 electric furnace 4 weight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 反町 健一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenichi Sorimachi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流動性指数または粘度が既知である粘結
炭を乾留して得られたコークスの引張強度と;流動性指
数または粘度が未知もしくは測定不能な非粘結炭または
微粘結炭に、粘結炭の膨張圧と同じ膨張圧となる条件の
加圧乾留を施して得られたコークスの引張強度と;の比
から、非粘結炭または微粘結炭の流動性指数あるいは粘
度を推定することを特徴とする非・微粘結炭の流動性等
推定方法。
1. Coke tensile strength obtained by carbonization of coking coal having a known fluidity index or viscosity; non-caking coal or slightly coking coal with unknown or unmeasurable fluidity index or viscosity. To the tensile strength of coke obtained by subjecting the coke to the same expansion pressure as that of cohesive coal to obtain the fluidity index or viscosity of non-caking coal or slightly coking coal. A method for estimating the fluidity of non- or slightly coking coal, which is characterized by estimating
JP6320796A 1994-12-22 1994-12-22 Estimation of fluidity or the like of noncaking or slightly caking coal Pending JPH08176553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6320796A JPH08176553A (en) 1994-12-22 1994-12-22 Estimation of fluidity or the like of noncaking or slightly caking coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6320796A JPH08176553A (en) 1994-12-22 1994-12-22 Estimation of fluidity or the like of noncaking or slightly caking coal

Publications (1)

Publication Number Publication Date
JPH08176553A true JPH08176553A (en) 1996-07-09

Family

ID=18125346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6320796A Pending JPH08176553A (en) 1994-12-22 1994-12-22 Estimation of fluidity or the like of noncaking or slightly caking coal

Country Status (1)

Country Link
JP (1) JPH08176553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160012B1 (en) * 2010-10-27 2012-06-25 현대제철 주식회사 Apparatus for measuring transpotability of pulverized coal and method for measuring thereof
WO2013054526A1 (en) * 2011-10-14 2013-04-18 Jfeスチール株式会社 Method for manufacturing coke
WO2013145678A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for blending coal, blended coal, and method for producing coke
WO2013145680A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Preparation method for coal mixture for coke production, coal mixture, and coke production method
WO2013145679A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Coal blending method for coke production, production method for coke
WO2013145677A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for evaluating inter-coal adhesion
WO2021085146A1 (en) * 2019-10-28 2021-05-06 Jfeスチール株式会社 Method for estimating surface tension of inert structure in coal, method for estimating surface tension of coal, and method for producing coke

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160012B1 (en) * 2010-10-27 2012-06-25 현대제철 주식회사 Apparatus for measuring transpotability of pulverized coal and method for measuring thereof
JP5505567B2 (en) * 2011-10-14 2014-05-28 Jfeスチール株式会社 Coke production method
WO2013054526A1 (en) * 2011-10-14 2013-04-18 Jfeスチール株式会社 Method for manufacturing coke
US9463980B2 (en) 2011-10-14 2016-10-11 Jfe Steel Corporation Method for manufacturing coke
TWI486432B (en) * 2012-03-27 2015-06-01 Jfe Steel Corp A method for blending coal for making coke, and a method for producing coke
JP5737473B2 (en) * 2012-03-27 2015-06-17 Jfeスチール株式会社 Method for preparing coal mixture for coke production, coal mixture, and coke production method
WO2013145679A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Coal blending method for coke production, production method for coke
JP5582271B2 (en) * 2012-03-27 2014-09-03 Jfeスチール株式会社 Evaluation method of adhesion between coals
JP5626496B2 (en) * 2012-03-27 2014-11-19 Jfeスチール株式会社 Coal blending method for coke production and coke production method
AU2013238848B2 (en) * 2012-03-27 2014-11-20 Jfe Steel Corporation Coal-to-coal adhesiveness evaluation method
CN104220557A (en) * 2012-03-27 2014-12-17 杰富意钢铁株式会社 Method for blending coal, blended coal, and method for producing coke
CN104245889A (en) * 2012-03-27 2014-12-24 杰富意钢铁株式会社 Coal blending method for coke production, production method for coke
JP5686223B2 (en) * 2012-03-27 2015-03-18 Jfeスチール株式会社 Coal blending method, blended coal, and coke production method
EP2833116A4 (en) * 2012-03-27 2015-04-08 Jfe Steel Corp Method for evaluating inter-coal adhesion
WO2013145680A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Preparation method for coal mixture for coke production, coal mixture, and coke production method
WO2013145677A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for evaluating inter-coal adhesion
TWI490325B (en) * 2012-03-27 2015-07-01 Jfe Steel Corp Method for blending coal and mixing of carbon and coke
CN104220557B (en) * 2012-03-27 2016-03-09 杰富意钢铁株式会社 The fitting method of coal and mixed coal and coke manufacture method
WO2013145678A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for blending coal, blended coal, and method for producing coke
US9845439B2 (en) 2012-03-27 2017-12-19 Jfe Steel Corporation Method for blending coals for cokemaking and method for producing coke
US9850441B2 (en) 2012-03-27 2017-12-26 Jfe Steel Corporation Method for blending coals, and method for producing coke
US9857350B2 (en) 2012-03-27 2018-01-02 Jfe Steel Corporation Coal-to-coal adhesiveness evaluation method
US10144891B2 (en) 2012-03-27 2018-12-04 Jfe Steel Corporation Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke
US10802011B2 (en) 2012-03-27 2020-10-13 Jfe Steel Corporation Coal-to-coal adhesiveness evaluation method
WO2021085146A1 (en) * 2019-10-28 2021-05-06 Jfeスチール株式会社 Method for estimating surface tension of inert structure in coal, method for estimating surface tension of coal, and method for producing coke
JPWO2021085146A1 (en) * 2019-10-28 2021-12-16 Jfeスチール株式会社 Surface tension estimation method for coal inert structure, surface tension estimation method for coal, and coke manufacturing method
CN114556079A (en) * 2019-10-28 2022-05-27 杰富意钢铁株式会社 Method for estimating surface tension of coal inertinite structure, method for estimating surface tension of coal, and method for producing coke
CN114556079B (en) * 2019-10-28 2024-04-09 杰富意钢铁株式会社 Method for estimating surface tension of coal inert group structure, method for estimating surface tension of coal, and method for producing coke

Similar Documents

Publication Publication Date Title
AU2011296881B2 (en) Method for evaluating thermal plasticity of coals and caking additives
Gray et al. Coke carbon forms: microscopic classification and industrial applications
WO2010103828A1 (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
WO2013145678A1 (en) Method for blending coal, blended coal, and method for producing coke
JPH08176553A (en) Estimation of fluidity or the like of noncaking or slightly caking coal
JP5402369B2 (en) Coal blending method
JP6379934B2 (en) Coke strength estimation method
JP6680163B2 (en) Coke particle size estimation method
JP3892666B2 (en) Coal quality evaluation method
JP4309780B2 (en) Method for estimating strength after hot coke reaction and method for producing coke
TWI608092B (en) Coal evaluation method and coke production method
JP3914641B2 (en) Coke strength estimation method
JP2002294250A (en) Method for estimating strength of blast furnace coke
CN113544237A (en) Method for evaluating coal, method for producing coal blend, and method for producing coke
WO2002077123A1 (en) Method for producing coke for blast furnace having high strength
JPH09263764A (en) Method for estimating coke strength
JP4279972B2 (en) Method for producing blast furnace coke
JP5716271B2 (en) Method for producing metallurgical coke
AU2020373691B2 (en) Method for estimating surface tension of coal inerts, method for estimating surface tension of coal, and method for producing coke
JPH09241649A (en) Appraisal of coal quality
JPS60174951A (en) Estimation of coke strength
Shiau et al. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR) for a blast furnace
AU2020376541B2 (en) Method for estimating surface tension of coal and method for producing coke
JP3552510B2 (en) Coke production method
JPH1019814A (en) Method for evaluating quality of coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees