JP6680163B2 - Coke particle size estimation method - Google Patents

Coke particle size estimation method Download PDF

Info

Publication number
JP6680163B2
JP6680163B2 JP2016184534A JP2016184534A JP6680163B2 JP 6680163 B2 JP6680163 B2 JP 6680163B2 JP 2016184534 A JP2016184534 A JP 2016184534A JP 2016184534 A JP2016184534 A JP 2016184534A JP 6680163 B2 JP6680163 B2 JP 6680163B2
Authority
JP
Japan
Prior art keywords
coal
coke
particle size
shrinkage
blended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016184534A
Other languages
Japanese (ja)
Other versions
JP2018048262A (en
Inventor
野村 誠治
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016184534A priority Critical patent/JP6680163B2/en
Publication of JP2018048262A publication Critical patent/JP2018048262A/en
Application granted granted Critical
Publication of JP6680163B2 publication Critical patent/JP6680163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス炉で石炭を乾留して形成されるコークスの粒径の推定方法に関する。   The present invention relates to a method for estimating the particle size of coke formed by carbonizing carbon in a coke oven.

室炉式コークス炉によって高炉用コークスを製造するに当たり、製造したコークス粒径(平均粒径)を常に一定以上の値に保持することは、高炉の通気性を確保し安定操業を実現する上で不可欠である。そこで、室炉式コークス炉で製造されるコークスの粒径を推定する各種の方法が検討されてきた。   When manufacturing coke for a blast furnace with a chamber furnace type coke oven, it is necessary to keep the produced coke particle size (average particle size) at a certain value or more at all times in order to ensure air permeability of the blast furnace and realize stable operation. It is essential. Therefore, various methods for estimating the particle size of the coke produced in the chamber-type coke oven have been studied.

例えば、本発明者らによる特許文献1には、石炭の再固化温度以上1000℃以下の範囲で温度Tを定め、コークス炉装入用の石炭を容器内において温度Tまで加熱し、再固化温度と温度Tとにおける内容物の容積差又は長さ差を再固化温度における容積又は長さで除した値をその石炭から生成したコークスの収縮率として求め、求められた単味炭のコークス収縮率を配合割合で加重平均して配合炭のコークス収縮率を求め、予め種々の配合炭のコークス粒径と当該配合炭のコークス収縮率との関係を一次関数として定めておき、候補とする配合炭のコークス収縮率を前記関数に代入して、当該候補とする配合炭のコークス粒径を推定することを特徴とするコークス粒径の推定方法、が開示されている。
この推定方法では、石炭を再固化温度以上1000℃まで連続して加熱し、再固化温度と1000℃における容積の変化からコークス収縮率を測定して、収縮率とコークス粒径の間に高い相関関係を得ているので、得られた関係を用いてコークス粒径を高い精度で推定することができる。
For example, in Patent Document 1 by the present inventors, a temperature T is set in a range of not less than the resolidification temperature of coal and not more than 1000 ° C., and coal for charging a coke oven is heated to a temperature T in a container to obtain a resolidification temperature. The value obtained by dividing the volume difference or length difference of the contents at temperature and temperature T by the volume or length at the resolidification temperature is obtained as the shrinkage rate of the coke generated from the coal, and the obtained coke shrinkage rate of the plain coal. Is calculated by weighted averaging with the blending ratio to obtain the coke shrinkage of the blended coal, and the relationship between the coke particle size of various blended coals and the coke shrinkage of the blended coal is determined in advance as a linear function, and the candidate blended coal is obtained. The method for estimating the coke particle size, which is characterized in that the coke particle size of the candidate coal blend is estimated by substituting the coke shrinkage ratio of No. 1 into the above function.
In this estimation method, coal is continuously heated to a temperature above the resolidification temperature to 1000 ° C., the coke shrinkage is measured from the change in the volume at the resolidification temperature and 1000 ° C., and a high correlation is found between the shrinkage and the coke particle size. Since the relationship is obtained, the coke particle size can be estimated with high accuracy using the obtained relationship.

特開2005−232349号公報JP, 2005-232349, A

しかしながら、近年、石炭価格の高騰などを背景として、これまでコークスの製造原料として使用されてこなかった非微粘結炭の使用が求められるようになっている。
そこで、特許文献1に記載のコークス粒径の推定方法が非微粘結炭を多量配合した配合炭にも適用できるかどうか検討した。
ここで非微粘結炭とは、揮発分含有量35質量%以上の石炭、JIS M 8801膨張性試験方法により測定される全膨張率が10%以下の石炭、揮発分含有量35%質量以上でかつJIS M 8801膨張性試験方法により測定される全膨張率が10%以下の石炭を示し、これらの石炭の1種あるいは2種以上が非微粘結炭として用いられる。
However, in recent years, against the backdrop of soaring coal prices, the use of non-slightly coking coal, which has not been used as a raw material for producing coke, has been required.
Therefore, it was examined whether the method for estimating the coke particle size described in Patent Document 1 can be applied to a blended coal containing a large amount of non-fine coking coal.
Here, non-slightly caking coal means coal having a volatile content of 35% by mass or more, coal having a total expansion coefficient of 10% or less measured by the JIS M 8801 expansion test method, and volatile content of 35% by mass or more. And a coal having a total expansion coefficient of 10% or less measured by the JIS M 8801 expansion test method, and one or two or more of these coals are used as non-fine coking coal.

非微粘結炭を30質量%以上含む配合炭を使用してコークスを製造し、その平均粒径を測定するとともに、配合炭を構成する単味の石炭を、特許文献1に記載されているように、容器内で1000℃まで加熱して、再固化温度時の内容物の体積と1000℃時の内容物の体積の変化から単味の石炭の収縮率を求め、それを配合割合に応じて加重平均して配合炭の収縮率を求めた。   Patent Literature 1 describes a plain coal that forms coke by producing coke using coke containing 30% by mass or more of non-caking coal and measuring the average particle size of the coke. As described above, the shrinkage rate of plain coal is obtained from the change in the volume of the contents at the time of re-solidification and the volume of the contents at the time of 1000 ° C. by heating to 1000 ° C. The weighted average was calculated to obtain the shrinkage ratio of the blended coal.

今回得られた配合炭の収縮率と、その配合炭から製造されたコークスの実測されたコークス粒径の関係を図1に示す。また、図1には、特許文献1の図6に示された、配合炭の収縮率からコークス粒径を推定するための推定式となる直線を合わせて記載した。
非微粘結炭を30%以上使用した配合炭では、配合炭の収縮率とコークス粒径の対応する点が、従来の推定式から外れた個所に位置するようになり、特許文献1で求められた推定式では、十分な推定精度が得られない場合が出てきた。
Fig. 1 shows the relationship between the shrinkage ratio of the coal blend obtained this time and the measured coke particle size of the coke produced from the coal blend. Further, in FIG. 1, a straight line which is an estimation formula for estimating the coke particle size from the shrinkage ratio of the blended coal shown in FIG. 6 of Patent Document 1 is also shown.
In the blended coal that uses 30% or more of non-slightly caking coal, the corresponding points of the shrinkage rate of the blended coal and the coke particle size come to be located outside the conventional estimation formula, and obtained in Patent Document 1. There is a case where sufficient estimation accuracy cannot be obtained with the estimated formula.

高炉の安定操業のためには、目標とするコークス粒径を維持することが求められる。このため、配合炭に非微粘結炭を30%以上使用しても、目標とするコークス粒径を確保できるよう、コークス粒径を正確に推定することが必要である。したがって、配合炭の条件によらず、従来よりもコークス粒径を精度よく推定する方法が求められている。
そこで、本発明は、非微粘結炭を配合炭の一部として使用する場合でもコークス粒径をより精度よく推定できるようにすることを課題とする。
For stable operation of the blast furnace, it is necessary to maintain the target coke particle size. Therefore, it is necessary to accurately estimate the coke particle size so that the target coke particle size can be secured even if 30% or more of non-slightly caking coal is used as the blended coal. Therefore, there is a demand for a method of estimating the coke particle size more accurately than ever, regardless of the conditions of the coal blend.
Therefore, an object of the present invention is to make it possible to more accurately estimate the coke particle size even when non-slightly caking coal is used as a part of blended coal.

本発明者は、非微粘結炭を多量使用した条件でのコークス粒度を決める要因について検討した。その結果、非微粘結炭を多量使用した条件では、コークス粒度は石炭乾留時の再固化温度〜(600±30)℃の領域における収縮率により支配されること、及び、石炭を加熱してその温度で測定された容積の変化量から計算された収縮率を用いることにより精度よくコークス粒径を推定できることを見出した。   The present inventor examined factors that determine the coke particle size under the condition where a large amount of non-caking coal is used. As a result, under the condition that a large amount of non-caking coal is used, the coke particle size is governed by the shrinkage ratio in the region of resolidification temperature to (600 ± 30) ° C. during coal carbonization, and heating the coal. It was found that the coke particle size can be accurately estimated by using the shrinkage ratio calculated from the change in volume measured at that temperature.

その結果なされた本発明の要旨とするところは以下のとおりである。
)揮発分含有量が35質量%以上、またはJIS M 8801で規定される膨張性試験方法により測定される全膨張率が10%以下の少なくとも一方を満足する非微粘結炭を、30質量%以上配合した配合炭を用いてコークスを製造する場合のコークス粒径の推定方法であって、配合炭を構成する単味炭の収縮率を加重平均して求めた配合炭の加重平均収縮率とコークス粒径の関係を予め求めておき、推定しようとする配合炭の加重平均収縮率を求め、前記関係から推定しようとする配合炭のコークス粒径を求めるコークス粒径の推定方法において、
配合炭を構成する単味炭の収縮率を、単味炭を容器内において加熱し、その際の再固化温度と(600±30)℃の範囲内の温度とにおける単味炭の容積の変化量から求めることを特徴とするコークス粒径の推定方法。
The gist of the present invention made as a result is as follows.
( I ) A non-fine coking coal which satisfies at least one of a volatile content of 35% by mass or more and a total expansion coefficient of 10% or less measured by an expansion test method defined by JIS M 8801 is A weighted average shrinkage of a coal blend obtained by weighted averaging the shrinkage rates of the plain coals that make up the coal blend, which is a method of estimating the coke particle size when coke is produced using the blended coal blended in an amount of more than mass%. The relationship between the rate and the coke particle size is obtained in advance, the weighted average shrinkage of the blended coal to be estimated is obtained, and the coke particle size estimation method for obtaining the coke particle size of the blended coal to be estimated from the relationship is given.
The shrinkage rate of the plain coal constituting the blended coal was changed by changing the volume of the plain coal at the resolidification temperature and the temperature within the range of (600 ± 30) ° C. when the plain coal was heated in a container. A method for estimating the coke particle size, which is characterized in that it is obtained from the amount.

II)上記配合炭の加重平均収縮率とコークス粒径の関係として、
配合する非微粘結炭比が60%以下のときは、下記(1)式で表される関係を予め求めておき、非微粘結炭比が60%を超えるときは、下記(2)式で表される関係を予め求めておくことを特徴とする前記(I)に記載のコークス粒径の推定方法。
配合炭のコークス粒径=a+b×配合炭のコークス収縮率 ・・・(1)
配合炭のコークス粒径=a+b×配合炭のコークス収縮率
+c×(非微粘結炭比率−60) ・・・(2)
ここで、a、bは、コークス粒径とコークス収縮率の測定値から回帰分析によって定められる係数であり、cは、さらに非微粘結炭比率を加味して同様に定められる係数である。
( II ) As a relationship between the weighted average shrinkage rate of the above blended coal and the coke particle size,
When the non-caking coal ratio to be blended is 60% or less, the relationship represented by the following formula (1) is obtained in advance, and when the non-caking coal ratio exceeds 60%, the following (2) is used. The coke particle size estimating method as described in (I) above, wherein the relationship represented by the formula is obtained in advance.
Coke particle size of blended coal = a + b x coke shrinkage of blended coal (1)
Coke particle size of blended coal = a + b x coke shrinkage of blended coal
+ Cx (Non-lightly caking coal ratio-60) (2)
Here, a and b are coefficients determined by regression analysis from measured values of coke particle diameter and coke shrinkage, and c is a coefficient similarly determined by further considering the non-caking coal ratio.

なお、コークス粒径とは、JIS K2151「コークス類試験方法の粒度試験法」によって測定された粒度分布より求めた平均粒度のことを示す。試験炉で製造したコークスの場合は、乾留後のコークスについて、シャッター処理を行わずに粒度分布を測定してドラム試験用の試料を採取し、ドラム30回転衝撃後の+25mmの平均粒度をもってコークス粒径としている。   The coke particle size refers to the average particle size obtained from the particle size distribution measured by JIS K2151 "Cokes Testing Method". In the case of coke produced in a test furnace, the particle size distribution of the coke after carbonization was measured without shuttering, and a sample for drum test was sampled. The diameter is used.

本発明によれば、非微粘結炭を配合炭の一部として使用する場合でもコークス粒径をより精度よく予測できるようになり、高炉の安定操業により貢献できる。   According to the present invention, the coke particle size can be more accurately predicted even when non-slightly caking coal is used as a part of blended coal, which can contribute to stable operation of the blast furnace.

非微粘結炭を30質量%以上含む配合炭について、特許文献1に従って求めた配合炭の収縮率加重平均とコークス粒径との関係を示す図である。It is a figure which shows the relationship between the shrinkage rate weighted average and the coke particle diameter of the blended coal calculated | required according to patent document 1 about the blended coal containing 30 mass% or more of non-caking coal. 本発明に従って求めた配合炭の収縮率加重平均とコークス粒径との関係を示す図である。It is a figure which shows the relationship between the shrinkage-weighted average of the blended coal and the coke particle diameter which were calculated | required according to this invention. 石炭を1000℃まで加熱した時の再固化温度以上での収縮係数の変化を示す図である。It is a figure which shows the change of the shrinkage coefficient above the re-solidification temperature at the time of heating coal to 1000 degreeC.

本発明者は、非微粘結炭を多量使用した条件でのコークス粒度を決める要因について検討した。
石炭は、昇温過程において400℃近傍で軟化溶融し、その後再固化するが、軟化溶融後は収縮する。
この収縮について、単位温度変化あたりの収縮率の変化を表すコークスの収縮係数(1/K)の推移でみると、収縮係数は、図3に示されるように、再固化温度直後が最も大きく、600℃近傍で極小値を示し、約700℃で極大値を示す。
The present inventor examined factors that determine the coke particle size under the condition where a large amount of non-caking coal is used.
Coal softens and melts at around 400 ° C. in the temperature rising process and then resolidifies, but contracts after softening and melting.
Regarding this shrinkage, when looking at the transition of the shrinkage coefficient (1 / K) of the coke which represents the change in shrinkage rate per unit temperature change, the shrinkage coefficient is the largest immediately after the re-solidification temperature, as shown in FIG. It exhibits a minimum value at around 600 ° C and a maximum value at about 700 ° C.

コークスの粒度は、コークスに生成する亀裂によって決まると考えられるが、亀裂はコークス塊内の歪差(収縮の不均一さ)により生じる熱応力により発生する。そのような熱応力の元となる歪は、コークス塊内の温度差により異なる収縮挙動によって生じると考えられる。
したがって、収縮係数が大きい再固化温度直後でのコークス塊内の収縮係数差が、コークスの亀裂、すなわちコークス粒度に大きな影響を及ぼすものと考えられる。
The grain size of coke is considered to be determined by cracks generated in the coke, and the cracks are generated by thermal stress caused by strain difference (nonuniform shrinkage) in the coke block. The strain that causes such thermal stress is considered to be caused by shrinkage behavior that differs depending on the temperature difference in the coke mass.
Therefore, it is considered that the difference in the shrinkage coefficient in the coke mass immediately after the re-solidification temperature, which has a large shrinkage coefficient, has a great influence on the crack of the coke, that is, the coke grain size.

特許文献1では、再固化温度から1000℃の領域での収縮率を求めており、再固化温度から1000℃より下の温度(例えば、600℃や800℃)の領域での収縮率については、全く検討されていない。
そこで、非微粘結炭を多量使用した条件で、再固化温度から1000℃より下の種々の温度の領域での収縮率を測定して、コークス粒径との関係を求めたところ、コークス粒度は、再固化温度〜(600±30)℃における収縮率により強く支配されることを新たに見出した。
In Patent Document 1, the shrinkage ratio in the region of 1000 ° C. from the resolidification temperature is obtained, and the shrinkage ratio in the region of temperature lower than 1000 ° C. from the resolidification temperature (for example, 600 ° C. or 800 ° C.) is Not considered at all.
Therefore, the shrinkage ratio was measured in the range of various temperatures below the re-solidification temperature to 1000 ° C under the condition that a large amount of non-caking coal was used, and the relationship with the coke particle size was obtained. Was newly found to be strongly controlled by the shrinkage ratio at the resolidification temperature to (600 ± 30) ° C.

後述の実施例により得られた結果を図2に示すが、配合炭を構成する単味炭について再固化温度〜600℃の間での収縮率を求めて、得られた各単味炭のコークス収縮率を、配合炭の配合割合に応じて加重平均することによって配合炭の加重平均収縮率を求めるとともに、その配合炭を乾留してコークスとした時のコークス粒径を測定したものである。
配合炭の加重平均収縮率(%)とコークス粒径(mm)との間に、下記(1)式の一次関数で表される良好な関係があることが示されている。
配合炭のコークス粒径=a+b×配合炭のコークス収縮率 ・・・(1)
The results obtained by the examples described below are shown in FIG. 2. The coke of each of the obtained plain coals was obtained by obtaining the shrinkage ratio between the resolidification temperature and 600 ° C. of the plain coals constituting the blended coal. The shrinkage rate is weighted averaged according to the blending ratio of the blended coal to obtain the weighted average shrinkage rate of the blended coal, and the coke particle size when the blended coal is subjected to carbonization to form coke.
It has been shown that there is a good relationship between the weighted average shrinkage rate (%) of the blended coal and the coke particle size (mm), which is represented by a linear function of the following equation (1).
Coke particle size of blended coal = a + b x coke shrinkage of blended coal (1)

非微粘結炭は、前述のように、揮発分35質量%以上、または全膨張率が10%以下の条件の少なくとも一方を満足する石炭であるが、揮発分が高い非微粘結炭では、再固化温度が低下する。そのため、特に再固化温度から収縮係数が極小値を示す600℃近傍の温度における収縮率は、炭種による差が大きくなる。これに対し、600℃近傍から1000℃までの収縮率の炭種による差異は大きくない。
また、全膨張率が10%以下の非微粘結炭では、全膨張率が10%超の石炭に比べて、同一揮発分でも炭種による再固化温度差が大きくなる。これは、石炭の溶融が低温で終了し、その結果再固化が低温から始まるためと考えられる。
As described above, the non-fine coking coal is a coal that satisfies at least one of the conditions that the volatile content is 35% by mass or more, or the total expansion coefficient is 10% or less. , The re-solidification temperature decreases. Therefore, in particular, the shrinkage rate at a temperature near 600 ° C. at which the shrinkage coefficient has a minimum value from the resolidification temperature has a large difference depending on the coal type. On the other hand, the difference in the shrinkage ratio from around 600 ° C to 1000 ° C depending on the type of coal is not large.
Further, in the case of non-slightly caking coal having a total expansion coefficient of 10% or less, the difference in resolidification temperature depending on the type of coal becomes larger than that of coal having a total expansion coefficient of more than 10%. This is probably because the melting of coal ends at a low temperature and, as a result, resolidification starts at a low temperature.

したがって、非微粘結炭においては、特に再固化温度から600℃近傍までの間での収縮率の炭種による差が大きいため、非微粘結炭を30質量%以上配合した配合炭では、再固化温度から収縮係数が極小値を示す温度における収縮率を用いることにより、コークス粒度の推定精度が向上したと考えられる。
そして、収縮係数が極小値を示す温度は石炭の銘柄で異なることから、再固化温度から(600±30)℃の範囲の収縮率を測定することが適切であることを、実験により知見した。
Therefore, in the non-lightly caking coal, since there is a large difference between the resolidification temperature and the vicinity of 600 ° C. depending on the kind of the coal, the blending coal containing the non-lightly caking coal in an amount of 30% by mass or more, It is considered that the estimation accuracy of the coke grain size is improved by using the shrinkage ratio at the temperature at which the shrinkage coefficient shows the minimum value from the resolidification temperature.
Then, since the temperature at which the shrinkage coefficient exhibits a minimum value varies depending on the brand of coal, it was found by experiments that it is appropriate to measure the shrinkage ratio in the range of (600 ± 30) ° C. from the resolidification temperature.

さらに、非微粘結炭比率の影響についても調査した結果、60質量%までは、上記(1)式の関係で良好な結果が得られるが、非微粘結炭比率が60質量%を超えると、実測値からのかい離が生じるようになる。
これに対しては、上記(1)式に非微粘結炭比率(質量%)に基づく補正項を加えた、下記(2)式を用いることが有効であることも確認した。
配合炭のコークス粒径=a+b×配合炭のコークス収縮率
+c×(非微粘結炭比率−60) ・・・(2)
Furthermore, as a result of investigating the influence of the non-lightly cohesive coal ratio, up to 60% by mass, good results are obtained in the relationship of the above formula (1), but the non-lightly cohesive coal ratio exceeds 60 mass%. Then, the deviation from the measured value will occur.
To this end, it was also confirmed that it is effective to use the following equation (2), which is obtained by adding a correction term based on the non-slightly caking coal ratio (mass%) to the above equation (1).
Coke particle size of blended coal = a + b x coke shrinkage of blended coal
+ Cx (Non-lightly caking coal ratio-60) (2)

なお、収縮率の測定には、特許文献1に記載されている方法を用いることができる。
すなわち、上方を開放した筒状の容器に、測定対象の石炭を装入し、装入した石炭の上端に接してピストンを配置する。このピストンを、石炭の膨張、収縮に伴って上昇、下降できるように支持する。測定では、容器をヒータで加熱し、昇温過程のピストンの上端の位置を計測することによって容器内における内容物の容積変化を測定して、収縮率を算出する。
The method described in Patent Document 1 can be used to measure the shrinkage ratio.
That is, the coal to be measured is charged into a cylindrical container whose upper side is open, and the piston is arranged in contact with the upper end of the charged coal. This piston is supported so that it can rise and fall as the coal expands and contracts. In the measurement, the container is heated by a heater, and the position of the upper end of the piston in the temperature rising process is measured to measure the volume change of the content in the container, and the shrinkage rate is calculated.

収縮率の算出では、ピストンの位置から石炭の長さLの変化を求め、再固化温度での内容物の長さをLR、温度Tでの内容物の長さをLTとして、収縮率Rを以下の式で求めることができる。
R=(LR−LT)/LR
また、長さの変化を容積の変化に換算して、再固化温度での内容物の容積をVR、温度Tでの内容物の容積をVTとし、以下の式で求めることができる。
R=(VR−VT)/VR
In the calculation of the shrinkage rate, the change in the length L of the coal is obtained from the position of the piston, the length of the content at the resolidification temperature is LR, the length of the content at the temperature T is LT, and the shrinkage rate R is It can be calculated by the following formula.
R = (LR-LT) / LR
Further, by converting the change in length into a change in volume, the volume of the contents at the re-solidification temperature is VR, and the volume of the contents at the temperature T is VT, which can be obtained by the following formula.
R = (VR-VT) / VR

以上のような石炭の収縮率の測定方法によって得られた収縮率を用いてコークス粒径を推定する手順を説明する。
(a)配合炭に用いる各単味炭のコークス収縮率を求める。その際、前述のように単味炭を容器に入れて加熱し、再固化温度から(600±30)℃までの間の容器内の内容物の容積の変化量から収縮率を求める。
A procedure for estimating the coke particle size using the shrinkage obtained by the above-described method for measuring the shrinkage of coal will be described.
(A) The coke shrinkage rate of each plain coal used as the blended coal is determined. At that time, as described above, the plain coal is put into a container and heated, and the shrinkage rate is obtained from the amount of change in the volume of the content in the container from the resolidification temperature to (600 ± 30) ° C.

(b)種々の配合炭を乾留してコークス粒径を測定する。同時に、種々の配合炭の収縮率を、各単味炭の収縮率を配合比率によって加重平均することによって求める。
(c)配合炭の加重平均収縮率とコークス粒径の関係を求める。
配合炭のコークス粒径は、求めた配合炭の加重平均収縮率の関数として定めることができる。例えば、下記(1)式のような、配合炭の加重平均収縮率の一次関数として表す。
配合炭のコークス粒径=a+b×配合炭の加重平均収縮率 ・・・(1)
式の係数a、bは、(b)のステップで求めたコークス粒径とコークス収縮率のデータを用いて、回帰分析などの手法を用いて定めることができる。
(d)コークス粒径の推定対象となる配合炭を構成する各単味炭について(a)と同様にして収縮率を求め、それを配合比率によって加重平均することによって配合炭の加重平均収縮率を算出する。
(e)算出された配合炭の加重平均収縮率から、(c)の工程で求められた関係を用いて配合炭のコークス粒径を求める。
以上の手順で、コークス粒径を精度よく推定できるが、非微粘結炭比率が60%を超えると、実測値と推定値のかい離が大きくなる傾向にある。その場合は、(c)の工程で下記(2)式を用いるようにする。
配合炭のコークス粒径=a+b×配合炭のコークス収縮率
+c×(非微粘結炭比率−60) ・・・(2)
式の係数cについても、コークス粒径とコークス収縮率のデータに加え、さらに非微粘結炭比率のデータを加味して、a、bと同様に定められる係数である。
(B) Various coal blends are subjected to dry distillation to measure the coke particle size. At the same time, the shrinkage ratios of various blended coals are determined by weighted averaging the shrinkage percentages of the plain coals with the blending ratios.
(C) The relationship between the weighted average shrinkage of the coal blend and the coke particle size is determined.
The coke particle size of the blended coal can be determined as a function of the obtained weighted average shrinkage of the blended coal. For example, it is expressed as a linear function of the weighted average shrinkage ratio of the blended coal as in the following formula (1).
Coke particle size of blended coal = a + b × weighted average shrinkage of blended coal (1)
The coefficients a and b of the equation can be determined by using a method such as regression analysis using the coke particle diameter and the coke shrinkage ratio data obtained in the step (b).
(D) The weighted average shrinkage rate of the blended coal is calculated by obtaining the shrinkage rate in the same manner as in (a) for each of the plain coals constituting the blended coal whose coke particle size is to be estimated, and performing the weighted average by the blending ratio. To calculate.
(E) From the calculated weighted average shrinkage ratio of the blended coal, the coke particle size of the blended coal is determined using the relationship determined in the step (c).
Although the coke particle size can be accurately estimated by the above procedure, when the non-fine coking coal ratio exceeds 60%, the gap between the measured value and the estimated value tends to increase. In that case, the following equation (2) is used in the step (c).
Coke particle size of blended coal = a + b x coke shrinkage of blended coal
+ Cx (Non-lightly caking coal ratio-60) (2)
The coefficient c of the equation is also a coefficient determined in the same manner as a and b by taking into account the data of the coke particle size and the coke shrinkage ratio and the data of the non-slightly caking coal ratio.

本発明は以上のように構成されるものであるが、次に、実施例を挙げて本発明を更に詳しく説明する。なお、本発明はこれらの実施例の記載内容に何ら制限されるものではない。   The present invention is configured as described above. Next, the present invention will be described in more detail with reference to examples. The present invention is not limited to the contents described in these examples.

(収縮率加重平均値とコークス平均粒度の関係の作成)
石炭を容器に入れて加熱し、再固化温度から600℃までの収縮率を石炭の銘柄ごとに測定した。収縮率を測定した石炭を配合した配合炭からコークスを作製してコークス粒径を測定した。また、配合炭について、配合率に応じて収縮率を加重平均して加重平均収縮率を算出した。得られた配合炭の加重平均収縮率とコークス平均粒度との関係を図2に示す。なお、配合炭には、揮発分含有量が35質量%以上または全膨張率が10%以下の非微粘結炭を30%以上60%以下含む配合炭と非微粘結炭が30%未満(0%を含む)である配合炭を用いた。
(Creation of relationship between shrinkage-weighted average value and coke average particle size)
The coal was placed in a container and heated, and the shrinkage ratio from the resolidification temperature to 600 ° C. was measured for each brand of coal. Coke was prepared from blended coal containing blended coal whose shrinkage was measured, and the coke particle size was measured. In addition, for the blended coal, the weighted average shrinkage was calculated by weighting the shrinkage according to the blending ratio. The relationship between the weighted average shrinkage ratio and the average coke particle size of the obtained blended coal is shown in FIG. It should be noted that, in the blended coal, blended coal containing non-fine coking coal having a volatile content of 35% by mass or more or total expansion rate of 10% or less and 30% or more and 60% or less, and non-fine coking coal is less than 30%. A blended coal (including 0%) was used.

図2に示されるように、配合炭の加重平均収縮率とコークス平均粒度には強い相関が得られた。また、上記(1)式に基づく下記の関係式(1)’が得られた。
コークス粒径=123.12−16.14×配合炭の加重平均収縮率・・・(1)’
この関数の相関係数R2は0.98であり、非微粘結炭を30%以上含む配合炭について、本発明の場合は著しく精度が向上した。また、特許文献1の図6のデータでは、相関係数R2は0.86と計算できるので、本発明の方法で収縮率を求めた場合には、非微粘結炭の配合率が低い場合でも精度が向上する結果も得られた。
また、前記の配合炭として、揮発分含有量が35質量%以上または全膨張率が10%以下の非微粘結炭が60%を超えて含まれている場合については、上記(2)式に基づく下記の関係式(2)’が得られた。
コークス粒径=123.12−16.14×配合炭の加重平均収縮率+
[−0.1×(非微粘結炭比−60)]・・・(2)’
As shown in FIG. 2, a strong correlation was obtained between the weighted average shrinkage of the coal blend and the average coke particle size. Further, the following relational expression (1) ′ based on the above expression (1) was obtained.
Coke particle size = 123.12-16.14 x weighted average shrinkage of blended coal (1) '
The correlation coefficient R2 of this function was 0.98, and the accuracy was remarkably improved in the case of the present invention for blended coal containing 30% or more of non-slightly caking coal. Further, in the data of FIG. 6 of Patent Document 1, since the correlation coefficient R2 can be calculated as 0.86, when the shrinkage ratio is obtained by the method of the present invention, when the non-slightly caking coal content is low. However, the result is that the accuracy is improved.
Further, in the case where the above-mentioned blended coal contains non-fine coking coal having a volatile content of 35 mass% or more or a total expansion coefficient of 10% or less in excess of 60%, the above formula (2) is used. The following relational expression (2) ′ based on the above is obtained.
Coke particle size = 123.12-16.14 x weighted average shrinkage rate of blended coal +
[−0.1 × (non-caking coal ratio-60)] ... (2) '

(コークス平均粒度の推定)
次に、上記関係を用いて推定したコークス平均粒度と実測値との比較を行った。
表1に示す石炭A〜Eを用いて、表2に示す配合炭T〜Zを得た。石炭Dは全膨張率が10%以下の非微粘結炭、石炭Eは揮発分含有量が35質量%以上の非微粘結炭である。石炭A〜Eの再固化温度から600℃までの収縮率を表2に示す。
(Estimation of average particle size of coke)
Next, the average coke grain size estimated using the above relationship was compared with the actual measurement value.
Using coals A to E shown in Table 1, blended coals TZ shown in Table 2 were obtained. Coal D is non-caking coal having a total expansion rate of 10% or less, and coal E is a non-caking coal having a volatile content of 35 mass% or more. Table 2 shows the shrinkage rates of the coals A to E from the solidification temperature to 600 ° C.

配合炭T〜Zを乾留してコークスを作製し、そのコークス粒径を測定した。また、表2に示される各石炭の収縮率を用い、表2の配合率(質量%)に基づいて加重平均して、配合炭T〜Zの加重平均収縮率を算出した。
得られた配合炭T〜Zの加重平均収縮率から、前記関係式(1)’を用いてコークス粒径を推定した。
The blended coals TZ were subjected to carbonization to prepare coke, and the coke particle size was measured. In addition, the shrinkage ratios of the respective coals shown in Table 2 were used, and the weighted average shrinkage ratios of the blended coals TZ were calculated by weighted averaging based on the blending ratio (mass%) of Table 2.
The coke particle size was estimated using the relational expression (1) ′ from the weighted average shrinkage rates of the obtained blended coals TZ.

表2に、配合炭T〜Zについて、コークス粒径の実測値と推定値を示すが、いずれもよい一致が得られた。但し、非微粘結炭比率が60%を超える配合炭Y、Zでは、コークス粒径の実測値と推定値のかい離がやや大きくなっているが、これに対しては、前記関係式(2)’式を用いることにより、配合炭Yでは、33.5mm、配合炭Zでは、33.0mmの推定値が得られ、実測値に一致する結果が得られた。   Table 2 shows the measured and estimated values of the coke particle size for the blended coals TZ, and good agreement was obtained in all cases. However, in the blended coals Y and Z having a non-caking coal ratio of more than 60%, the difference between the actually measured value and the estimated value of the coke particle size is slightly large. By using the formula) ′, an estimated value of 33.5 mm was obtained for the blended coal Y and 33.0 mm for the blended coal Z, and a result in agreement with the actual measurement value was obtained.

Figure 0006680163
Figure 0006680163

Figure 0006680163
Figure 0006680163

Claims (2)

揮発分含有量が35質量%以上、またはJIS M 8801で規定される膨張性試験方法により測定される全膨張率が10%以下の少なくとも一方を満足する非微粘結炭を、30質量%以上配合した配合炭を用いてコークスを製造する場合のコークス粒径の推定方法であって、配合炭を構成する単味炭の収縮率を加重平均して求めた配合炭の加重平均収縮率とコークス粒径の関係を予め求めておき、推定しようとする配合炭の加重平均収縮率を求め、前記関係から推定しようとする配合炭のコークス粒径を求めるコークス粒径の推定方法において、
配合炭を構成する単味炭の収縮率を、単味炭を容器内において加熱し、その際の再固化温度と(600±30)℃の範囲内の温度とにおける単味炭の容積の変化量から求めることを特徴とするコークス粒径の推定方法。
30% by mass or more of volatile matter content is 35% by mass or more, or total non-caking coal satisfying at least one of 10% or less in total expansion coefficient measured by the expansivity test method specified in JIS M8801 A method for estimating the coke particle size in the case of producing coke using blended coal, which is a weighted average shrinkage ratio and coke of the blended coal obtained by performing a weighted average of the shrinkage percentages of the plain coal constituting the blended coal. The relationship between the particle sizes is obtained in advance, the weighted average shrinkage of the blended coal to be estimated is obtained, and the coke particle size estimation method for obtaining the coke particle size of the blended coal to be estimated from the relationship is given.
The shrinkage rate of the plain coal constituting the blended coal was changed by changing the volume of the plain coal at the resolidification temperature and the temperature within the range of (600 ± 30) ° C. when the plain coal was heated in a container. A method for estimating the coke particle size, which is characterized in that it is obtained from the amount.
上記配合炭の加重平均収縮率とコークス粒径の関係として、
配合する非微粘結炭比が60%以下のときは、下記(1)式で表される関係を予め求めておき、非微粘結炭比が60%を超えるときは、下記(2)式で表される関係を予め求めておくことを特徴とする請求項1に記載のコークス粒径の推定方法。
配合炭のコークス粒径=a+b×配合炭のコークス収縮率 ・・・(1)
配合炭のコークス粒径=a+b×配合炭のコークス収縮率
+c×(非微粘結炭比率−60) ・・・(2)
ここで、a、bは、コークス粒径とコークス収縮率の測定値から回帰分析によって定められる係数であり、cは、さらに非微粘結炭比率を加味して同様に定められる係数である。
As the relationship between the weighted average shrinkage rate of the above blended coal and the coke particle size,
When the non-caking coal ratio to be blended is 60% or less, the relationship represented by the following formula (1) is obtained in advance, and when the non-caking coal ratio exceeds 60%, the following (2) is used. The coke particle size estimating method according to claim 1, wherein the relationship represented by the formula is obtained in advance.
Coke particle size of blended coal = a + b x coke shrinkage of blended coal (1)
Coke particle size of blended coal = a + b x coke shrinkage of blended coal
+ Cx (Non-lightly caking coal ratio-60) (2)
Here, a and b are coefficients determined by regression analysis from measured values of coke particle diameter and coke shrinkage, and c is a coefficient similarly determined by further considering the non-caking coal ratio.
JP2016184534A 2016-09-21 2016-09-21 Coke particle size estimation method Active JP6680163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184534A JP6680163B2 (en) 2016-09-21 2016-09-21 Coke particle size estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184534A JP6680163B2 (en) 2016-09-21 2016-09-21 Coke particle size estimation method

Publications (2)

Publication Number Publication Date
JP2018048262A JP2018048262A (en) 2018-03-29
JP6680163B2 true JP6680163B2 (en) 2020-04-15

Family

ID=61767217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184534A Active JP6680163B2 (en) 2016-09-21 2016-09-21 Coke particle size estimation method

Country Status (1)

Country Link
JP (1) JP6680163B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273314B2 (en) * 2018-11-28 2023-05-15 日本製鉄株式会社 Coal blending method and coal type selection method in the production of blast furnace coke
CN110797090A (en) * 2019-04-11 2020-02-14 邢台旭阳科技有限公司 Method for predicting sulfur content of coke, method for predicting sulfur conversion rate of coal, method for preparing blended coal, and coking method
CN111915232B (en) * 2020-08-25 2023-06-30 武汉钢铁有限公司 Coal blending adjustment method for reducing mass percentage of coke with granularity of more than 60mm
TWI805045B (en) 2020-10-30 2023-06-11 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129166B2 (en) * 1995-08-31 2001-01-29 日本鋼管株式会社 Particle Size Estimation Method for Room Coke Oven
JPH1192767A (en) * 1997-09-22 1999-04-06 Kawasaki Steel Corp Method for estimating contraction of blend coal
JP4299693B2 (en) * 2004-02-20 2009-07-22 新日本製鐵株式会社 Coke shrinkage measurement method and coke particle size estimation method using the same
JP4464835B2 (en) * 2005-01-06 2010-05-19 新日本製鐵株式会社 Coke production method
JP6308157B2 (en) * 2015-03-26 2018-04-11 Jfeスチール株式会社 Method for preparing blended coal and method for producing coke
JP6565642B2 (en) * 2015-12-01 2019-08-28 日本製鉄株式会社 Coke shrinkage estimation method

Also Published As

Publication number Publication date
JP2018048262A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6680163B2 (en) Coke particle size estimation method
JP4691212B2 (en) Coal expansion rate measurement method, coal specific volume estimation method, void filling degree measurement method, and coal blending method
JP7180544B2 (en) Method for estimating post-hot reaction strength of coke and method for producing coke
JP2016069469A (en) Estimation method for coke strength
JP4299693B2 (en) Coke shrinkage measurement method and coke particle size estimation method using the same
JP6680252B2 (en) Coal evaluation method and coke manufacturing method
JP7067226B2 (en) How to evaluate coke strength
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
JP6565642B2 (en) Coke shrinkage estimation method
JP2018048297A (en) Estimation method of coke strength
JP5846064B2 (en) Method for estimating strength of formed coke
JP6879020B2 (en) How to estimate coke shrinkage
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP4464835B2 (en) Coke production method
JP5820668B2 (en) Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method
JP6323150B2 (en) Method for estimating specific volume of blended coal
JP5581630B2 (en) Coke cake extrudability estimation method
JP6657867B2 (en) Estimation method of coke shrinkage
JP2006249174A (en) Method of estimation of percent coke contraction of blended coal and cokemaking process
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JPS6341423B2 (en)
JP6724738B2 (en) Judging completion method for coke oven
JP6874487B2 (en) Method of adjusting compound coal and method of manufacturing coke
JP2021042378A (en) Method for estimating coal inert factor coefficient and method for estimating coke surface fracture strength
JP3142637B2 (en) Estimation method of coal expansion pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151