JP2016069469A - Estimation method for coke strength - Google Patents

Estimation method for coke strength Download PDF

Info

Publication number
JP2016069469A
JP2016069469A JP2014198682A JP2014198682A JP2016069469A JP 2016069469 A JP2016069469 A JP 2016069469A JP 2014198682 A JP2014198682 A JP 2014198682A JP 2014198682 A JP2014198682 A JP 2014198682A JP 2016069469 A JP2016069469 A JP 2016069469A
Authority
JP
Japan
Prior art keywords
coal
coke
expansion
low
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014198682A
Other languages
Japanese (ja)
Other versions
JP6379934B2 (en
Inventor
愛澤 禎典
Sadanori Aizawa
禎典 愛澤
上坊 和弥
Kazuya Uebo
和弥 上坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014198682A priority Critical patent/JP6379934B2/en
Publication of JP2016069469A publication Critical patent/JP2016069469A/en
Application granted granted Critical
Publication of JP6379934B2 publication Critical patent/JP6379934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate an inert factor coefficient (f) of low coalification degree coal by a simple method and estimate coke strength by using the same.SOLUTION: There is provided an estimation method of coke strength for blast furnace manufactured by using low coalification degree coal having a volatile component of 30 mass% or more and a total expansion ratio of 0% for a part of blended coal, including calculating an inert factor coefficient (f) from an expansion ratio volume (SV') measured by a rate over 3°C/min. which is a rate of temperature rise defined in JIS-M8801 and further estimating coke strength by using an inert factor (IF) calculated from the following formula (1): IF=1.00-f x, where f: the inert factor coefficient [-], x: blended rate of the low coalification degree coal [%].SELECTED DRAWING: Figure 2

Description

本発明は、コークス強度の推定方法に関する。特に、低石炭化度炭を使用する場合のコークス強度の推定方法に関する。   The present invention relates to a method for estimating coke strength. In particular, the present invention relates to a method for estimating coke strength when using low-rank coal.

高炉の通気性を確保し、安定的に操業するために、高炉で用いられるコークスには高強度な品質が求められている。近年では高炉容積の大型化やCO削減を目指した低還元材比で操業するために、益々高強度なコークスが要求されている。高炉用コークスを製造する際には、多種多様な銘柄の石炭を配合した原料炭(配合炭)をコークス炉内に装入し、乾留する。 Coke used in the blast furnace is required to have high strength quality in order to ensure the air permeability of the blast furnace and operate stably. In recent years, in order to operate at a low reducing material ratio aiming at an increase in blast furnace volume and CO 2 reduction, coke with higher strength is increasingly required. When producing coke for blast furnace, raw coal (mixed coal) containing various brands of coal is charged into the coke oven and dry-distilled.

コークス炉の中で加熱された原料石炭は、350℃〜500℃の温度域で一旦軟化溶融・膨張して石炭粒子同士が結合した後、再度固化することで強固なコークスを生成する。石炭が軟化溶融する性質のことを粘結性という。配合炭は、通常、粘結性の高い石炭(粘結炭)と粘結性の低い石炭(非微粘結炭)が十数種類配合された構成となっている。なお、粘結炭は高石炭化度であり、非微粘結炭は全てが低石炭化度とは限らないが、低石炭化度のものが多い。強度の高いコークスを製造するには、ある一定の粘結性が必要とされることから粘結炭を多く配合することが必要である。しかし、良質な粘結炭は高価であり、また資源的に少なくなってきていることから、安価な非微粘結炭の配合率を高くすることが望まれている。そして、より劣質な非微粘結炭をより多量に配合する傾向は近年さらに強まっている。 The raw material coal heated in the coke oven is softened and melted and expanded once in a temperature range of 350 ° C. to 500 ° C., and coal particles are combined with each other, and then solidified again to generate strong coke. The property of coal softening and melting is called caking property. The blended coal usually has a configuration in which dozens of coals having high caking properties (caking coal) and coals having low caking properties (non-caking coal) are blended. In addition, caking coal has a high degree of coalification, and all of non-slightly caking coal is not necessarily a low degree of coalification, but many have a low degree of coalification. In order to produce coke with high strength, a certain amount of caking property is required, so it is necessary to add a large amount of caking coal. However, since high-quality caking coal is expensive and has been reduced in terms of resources, it is desired to increase the blending ratio of inexpensive non-caking coal. And the tendency to mix | blend a more inferior non-slightly caking coal in a larger quantity is further strengthened in recent years.

しかし、劣質な、即ち粘結性に乏しい非微粘結炭を多量に配合すると、上記のコークス化機構からもわかるように石炭粒子の膨張および結合が不十分となり、コークス強度の低下を招く。コークス強度低下は、高炉操業に多大なる影響を及ぼすため、配合する石炭の性状から事前にコークス強度、特に急激な強度低下を精度よく予測する技術は、非微粘結炭の劣質化および多配合を指向するコークス炉操業において非常に重要である。   However, if a large amount of inferior, ie, non-slightly caking coal with poor caking properties is blended, as can be seen from the above coking mechanism, the expansion and bonding of the coal particles become insufficient, leading to a reduction in coke strength. Coke strength reduction has a great impact on blast furnace operation, so the technology for accurately predicting coke strength, especially rapid strength reduction in advance, from the properties of the coal to be blended, is based on the deterioration of non-coking coal and multiple blending Is very important in coke oven operation.

現在国内で主に用いられているドラム強度は、JIS-K2151にて規定されている、所定量のコークス(10kg)を装入した回転ドラムを150回転させた後の篩目15mmの篩でふるい分けた篩上(粒径15mm超)のコークス質量の全装入コークス質量に対する百分率(15mm指数)で評価している、ドラム強度すなわちDI150 15である。
そして、ドラム回転時に発生する篩目15mmの篩でふるい分けた篩下(粒径15mm以下)の粉には、表面破壊により生成する粉(表面破壊粉:粒径6mm以下)および体積破壊により生成する粉(体積破壊粉:粒径6mm-15mm)が混在していることも明らかにされており、それらを個々に求めることでDI150 15を推定する方法がこれまで開示されている。
The drum strength that is mainly used in Japan at present is specified by JIS-K2151, and sieved with a 15 mm sieve after rotating the rotating drum charged with a predetermined amount of coke (10 kg) 150 times. The drum strength, ie, DI 150 15 , is evaluated as a percentage (15 mm index) of the coke mass on the sieve (particle size greater than 15 mm) to the total charge coke mass.
And the powder under the sieve (particle size of 15 mm or less) screened with a 15 mm sieve generated during drum rotation is produced by surface destruction (surface destruction powder: particle diameter of 6 mm or less) and volume destruction. It has also been clarified that powder (volume fracture powder: particle size 6 mm-15 mm) is mixed, and a method for estimating DI 150 15 by obtaining them individually has been disclosed so far.

配合する各石炭の膨張率または膨張比容積を配合割合で加重平均した値と表面破壊粉率の関係から表面破壊粉率を求めること、体積破壊粉率は配合石炭の再固化温度から求めることによりDI150 15を推定する方法が開示されている(特許文献1)。 By determining the surface fracture powder rate from the relationship between the weighted average value of the expansion rate or expansion specific volume of each coal to be blended and the surface fracture powder rate, and determining the volume fracture powder rate from the resolidification temperature of the blended coal A method for estimating DI 150 15 is disclosed (Patent Document 1).

石炭の膨張比容積と装入嵩密度から石炭軟化溶融時の空隙充填度を求め、この空隙充填度からコークスの表面破壊強度を推定する方法が開示されている。なお表面破壊強度とは、ドラム強度の6mm指数(DI150 6)、すなわちドラムを150回転させた後の篩目6mmの篩でふるい分けた篩上(粒径6mm超)のコークス質量の全装入コークス質量に対する百分率である(特許文献2)。 A method for obtaining the degree of void filling during coal softening and melting from the expansion specific volume of coal and the charge bulk density and estimating the surface fracture strength of coke from this degree of void filling is disclosed. The surface breaking strength is the drum strength 6 mm index (DI 150 6 ), that is, the total charge of the coke mass on the sieve (particle size greater than 6 mm) sieved with a sieve of 6 mm sieve after 150 revolutions of the drum. Percentage of coke mass (Patent Document 2).

コークス炉に装入する配合炭の乾留時における比容積を推定するに当たり、配合炭の比容積を加重平均し、膨張しない石炭のイナート係数を掛けて配合炭の乾留時における比容積を推定する発明が開示されている(特許文献3)。
ここで、イナート係数とは、膨張しない石炭が、配合炭の膨張を阻害する程度を表す指標であり、配合炭の乾留時における比容積にイナート係数を掛けることにより、精度の高い配合炭の比容積が推定できる。
An invention that estimates the specific volume during dry distillation of the coal blend charged in the coke oven by weighted average of the specific volume of the coal blend and multiplying by the inert coefficient of the coal that does not expand. Is disclosed (Patent Document 3).
Here, the inert coefficient is an index representing the extent to which unexpanded coal inhibits the expansion of blended coal, and by multiplying the specific volume at the time of dry distillation of the blended coal, the ratio of highly accurate blended coal The volume can be estimated.

高石炭化度炭および低石炭化度炭それぞれについて、コークスの表面破壊強度を求め、高石炭化度炭と低石炭化度炭の配合割合で加重平均することにより、コークスの表面破壊強度を推定する方法が開示されている(特許文献4)。
この発明では、表面破壊強度は高石炭化度炭あるいは低石炭化度炭の膨張比容積と配合炭の装入嵩密度から求めるが、高石炭化度炭の膨張比容積を求めるにあたっては、低石炭化度炭の配合比率に応じた膨張阻害度合であるイナートファクター(上述の「イナート係数」と同義)を考慮する。
Estimate the surface fracture strength of coke by determining the surface fracture strength of coke for each of high and low coals, and weighted average with the blending ratio of high and low coals. Is disclosed (Patent Document 4).
In this invention, the surface fracture strength is obtained from the expansion specific volume of the high coal degree coal or the low coal degree coal and the charging bulk density of the blended coal. Consider an inert factor (synonymous with the above-mentioned “inert coefficient”), which is the degree of expansion inhibition according to the blending ratio of coal.

全膨張率が0の高灰分炭と、全膨張率が0の低灰分炭と、全膨張率が0よりも大きい中灰分炭からなる配合炭から製造するコークスの表面破壊強度の推定方法であって、石炭の膨張性試験により測定される中高灰分炭の膨張比容積と、全膨張率が0の高灰分炭および低灰分炭が中灰分炭の膨張性を阻害する程度を表す度合(イナートファクター)と、中灰分炭のコークス炉装入時の嵩密度を乗じ得られる空隙充填度からコークスの表面破壊強度を推定する方法の開示がある(特許文献5)。   This is a method for estimating the surface fracture strength of coke produced from a blended coal consisting of a high ash coal with a total expansion rate of 0, a low ash coal with a total expansion rate of 0, and a medium ash coal with a total expansion rate greater than 0. The expansion specific volume of medium and high ash coal measured by the coal expansibility test and the degree to which the high ash coal and the low ash coal with a total expansion rate of 0 inhibit the expansion of the medium ash coal (inert factor) ) And a method for estimating the surface fracture strength of coke from the degree of void filling obtained by multiplying the bulk density of the medium ash coal at the time of charging into the coke oven (Patent Document 5).

特開平9−263764号公報JP-A-9-263964 特開2002−121565号公報JP 2002-121565 A 特開平9−255965号公報JP-A-9-255965 特許第4299680号公報Japanese Patent No. 4299680 特許第5402369号公報Japanese Patent No. 5402369

特許文献1は、コークス強度DI150 15は、表面破壊粉量と体積破壊粉量の和から求めることができ、表面破壊粉率は、配合する各石炭の膨張比容積を配合割合で加重平均した値から求められることを開示している。
また、特許文献2は、コークスの表面強度は、石炭装入時の嵩密度に影響されることから、配合する各石炭の膨張比容積に装入嵩密度を乗じた空隙充填度を求め、この空隙充填度からコークスの表面破壊強度を推定する方法を開示している。
しかし、これらの特許文献1,2には、低石炭化度炭が高石炭化度炭の膨張を阻害する度合(イナートファクター)について言及されていない。
In Patent Document 1, the coke strength DI 150 15 can be obtained from the sum of the amount of surface breaking powder and the amount of volume breaking powder, and the surface breaking powder rate is a weighted average of the expansion specific volume of each coal to be blended by the blending ratio. It is disclosed that it is obtained from the value.
Moreover, since the surface strength of coke is influenced by the bulk density at the time of coal charging, patent document 2 calculates | requires the void filling degree which multiplied the charging bulk density to the expansion specific volume of each coal to mix | blend, and this A method for estimating the surface fracture strength of coke from the degree of void filling is disclosed.
However, these Patent Documents 1 and 2 do not mention the degree (inert factor) at which the low-coalizing coal inhibits the expansion of the high-coalizing coal.

特許文献3は、低石炭化度炭が、高石炭化度炭の膨張を阻害する度合(イナートファクター)を考慮した石炭の膨張比容積について開示している。ここでは、膨張阻害度合すなわちイナートファクターに対する低石炭化度炭配合率の影響感度係数について開示があるが、全膨張率が0%の低石炭化度炭が配合された場合に、コークス強度を簡便に推定することは、開示されていない。
特許文献4では、コークス強度DI150 15は、表面破壊粉量と体積破壊粉量の和から求めることができること、表面破壊粉量は、配合する石炭の膨張比容積を配合割合で加重平均した値に、装入嵩密度と、低石炭化度炭が高石炭化度炭の膨張を阻害する度合(イナートファクター)を乗じた空隙充填度から求められることが開示されている。しかし、全膨張率が0%の低石炭化度炭が配合された場合に、コークス強度を簡便に推定することは、開示されていない。
引用文献5には、全膨張率が0%の高灰分炭と、全膨張率が0%の低灰分炭を含む配合炭の製造するコークスの表面破壊強度を、特許文献4と同様な方法で推定する。
コークスの表面破壊強度は、特許文献4、5に開示された石炭の膨張比容積と、装入嵩密度と、低石炭化度炭のイナートファクターを乗じた空隙充填度から推定できる。
Patent Document 3 discloses the expansion specific volume of coal in consideration of the degree (inert factor) at which the low-coalification coal inhibits the expansion of the high-coalification coal. Here, there is a disclosure about the sensitivity coefficient of the influence of the low coal content ratio on the degree of expansion inhibition, that is, the inert factor. However, when low coal content coal with a total expansion rate of 0% is compounded, the coke strength is simplified. It is not disclosed to presume.
In Patent Document 4, the coke strength DI 150 15 can be obtained from the sum of the amount of surface breaking powder and the amount of volume breaking powder, and the amount of surface breaking powder is a value obtained by weighted average of the expansion specific volume of coal to be blended by the blending ratio. It is disclosed that it is calculated | required from a filling bulk density and the void filling degree multiplied by the degree (inert factor) by which the low coalification degree coal inhibits expansion of high coalification degree coal. However, it is not disclosed that the coke strength is simply estimated when low-coalized coal having a total expansion rate of 0% is blended.
In Cited Document 5, the surface fracture strength of coke produced by high-ash coal having a total expansion rate of 0% and low-ash coal having a total expansion rate of 0% is manufactured in the same manner as in Patent Document 4. presume.
The surface fracture strength of coke can be estimated from the degree of void filling obtained by multiplying the expansion specific volume of coal disclosed in Patent Documents 4 and 5, the charging bulk density, and the inert factor of low-rank coal.

しかし、低石炭化度炭が、高石炭化度炭の膨張を阻害する度合(イナートファクター)および低石炭化度炭に固有のイナートファクター係数(f)は、石炭毎に低石炭化度炭の配合率を変動させた複数回の乾留あるいは膨張率測定にて求める必要があり、手間がかかる。よって、新しい銘柄の石炭が入荷した場合、または従来石炭でも、その品質変動チェックのための試験が必要であり、試験の負荷が大きい。したがって、簡易にイナートファクター係数(f)を推定できる手法が望まれる。
本発明の目的は、コークス強度の推定に必要な低石炭化度炭のイナートファクター係数(f)の推定について、簡易な推定方法を提供し、さらに、低石炭化度炭のうち膨張性を示さないものを含む配合炭において、正確なコークス強度の推定方法を提供することである。
However, the degree (inert factor) at which low-rank coal inhibits expansion of high-rank coal and the inert factor coefficient (f) inherent to low-rank coal are It is necessary to calculate by dry distillation or expansion coefficient measurement with varying blending ratios, which is troublesome. Therefore, when a new brand of coal arrives, or even with conventional coal, a test for checking the quality variation is necessary, and the load of the test is large. Therefore, a method that can easily estimate the inert factor coefficient (f) is desired.
The object of the present invention is to provide a simple estimation method for the estimation of the inert factor coefficient (f) of low-carbonized coal necessary for estimation of coke strength, and further shows the expansibility of low-carbonized coal. It is to provide an accurate method for estimating coke strength in coal blends including those not present.

本発明者らは、石炭の膨張比容積とイナートファクター係数(f)との間に相関性があることを知見し、さらには、低石炭化度炭のうち、JIS−M8801で規定された昇温速度では全膨張性が0%の石炭であっても、昇温速度を高めて測定することで膨張比容積を測定でき、この様にして測定した膨張比容積とイナートファクター係数(f)の相関性も高いことを見出した。従って、あらかじめ、この相関性を求めておけば、膨張性が0%の新しい銘柄の低石炭化度炭を配合する場合であっても、膨張比容積という簡便な方法を用いるだけで、コークス強度を精度良く推定できることを見出した。   The present inventors have found that there is a correlation between the expansion specific volume of coal and the inert factor coefficient (f), and further, among the low-coalizing coals, the ascension specified by JIS-M8801. Even if the coal has a total expansion of 0% at the temperature rate, the expansion specific volume can be measured by increasing the temperature increase rate, and the expansion specific volume and the inert factor coefficient (f) measured in this way can be measured. We found that the correlation was high. Therefore, if this correlation is obtained in advance, the coke strength can be obtained only by using a simple method called expansion specific volume even when blending a new brand of low-rank coal with 0% expansion. It was found that can be estimated with high accuracy.

本発明の要旨とするところは、以下のとおりである。
<1>揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を配合炭の一部に用いて製造する高炉用コークスの強度の推定方法であって、
前記高炉用コークスの強度を、コークスの表面破壊により生成する粉コークス量(表面破壊粉コークス量)およびコークスの体積破壊により生成する粉コークス量(体積破壊粉コークス量)の和より求め、
前記表面破壊粉コークス量を、配合する高石炭化度炭の軟化時の膨張比容積と、配合炭の装入密度と、低石炭化度炭が高石炭化度炭の軟化時の膨張を阻害する程度を表す下記式(1)のイナートファクター(IF)から算出する高石炭化度炭の軟化時の充填度から求めるに際し、
前記式(1)のイナートファクター(IF)の中のイナートファクター係数(f)と、JIS−M8801で規定された昇温速度である3℃/分を超える速度で測定した前記低石炭化度炭の膨張比容積(SV’)との関係性を、あらかじめ求めておき、配合を予定している全膨張率が0%の低石炭化度炭を3℃/分を超える昇温速度で測定した膨張比容積(SV’)値から、前記の関係性に基きイナートファクター係数(f)を求め、さらに下記式(1)により算出されるイナートファクター(IF)を用いて、コークス強度を推定することを特徴とする、コークスの強度推定方法。
IF =1.00−f・x・・・・・(1)
ここで、f:イナートファクター係数[-]、x:低石炭化度炭の配合率[%]である。
<2>前記イナートファクター係数(f)と膨張比容積(SV’)との関係性が、下記の式(2)であることを特徴とする<1>に記載の高炉用コークスの強度推定方法。

f=-0.734SV’5 + 6.214 SV’4 - 20.921 SV’3 + 35.039 SV’2 - 29.2 SV’ + 9.696・・・(2)

ここで、f:イナートファクター係数[-]、SV’:12℃/minで測定した膨張比容積[cm3/g]である。

なお、以降「SV」は3℃/minの昇温速度で、「SV’」は12℃/minの昇温速度で測定した膨張比容積をしめす。
また、本願における低石炭化度炭は、揮発分が30質量%以上の石炭を意味している。
The gist of the present invention is as follows.
<1> A method for estimating the strength of blast furnace coke produced by using a low-coalized coal having a volatile content of 30% by mass or more and a total expansion rate of 0% as part of the blended coal,
The strength of the blast furnace coke is determined from the sum of the amount of powder coke produced by surface destruction of the coke (surface destruction powder coke amount) and the amount of powder coke produced by volume destruction of the coke (volume destruction powder coke amount).
The above-mentioned surface breaking powder coke amount, the expansion specific volume when softening high-degree coal to be blended, the charging density of blended coal, and the low-ranking degree coal inhibit the expansion when softening high-degree coal. When obtaining from the filling degree at the time of softening of the high-coalized coal calculated from the inert factor (IF) of the following formula (1) representing the degree to be
The inert coal (f) in the inert factor (IF) of the formula (1) and the low-coalizing coal measured at a rate exceeding 3 ° C./min, which is the rate of temperature increase defined in JIS-M8801. The relationship with the expansion specific volume (SV ′) of the coal was determined in advance, and the low expansion degree coal with a total expansion rate of 0% planned to be blended was measured at a heating rate exceeding 3 ° C./min. From the expansion specific volume (SV ') value, obtain the inert factor coefficient (f) based on the above relationship, and further estimate the coke strength using the inert factor (IF) calculated by the following equation (1) A method for estimating coke strength.
IF = 1.00-f · x (1)
Here, f is an inert factor coefficient [−], and x is a blending ratio [%] of low-rank coal.
<2> The method for estimating the strength of coke for blast furnace according to <1>, wherein the relationship between the inert factor coefficient (f) and the expansion specific volume (SV ′) is the following equation (2): .

f = -0.734SV '5 + 6.214 SV ' 4 - 20.921 SV '3 + 35.039 SV' 2 - 29.2 SV '+ 9.696 ··· (2)

Here, f is an inert factor coefficient [−], SV ′ is an expansion specific volume [cm 3 / g] measured at 12 ° C./min.

In the following, “SV” indicates the expansion specific volume measured at a temperature increase rate of 3 ° C./min, and “SV ′” indicates the expansion specific volume measured at a temperature increase rate of 12 ° C./min.
Moreover, the low coalification degree coal in this application means the coal whose volatile matter is 30 mass% or more.

コークス強度の推定に必要な低石炭化度炭のイナートファクター係数(f)の推定について、簡易で精度の高い推定方法を提供することができる。   A simple and highly accurate estimation method can be provided for the estimation of the inert factor coefficient (f) of low-carbonized coal necessary for the estimation of coke strength.

低石炭化度炭の配合割合とイナートファクター(IF)の関係を示す図。The figure which shows the relationship between the compounding ratio of a low coal degree coal, and an inert factor (IF). 低石炭化度炭を12℃/minで昇温した膨張比容積(SV’)とイナートファクター係数(f)の関係を示す図。The figure which shows the relationship between the expansion specific volume (SV ') which heated up the low coal degree coal at 12 degrees C / min, and the inert factor coefficient (f). 空隙充填度(SV×BD×IF)と表面破壊強度(DI150 )の関係を示す図。It shows the relationship between the void filling degree (SV × BD × IF) and the surface fracture strength (DI 150 6). 本発明によるコークス強度(DI150 15)の推定と実績を示す図。It shows the estimated and actual coke strength according to the invention (DI 150 15).

(コークス強度の推定方法)
本発明は、揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を、配合炭の一部に用いて製造する高炉用コークスの強度の推定方法である。揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を対象とするのは、石炭化度が低い、かかる石炭を配合炭に用いると、コークス強度の低下が大きく、正確な強度の推定が重要であるからである。
(Coke strength estimation method)
The present invention is a method for estimating the strength of coke for blast furnace produced by using a low-coalized coal having a volatile content of 30% by mass or more and a total expansion rate of 0% as part of the blended coal. The target for low-coalized coal with a volatile content of 30% by mass or more and a total expansion rate of 0% is that the degree of coalification is low. This is because it is important to estimate the intensity.

コークス強度(DI150 15)は、コークスのドラム強度試験において発生する15mm以下の粉コークスの発生量で評価する。ここで、15mm以下の粉コークスの発生量のうち、6mm〜15mmの粉コークスは、体積破壊により生成する粉コ-クスであり、体積破壊粉率(DI150 6-15)としてあらわす。また、6mm未満の粉コークスは、表面破壊により生成する粉コ-クスであり、6mm篩上のコークス塊残留率を表面破壊強度(DI150 6)としてあらわす。このように、粉コークスを分けて考えるのは、粉コークスサイズにより、その粉発生メカニズムが異なるからである。したがって、コークス強度(DI150 15)は、表面破壊強度(DI150 6)から体積破壊粉率(DI150 6-15)を差し引いたものとなる。 The coke strength (DI 150 15 ) is evaluated by the amount of powder coke generated in a coke drum strength test of 15 mm or less. Here, among the generated amount of powder coke of 15 mm or less, the powder coke of 6 mm to 15 mm is a powder coke generated by volume fracture, and is expressed as a volume fracture powder rate (DI 150 6-15 ). Moreover, the powder coke of less than 6 mm is a powder coke produced by surface breakage, and the coke lump residual rate on the 6 mm sieve is represented as the surface breakage strength (DI 150 6 ). The reason why the powder coke is divided is that the powder generation mechanism varies depending on the powder coke size. Accordingly, the coke strength (DI 150 15 ) is obtained by subtracting the volume fracture powder rate (DI 150 6-15 ) from the surface fracture strength (DI 150 6 ).

次に、表面破壊強度(DI150 6)は、高石炭化度炭の表面破壊コークス量と、低石炭化度炭の表面破壊コークス量とを別々に求め、それぞれの表面破壊コークス量を配合割合で加重平均することにより求める。このように分けて考えるのは、以下の理由による。
即ち、表面破壊コークス量は、乾留時の石炭粒子の接着程度によるものであり、石炭の乾留時の膨張比容積と、装入時の密度に関係する。しかし、低石炭化度炭は、乾留時に高石炭化度炭の膨張を抑制する。低石炭化度炭が、高石炭化度炭の膨張を抑制する阻害の度合いは、銘柄毎に異なる低石炭化度炭に固有の特性(イナートファクター係数)である。
乾留時の膨張比容積が抑制されるのは高石炭化度炭であるから、高石炭化度炭の表面破壊強度と、低石炭化度炭の表面破壊強度とは、別々に求められ、配合炭全体の表面破壊強度は、その両者の配合比率による加重平均値で求められる。
Next, for the surface fracture strength (DI 150 6 ), the surface fracture coke amount of the high-coalized coal and the surface fracture coke amount of the low-coalized coal are obtained separately, and each surface fracture coke amount is blended in proportion. Calculated by weighted average with. The reason for thinking in this way is as follows.
That is, the surface fracture coke amount depends on the degree of adhesion of coal particles during dry distillation, and is related to the expansion specific volume during coal dry distillation and the density during charging. However, low-coalizing coal suppresses expansion of high-coalizing coal during dry distillation. The degree of inhibition that low-rank coal suppresses expansion of high-rank coal is a characteristic (inert factor coefficient) unique to low-rank coal that varies from brand to brand.
Since the specific volume of expansion during dry distillation is suppressed for high-coalized coal, the surface fracture strength of high-carbonized coal and the surface fracture strength of low-coalized coal are determined separately and blended. The surface fracture strength of the whole charcoal is obtained by a weighted average value based on the blending ratio of both.

低石炭化度炭のイナートファクター係数の測定は、後述するように、煩雑で手間がかかる。
本発明は、低石炭化度炭のうち膨張性を有しないもののイナートファクター係数を、JIS−M8801で規定された昇温速度である3℃/分を超える速度であらかじめ測定した膨張比容積の関数として算出しておくことで、例えば、膨張性が0%の新たな銘柄の低石炭化度を配合する場合に、膨張比容積という簡便な方法を用いるだけで、コークス強度を精度良く推定できることに特徴がある。
As will be described later, the measurement of the inert factor coefficient of low-rank coal is complicated and time-consuming.
The present invention is a function of the expansion specific volume measured in advance at a rate exceeding 3 ° C./min, which is the rate of temperature increase defined in JIS-M8801, for the inert factor coefficient of low-rank coal that does not have expandability. For example, in the case of blending a new brand low degree of coalification with 0% expansion, it is possible to accurately estimate the coke strength by using a simple method called expansion specific volume. There are features.

(体積破壊により生成する粉コークス)
体積破壊により生成する粉コークスとは、コークス強度試験において発生する粉コークスのうち6mm超15mm以下のものである。体積破壊により生成する粉コークス量を体積破壊強度(DI6−15)と記す。
体積破壊の原因となる大きな亀裂は、コークス全体の収縮の不均一さから発生する熱応力によって生成する亀裂が主要因であり、その生成量はコークス炉内の温度分布やコークス収縮係数(単位温度あたりの収縮量の大小)に影響される。そして、石炭の再固化温度と体積破壊により生成する粉コークス量の関係をあらかじめ調べておけば、体積破壊粉率(DI150 6-15)を推定することができる。
(Powder coke produced by volume fracture)
The powder coke produced | generated by volume fracture is a thing more than 6 mm and 15 mm or less among the powder cokes generated in a coke strength test. The amount of powder coke produced by volume fracture is referred to as volume fracture strength (DI 6-15 ).
Large cracks that cause volume fracture are mainly cracks generated by thermal stress generated from non-uniform shrinkage of the entire coke, and the amount of generation is dependent on the temperature distribution in the coke oven and the coke shrinkage coefficient (unit temperature). Affected by the amount of shrinkage per unit). If the relationship between the resolidification temperature of coal and the amount of powder coke produced by volume fracture is examined in advance, the volume fracture powder ratio (DI 150 6-15 ) can be estimated.

(表面破壊により生成する粉コークス)
表面破壊により生成する粉コークスとは、コークス強度試験において生成する粉コークスのうち6mm以下のものである。6mm篩上のコークス塊残留率を表面破壊強度(DI150 6)と記す。
表面破壊は平均粒度1mm程度に粉砕された原料炭の軟化溶融・膨張が不十分なことに起因する。石炭粒子同士の不完全な接着や、装炭時の石炭粒子間空隙が十分に充填されずに欠陥としてコークス中に残存することが要因となり発生する。
乾留時の石炭粒子同士の接着に関する要素として、乾溜時の石炭膨張比容積[cm/g]と、配合炭の装入密度[g/cm]があり、これらを乗じた石炭軟化時の空隙充填度(以下、「空隙充填度」と記す。)]により、表面破壊により生成する粉コークス量を推定することができる。
ここで、石炭の膨張比容積[cm/g]は、JIS M 8801の膨張性試験に用いるジラトメーター装置を用いた試験により測定した最大膨張時の石炭体積[cm] を ジラトメーターへの石炭装入量[g]で除することにより求められる。
(Powder coke produced by surface destruction)
The powder coke produced | generated by surface destruction is a thing of 6 mm or less among the powder coke produced | generated in a coke strength test. The coke mass residual rate on a 6 mm sieve is referred to as surface fracture strength (DI 150 6 ).
The surface fracture is caused by insufficient softening, melting and expansion of the raw coal pulverized to an average particle size of about 1 mm. This is caused by incomplete adhesion between the coal particles or by leaving the voids between the coal particles at the time of coal loading as defects in the coke.
Factors related to the adhesion of coal particles during dry distillation include the specific expansion rate of coal during dry distillation [cm 3 / g] and the charging density of the blended coal [g / cm 3 ]. The amount of powder coke produced by surface fracture can be estimated from the degree of void filling (hereinafter referred to as “void filling degree”).
Here, the expansion specific volume [cm 3 / g] of coal is the coal volume [cm 3 ] at the time of maximum expansion measured by a test using the dilatometer device used in the expansibility test of JIS M 8801. It is obtained by dividing by the amount [g].

しかし、高石炭化度炭と低石炭化度炭を配合した、いわゆる配合炭については、高石炭化度炭の膨張比容積に加成性が成立しない。即ち、高石炭化度炭の膨張比容積は、配合割合から算出する膨張比容積にならない。その理由は以下のように考えられる。
低石炭化度炭は、高石炭化度炭に比較して低い温度で軟化溶融を開始し再固化するため、高石炭化度炭が軟化溶融状態にあるときにはすでに再固化しており、イナートとして作用する。すると、高石炭化度炭は再固化した低石炭化度炭との粒子界面から熱分解ガスが抜けやすい状態となり、膨張が抑制されるため、高石炭化度炭の膨張比容積が小さくなると考えられる。
そこで、その効果を低石炭化度炭のイナートファクター(以下「IF」と記す。)として補正することで、高石炭化度炭の膨張比容積を精度良く推定する。ここで、IFは、下記の式(1)でもとめられる。

IF= 1.00 - f・x ・・・・・(1)
ただし、f:イナートファクター係数[-]、x:低石炭化度炭の配合率[%]である。即ち、イナートファクター(IF)は、低石炭化度炭が、高石炭化度炭の膨張を阻害する程度であり、イナートファクター係数(f)は、低石炭化度炭の配合1%あたりの阻害の度合である。
However, additivity is not established in the expansion specific volume of the high coal degree coal about what is called blend coal which blended the high coal degree coal and the low coal degree coal. That is, the expansion specific volume of the high coal content coal does not become the expansion specific volume calculated from the blending ratio. The reason is considered as follows.
Low-carbonized coal begins to soften and melt at a lower temperature compared to high-carbonized coal and resolidifies, so when the high-carbonized coal is in a softened and melted state, it has already been resolidified, and as an inert Works. Then, the high-coalized coal will be in a state in which pyrolysis gas easily escapes from the particle interface with the re-solidified low-coalized coal, and the expansion is suppressed. It is done.
Therefore, by correcting the effect as an inert factor (hereinafter referred to as “IF”) of low-coalification coal, the expansion specific volume of high-coalification coal is accurately estimated. Here, IF can also be stopped by the following equation (1).

IF = 1.00-fx (1)
However, f is an inert factor coefficient [-], x is a compounding rate [%] of low-rank coal. In other words, the inert factor (IF) is such that low-coalizing coal inhibits the expansion of the high-coalizing coal, and the inert factor coefficient (f) is an inhibition per 1% of the low-coalizing coal blend. The degree.

前述のごとく、コークスの表面破壊は、乾留時の石炭粒子同士の接着の程度によるので、乾留時時の空隙充填度によるが、高石炭化度炭の空隙充填度は、IFで補正した下記の式(3)で求められる。

高石炭化度炭の空隙充填度=高石炭化度炭の膨張比容積の加重平均値×装入時嵩密度×IF・・・・・(3)
式(3)により求めた高石炭化度炭の空隙充填度から高石炭化度炭の表面破壊強度(DI150 6(H))を推定する方法は、あらかじめ求めておいた高石炭化度炭の空隙充填度と高石炭化度炭の表面破壊強度(DI150 6(H))の関係より求める。
ここで、(3)式で膨張比容積がIFにより阻害されるのは、高石炭化度炭の場合であり、低石炭化度炭の場合は、IFの影響はない。したがって、低石炭化度炭の空隙充填度は、下記の式(4)となる。

低石炭化度炭の空隙充填度=低石炭化度炭の膨張比容積の加重平均値×装入時嵩密度・・・・(4)
As mentioned above, the surface destruction of coke depends on the degree of adhesion between coal particles during dry distillation, so it depends on the degree of void filling during dry distillation, but the degree of void filling of high-coalized coal is as follows. It is calculated | required by Formula (3).

The degree of void filling of high-carbonized coal = weighted average value of expansion specific volume of high-carbonized coal x bulk density at charging x IF (3)
The method for estimating the surface fracture strength (DI 150 6 (H) ) of high-carbonized coal from the degree of void filling of the high-carbonized coal obtained by equation (3) It is obtained from the relationship between the degree of void filling of the steel and the surface fracture strength (DI 150 6 (H) ) of the high-rank coal.
Here, the expansion specific volume in equation (3) is inhibited by IF in the case of high-degree coal, and in the case of low-degree coal, there is no influence of IF. Therefore, the void filling degree of the low-carbonized coal is expressed by the following formula (4).

The degree of void filling of low-carbonized coal = weighted average value of expansion specific volume of low-carbonized coal x bulk density at charging ... (4)

表面破壊により生成する粉コークス量は、高石炭化度炭の表面破壊により生成する粉コークス量と低石炭化度炭の表面破壊により生成する粉コークス量の和であるから、コークスの表面破壊強度(DI150 6)は、高石炭化度炭の表面破壊強度(DI150 6(H))と低石炭化度炭の表面破壊強度(DI150 6(L))の加重平均値として、下記の式(5)により求められる。

DI150 6=P×DI150 6(H)+Q×DI150 6(L)・・・・・(5)

ただし、Pは高石炭化度炭の配合割合、Qは低石炭化度炭の配合割合を示す。
The amount of coke breeze produced by surface destruction is the sum of the amount of coke breeze produced by surface destruction of high-grade coal and the amount of coke breeze produced by surface destruction of low-rank coal. (DI 150 6 ) is a weighted average value of the surface fracture strength (DI 150 6 (H) ) of high-rank coal and the surface fracture strength (DI 150 6 (L) ) of low-rank coal. It is obtained by equation (5).

DI 150 6 = P × DI 150 6 (H) + Q × DI 150 6 (L) (5)

However, P shows the blending ratio of high coal content coal, and Q shows the blending ratio of low coal content coal.

(イナートファクター係数(f)の測定方法)
イナートファクター係数(f)の測定方法は、以下の通りである。
イナートファクター係数(f)は、低石炭化度炭の銘柄毎に定まる固有の特性値である。高石炭化度炭に低石炭化度炭を配合した配合炭をJIS−M8801で規定された昇温速度である3℃/分で膨張比容積を測定する。高石炭化度炭の膨張比容積(測定実績)と上記配合炭の配合からの膨張比容積(計算)の比がIFである。低石炭化度炭の割合を横軸に、上記で求めたIFを縦軸にプロットした場合の例を図1に示す(特許文献1、図1)。上記の式(1)より、図1の直線の勾配がイナートファクター係数(f)であり、低石炭化度炭の配合1%あたりの膨張阻害の程度である。
イナートファクター係数(f)は、低石炭化度炭の銘柄毎に定まる固有の特性値である。
(Measurement method of inert factor coefficient (f))
The method for measuring the inert factor coefficient (f) is as follows.
The inert factor coefficient (f) is a specific characteristic value determined for each brand of low-rank coal. An expansion specific volume is measured at 3 ° C./min, which is a temperature increase rate defined by JIS-M8801, for a blended coal obtained by blending low-coalizing coal with high-coalizing coal. IF is the ratio of the expansion specific volume (measured results) of the high-rank coal and the expansion specific volume (calculation) from the blended coal blend. An example in which the ratio of low-rank coal is plotted on the horizontal axis and IF obtained above is plotted on the vertical axis is shown in FIG. 1 (Patent Documents 1 and 1). From the above equation (1), the slope of the straight line in FIG. 1 is the inert factor coefficient (f), which is the degree of inhibition of expansion per 1% of low-carbonized coal.
The inert factor coefficient (f) is a specific characteristic value determined for each brand of low-rank coal.

(簡便なイナートファクター係数(f)の推定方法について)
上記のイナートファクター係数(f)を求めるのは、図1に示す勾配であるから、低石炭化度炭の配合割合を変更した配合炭についての膨張比容積の測定が必要であり、手間とコストがかかる。
そこで、本発明者は、簡便で、かつ精度が高いイナートファクター係数(f)の推定方法について検討した。
具体的には、本発明者は、低石炭化度炭の全膨張率がイナートファクター係数(f)に影響していると着想し、低石炭化度炭の全膨張率からイナートファクター係数(f)を推定する方法を考えた。
しかし、JIS−M8801で規定された昇温速度である3℃/分の昇温速度では、表1に示すA炭〜F炭の6種類の低石炭化度炭の全膨張率(TD)はすべて0%であり、銘柄毎の差が出ない。尚、VM(%)は、揮発分である。
(Simple estimation method of inert factor coefficient (f))
The inert factor coefficient (f) is obtained from the gradient shown in FIG. 1, and therefore, it is necessary to measure the expansion specific volume of the blended coal in which the blending ratio of the low-coalizing coal is changed. It takes.
Therefore, the present inventor examined a simple and highly accurate method for estimating the inert factor coefficient (f).
Specifically, the present inventor has conceived that the total expansion coefficient of low-rank coal has an influence on the inert factor coefficient (f), and the inert factor coefficient (f ) Was considered.
However, at the rate of temperature increase of 3 ° C./min, which is the rate of temperature increase specified in JIS-M8801, the total expansion rate (TD) of the six types of low-coalized coals of coals A to F shown in Table 1 is All are 0%, and there is no difference for each brand. Note that VM (%) is a volatile component.

そこで、JIS−M8801で規定された昇温速度よりも早い12℃/分で、低石炭化度炭の全膨張率を測定したところ、表2に示すようにA炭〜F炭の銘柄毎に全膨張率に有意差が得られた。なお、昇温速度は3℃/minを超えていれば、銘柄ごとに有意な差別化ができるため、特に上限は無いが、8mm径の膨張率測定管内を均一に昇温させることが可能な装置としては、現実的には昇温速度の上限として30℃/min程度が例示できる。
また、結果を表2に示すように、A炭〜F炭においては3℃/minであらかじめイナートファクター係数(f)を測定しておき、12℃/minで測定した膨張比容積(SV’)とイナートファクター係数(f)の関係を調べたところ、両者の間には図2に示すように良い相関が得られた。この関係に基づけば、イナートファクター係数(f)が未知のA炭〜F炭以外の、膨張性を有しない低石炭化度炭について、12℃/minの昇温速度での膨張比容積(SV‘)を測定すれば、イナートファクター係数(f)を得ることができる。
図2において、SV’とfとの関係は、下記の式(2)となる。

f=-0.734SV’5+ 6.214 SV’4 - 20.921 SV’3 + 35.039 SV’2 - 29.2 SV’ + 9.696・・・・(2)
ここで、f:イナートファクター係数[-]、SV’:12℃/minで測定した膨張比容積[cm/g]である。
Therefore, when the total expansion rate of the low-coalizing coal was measured at 12 ° C./min faster than the temperature increase rate defined in JIS-M8801, as shown in Table 2, for each brand of coal A to coal F, as shown in Table 2. A significant difference was obtained in the total expansion rate. If the rate of temperature rise exceeds 3 ° C./min, there can be significant differentiation for each brand, so there is no particular upper limit, but the inside of an 8 mm diameter expansion coefficient measuring tube can be heated uniformly. As an apparatus, about 30 degree-C / min can be illustrated as an upper limit of temperature rising rate realistically.
In addition, as shown in Table 2, for coal A to coal F, the inert factor coefficient (f) was measured in advance at 3 ° C./min, and the expansion specific volume (SV ′) measured at 12 ° C./min. As a result, the correlation between the two and the inert factor coefficient (f) was examined, and a good correlation was obtained between them as shown in FIG. Based on this relationship, the expansion specific volume (SV) at a heating rate of 12 ° C./min is used for low-carbon coals having no expansibility except coals A to F whose unknown factor coefficient (f) is unknown. By measuring '), the inert factor coefficient (f) can be obtained.
In FIG. 2, the relationship between SV ′ and f is expressed by the following equation (2).

f = -0.734SV '5 + 6.214 SV ' 4 - 20.921 SV '3 + 35.039 SV' 2 - 29.2 SV '+ 9.696 ···· (2)
Here, f: inert factor coefficient [−], SV ′: expansion specific volume [cm 3 / g] measured at 12 ° C./min.

Figure 2016069469
Figure 2016069469

Figure 2016069469
Figure 2016069469

揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を用いて、高石炭化度炭と配合させる際に、配合割合を5%〜20%の間で変更して得られた12ケースの配合炭についてコークス強度を推定した。
低石炭化度炭は、12℃/分の昇温条件で膨張比容積(SV’)を測定し、式(2)も用いて推定した。また、イナートファクター(IF)は、式(1)により求めた。
Obtained by changing the blending ratio between 5% and 20% when blending with high-coalized coal using low-coalized coal with a volatile content of 30% by mass or more and a total expansion rate of 0%. The coke strength was estimated for the 12 cases of blended coal.
The low-carbonized coal was estimated by measuring the expansion specific volume (SV ′) under a temperature rising condition of 12 ° C./min and using the equation (2). Moreover, the inert factor (IF) was calculated | required by Formula (1).

次に、空隙充填度(SV×BD×IF)は、式(3)、(4)を用いてそれぞれ求めた。表面破壊強度(DI150 )のうちの高石炭化度炭の表面破壊強度(DI150 )は、空隙充填度(SV×BD×IF)と表面破壊強度(DI150 )の関係である図3を用いた。なお、図3は、試験コークス炉を用いて、高石炭化度炭の空隙充填度と、得られたコークスの表面破壊強度(DI150 )を測定した結果により、あらかじめ求めたものである。また、表面破壊強度(DI150 )のうちの低石炭化度炭の表面破壊強度(DI150 )は、空隙充填度(SV×BD)と表面破壊強度(DI150 )の関係を、試験コークス炉によりあらかじめ求めておき、この関係性により求めた。その後、コークスの表面破壊強度(DI150 )を、式(5)を用いて求めた値を表3に示している。
また、体積破壊粉率(DI6-15)は、石炭の再固化温度と体積破壊粉率(DI6-15)との関係をあらかじめ調べておき、石炭の再固化温度を測定することにより求めた値を表3に示している。
コークス強度(DI150 15)は、表面破壊強度(DI150 ) と体積破壊粉率(DI150 6-15)から求めた。
以上の通り、揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を、配合割合を5%〜20%の間で変更した場合について、コークス強度を推定した。
本発明方法により推定されたコークス強度の精度を確認するために、同様の配合条件で得られたコークスの強度を実績として測定し、推定値と比較した。
その結果は、図4に示す通り、推定値は実績値とほぼ同じ値となっており、精度良く推定できることが確認できた。
Next, the void filling degree (SV × BD × IF) was obtained using equations (3) and (4), respectively. High coalification degree surface breaking strength of the coal of the surface fracture strength (DI 150 6) (DI 150 6) is a relationship between the void filling degree (SV × BD × IF) and the surface fracture strength (DI 0.99 6) FIG. 3 was used. FIG. 3 is obtained in advance from the results of measuring the degree of void filling of the high-coalized coal and the surface fracture strength (DI 150 6 ) of the obtained coke using a test coke oven. The low coalification degree surface breaking strength of the coal of the surface fracture strength (DI 150 6) (DI 150 6) shows the relationship of the gap filling degree (SV × BD) and the surface fracture strength (DI 0.99 6), It calculated | required beforehand by the test coke oven, and calculated | required by this relationship. Table 3 shows values obtained by calculating the surface fracture strength (DI 150 6 ) of the coke using the formula (5).
The volume fracture powder rate (DI 6-15 ) is obtained by examining the relationship between the coal resolidification temperature and the volume fracture powder rate (DI 6-15 ) in advance, and measuring the coal resolidification temperature. The values are shown in Table 3.
The coke strength (DI 150 15 ) was determined from the surface fracture strength (DI 150 6 ) and the volume fracture powder rate (DI 150 6-15 ).
As described above, the coke strength was estimated for the case where the blending ratio was changed between 5% and 20% for low-coalized coal having a volatile content of 30% by mass or more and a total expansion rate of 0%.
In order to confirm the accuracy of the coke strength estimated by the method of the present invention, the strength of coke obtained under the same blending conditions was measured as an actual result and compared with the estimated value.
As a result, as shown in FIG. 4, the estimated value is almost the same as the actual value, and it was confirmed that the estimated value can be estimated with high accuracy.

Figure 2016069469
Figure 2016069469

コークス強度の推定に必要な低石炭化度炭のイナートファクター係数(f)の推定と、それを用いたコークス強度の推定に利用することができる。   The present invention can be used for estimating the inert factor coefficient (f) of low-carbonized coal necessary for estimating the coke strength and for estimating the coke strength using it.

Claims (2)

揮発分が30質量%以上で全膨張率が0%の低石炭化度炭を配合炭の一部に用いて製造する高炉用コークスの強度の推定方法であって、
前記高炉用コークスの強度を、コークスの表面破壊により生成する粉コークス量(表面破壊粉コークス量)およびコークスの体積破壊により生成する粉コークス量(体積破壊粉コークス量)の和より求め、
前記表面破壊粉コークス量を、配合する高石炭化度炭の軟化時の膨張比容積と、配合炭の装入密度と、低石炭化度炭が高石炭化度炭の軟化時の膨張を阻害する程度を表す下記式(1)のイナートファクター(IF)から算出する高石炭化度炭の軟化時の充填度から求めるに際し、
前記式(1)のイナートファクター(IF)の中のイナートファクター係数(f)と、JIS−M8801で規定された昇温速度である3℃/分を超える速度で測定した前記全膨張率が0%の低石炭化度炭の膨張比容積(SV’)との関係性を、あらかじめ求めておき、配合を予定している全膨張率が0%の低石炭化度炭を3℃/分を超える昇温速度で測定した膨張比容積(SV’)の値から、前記の関係性に基きイナートファクター係数(f)を求め、さらに下記式(1)により算出されるイナートファクター(IF)を用いて、コークス強度を推定することを特徴とするコークス強度の推定方法。
IF =1.00−f・x・・・・・(1)
ここで、f:イナートファクター係数[-]、x:低石炭化度炭の配合率[%]である。
A method for estimating the strength of coke for blast furnace produced by using a low-coalized coal having a volatile content of 30% by mass or more and a total expansion rate of 0% as part of the blended coal,
The strength of the blast furnace coke is determined from the sum of the amount of powder coke produced by surface destruction of the coke (surface destruction powder coke amount) and the amount of powder coke produced by volume destruction of the coke (volume destruction powder coke amount).
The above-mentioned surface breaking powder coke amount, the expansion specific volume when softening high-degree coal to be blended, the charging density of blended coal, and the low-ranking degree coal inhibit the expansion when softening high-degree coal. When obtaining from the filling degree at the time of softening of the high-coalized coal calculated from the inert factor (IF) of the following formula (1) representing the degree to be
The total expansion coefficient measured at a rate exceeding 3 ° C./min, which is the rate of temperature increase defined in JIS-M8801, is 0 as the inert factor coefficient (f) in the inert factor (IF) of the formula (1). % Of low-coal coal with a specific expansion rate (SV ') is determined in advance, and low-coal coal with a total expansion rate of 0%, which is planned to be blended, is 3 ° C / min. From the value of the expansion specific volume (SV ′) measured at a rate of temperature increase exceeding, the inert factor coefficient (f) is obtained based on the above relationship, and the inert factor (IF) calculated by the following equation (1) is used. A method for estimating coke strength, comprising estimating coke strength.
IF = 1.00-f · x (1)
Here, f is an inert factor coefficient [−], and x is a blending ratio [%] of low-rank coal.
前記イナートファクター係数(f)と膨張比容積(SV’)との関係性が、下記の式(2)であることを特徴とする請求項1に記載のコークス強度の推定方法。
f=-0.734SV’5 + 6.214 SV’4 - 20.921 SV’3 + 35.039 SV’2 - 29.2 SV’ + 9.696・・・(2)
ここで、f:イナートファクター係数[-]、SV’:12℃/minで測定した膨張比容積[cm3/g]である。
The coke strength estimation method according to claim 1, wherein the relationship between the inert factor coefficient (f) and the expansion specific volume (SV ') is expressed by the following equation (2).
f = -0.734SV '5 + 6.214 SV ' 4 - 20.921 SV '3 + 35.039 SV' 2 - 29.2 SV '+ 9.696 ··· (2)
Here, f is an inert factor coefficient [−], SV ′ is an expansion specific volume [cm 3 / g] measured at 12 ° C./min.
JP2014198682A 2014-09-29 2014-09-29 Coke strength estimation method Active JP6379934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198682A JP6379934B2 (en) 2014-09-29 2014-09-29 Coke strength estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198682A JP6379934B2 (en) 2014-09-29 2014-09-29 Coke strength estimation method

Publications (2)

Publication Number Publication Date
JP2016069469A true JP2016069469A (en) 2016-05-09
JP6379934B2 JP6379934B2 (en) 2018-08-29

Family

ID=55866155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198682A Active JP6379934B2 (en) 2014-09-29 2014-09-29 Coke strength estimation method

Country Status (1)

Country Link
JP (1) JP6379934B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048297A (en) * 2016-09-14 2018-03-29 新日鐵住金株式会社 Estimation method of coke strength
JP2020026472A (en) * 2018-08-10 2020-02-20 日本製鉄株式会社 Method for estimating surface fracture strength of coke
JP2020172562A (en) * 2019-04-08 2020-10-22 日本製鉄株式会社 Method for estimating surface fracture strength of coke for blast furnace
WO2021085146A1 (en) * 2019-10-28 2021-05-06 Jfeスチール株式会社 Method for estimating surface tension of inert structure in coal, method for estimating surface tension of coal, and method for producing coke
CN115368917A (en) * 2022-07-27 2022-11-22 莱芜钢铁集团银山型钢有限公司 Method for predicting coal blending structure of tamping coke

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194358A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Method for estimating coke strength
WO2010103828A1 (en) * 2009-03-10 2010-09-16 新日本製鐵株式会社 Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194358A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Method for estimating coke strength
WO2010103828A1 (en) * 2009-03-10 2010-09-16 新日本製鐵株式会社 Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048297A (en) * 2016-09-14 2018-03-29 新日鐵住金株式会社 Estimation method of coke strength
JP2020026472A (en) * 2018-08-10 2020-02-20 日本製鉄株式会社 Method for estimating surface fracture strength of coke
JP7070228B2 (en) 2018-08-10 2022-05-18 日本製鉄株式会社 Estimating method of surface fracture strength of coke
JP2020172562A (en) * 2019-04-08 2020-10-22 日本製鉄株式会社 Method for estimating surface fracture strength of coke for blast furnace
JP7188245B2 (en) 2019-04-08 2022-12-13 日本製鉄株式会社 Method for estimating surface fracture strength of blast furnace coke
WO2021085146A1 (en) * 2019-10-28 2021-05-06 Jfeスチール株式会社 Method for estimating surface tension of inert structure in coal, method for estimating surface tension of coal, and method for producing coke
JPWO2021085146A1 (en) * 2019-10-28 2021-12-16 Jfeスチール株式会社 Surface tension estimation method for coal inert structure, surface tension estimation method for coal, and coke manufacturing method
JP7010419B2 (en) 2019-10-28 2022-01-26 Jfeスチール株式会社 Surface tension estimation method for coal inert structure, surface tension estimation method for coal, and coke manufacturing method
CN114556079A (en) * 2019-10-28 2022-05-27 杰富意钢铁株式会社 Method for estimating surface tension of coal inertinite structure, method for estimating surface tension of coal, and method for producing coke
CN114556079B (en) * 2019-10-28 2024-04-09 杰富意钢铁株式会社 Method for estimating surface tension of coal inert group structure, method for estimating surface tension of coal, and method for producing coke
CN115368917A (en) * 2022-07-27 2022-11-22 莱芜钢铁集团银山型钢有限公司 Method for predicting coal blending structure of tamping coke
CN115368917B (en) * 2022-07-27 2023-10-13 莱芜钢铁集团银山型钢有限公司 Method for predicting tamping coke coal blending structure

Also Published As

Publication number Publication date
JP6379934B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6379934B2 (en) Coke strength estimation method
KR101580855B1 (en) Method for manufacturing coke
JP4691212B2 (en) Coal expansion rate measurement method, coal specific volume estimation method, void filling degree measurement method, and coal blending method
JP5686223B2 (en) Coal blending method, blended coal, and coke production method
JP2008069258A (en) Manufacturing method of high-strength coke
JP2010209310A (en) Method for measuring specific volume of blended coal, estimation method of coke surface fracture strength and coal blending method
JP6265015B2 (en) Coke manufacturing method
JP6874502B2 (en) Coke strength estimation method
JP6323610B2 (en) Coal evaluation method and coke production method
JP5655684B2 (en) Method for estimating strength of formed coke
JP4299680B2 (en) Coke strength estimation method
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6075354B2 (en) Coke production method
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP6323150B2 (en) Method for estimating specific volume of blended coal
JP2013053189A (en) Estimation method of highest flow rate of raw material for coke production, blending method of raw material for coke production, and raw material for coke production made by the blending method
JP2017088794A (en) Estimation method of coke strength
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP5716271B2 (en) Method for producing metallurgical coke
JP5011833B2 (en) Coke manufacturing method
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JP5833473B2 (en) Coke production raw material production method and coke production raw material produced by the production method
JP2021042378A (en) Method for estimating coal inert factor coefficient and method for estimating coke surface fracture strength
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP2016164546A (en) Method of evaluating coal and method of producing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6379934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350