JP2013053189A - Estimation method of highest flow rate of raw material for coke production, blending method of raw material for coke production, and raw material for coke production made by the blending method - Google Patents

Estimation method of highest flow rate of raw material for coke production, blending method of raw material for coke production, and raw material for coke production made by the blending method Download PDF

Info

Publication number
JP2013053189A
JP2013053189A JP2011190864A JP2011190864A JP2013053189A JP 2013053189 A JP2013053189 A JP 2013053189A JP 2011190864 A JP2011190864 A JP 2011190864A JP 2011190864 A JP2011190864 A JP 2011190864A JP 2013053189 A JP2013053189 A JP 2013053189A
Authority
JP
Japan
Prior art keywords
coal
low
blended
fluidity
grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011190864A
Other languages
Japanese (ja)
Other versions
JP5820668B2 (en
Inventor
Kazuhide Ishida
一秀 石田
Masaru Nishimura
勝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2011190864A priority Critical patent/JP5820668B2/en
Publication of JP2013053189A publication Critical patent/JP2013053189A/en
Application granted granted Critical
Publication of JP5820668B2 publication Critical patent/JP5820668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently estimate an optimal combining condition when making a raw material for coke production in which a low grade coal is combined by a convenient method, and to make the raw material for coke production that is excellent in a caking property or flowability.SOLUTION: An estimation method of the highest flow rate of a raw material for coke production is characterized as follows. One or more charcoal types of coking coals are select as a standard charcoal beforehand; a range of a proper flow rate of the standard charcoal, a flow rate characteristic curve to a temperature of the standard charcoal, and the highest flow rate of the standard charcoal based on the flow rate characteristic curve are obtained; in addition, about one or more low grade coals to be combined, a flow rate decrease gradient concerning the low grade coal based on a change of the highest flow rate of the standard charcoal to a combined proportion rate of the low grade coal is obtained; and the highest flow rate of a combined coal in which the low grade coal is combined to the coking coal is estimated from a combined proportion rate of the low grade coal combined to the coking coal based on the highest flow rate of the coking coal actually used, and the flow rate decrease gradient concerning the low grade coal to be actually combined.

Description

本発明は、コークス製造用原料の最高流動度の推定方法,コークス製造用原料の配合方法および該配合方法により作製されたコークス製造用原料に関する。   The present invention relates to a method for estimating the maximum fluidity of a raw material for coke production, a method for blending raw materials for coke production, and a raw material for coke production produced by the blending method.

冶金用コークスの原料として用いられる石炭(以下原料炭)は、加熱時に軟化溶融し、その後再固化して強固なコークスとなるもので、瀝青炭に分類され、一般に粘結炭と称している。しかし、コークス製造用原料として使用することのできる瀝青炭については、その資源量に限りがあり、かつコスト高という問題がある。そこで低品位な弱粘結炭または非微粘結炭やさらに低品位な石炭の増配が求められている。低品位炭をコークス製造用原料として用いる場合、性質の異なる多くの石炭が存在しているため、粘結性と石炭化度とが適当な範囲にある石炭を使用することが必要である。そこで、性質の異なる複数の種類の石炭を組み合わせて配合する配合炭の設計の試みが行なわれてきた。   Coal used as a raw material for metallurgical coke (hereinafter referred to as raw coal) is softened and melted when heated and then re-solidified to form strong coke, which is classified as bituminous coal and is generally referred to as caking coal. However, bituminous coal that can be used as a raw material for coke production has a problem of limited resources and high cost. Accordingly, there is a demand for an increase in the distribution of low-grade weakly caking coal or non-slightly caking coal or even lower grade coal. When low-grade coal is used as a raw material for coke production, since many coals having different properties exist, it is necessary to use coal having caking properties and a degree of coalification in an appropriate range. Therefore, attempts have been made to design a blended coal in which a plurality of types of coal having different properties are combined and blended.

こうした石炭の粘結性は、流動性、膨張性および粘着性などの性質によって定まるが、特に流動性がコークス強度に大きく影響する。このために、配合炭の最高流動度(以下「MF(Maximum Fluidity)」ということがある)を把握することは、高強度のコークスを製造するための重要な因子である。従来、配合炭のMFは、配合される単味の石炭の各々のMFの加重平均値によって推定していた。しかしながら、配合される単味の石炭の各々の流動開始温度(ST)、最高流動温度(MFT)および固化温度(FT)は異なる。従って、各石炭単味のMFの加重平均値と配合炭のMFとは一致しない。従来行なわれていた配合炭の最高流動度の常用対数値(以下「logMF」ということがある)の推定値は、その実測値よりも低い。このような傾向は,MFの高い石炭を多く使用するほど顕著になり、コークス強度の推定精度を低下させる大きた原因になっていた(例えば特許文献1〔従来の技術〕および〔発明が解決しようとする課題〕参照)。   The cohesiveness of such coal is determined by properties such as fluidity, expansibility, and tackiness, but fluidity greatly affects the coke strength. For this reason, grasping the maximum fluidity of blended coal (hereinafter sometimes referred to as “MF (Maximum Fluidity)”) is an important factor for producing high-strength coke. Conventionally, the MF of blended coal has been estimated by the weighted average value of each MF of blended simple coal. However, the flow start temperature (ST), maximum flow temperature (MFT) and solidification temperature (FT) of each of the blended plain coals are different. Therefore, the weighted average value of each coal simple MF and the MF of blended coal do not match. The estimated value of the common logarithm value (hereinafter sometimes referred to as “logMF”) of the maximum fluidity of the blended coal, which has been conventionally performed, is lower than the actually measured value. Such a tendency becomes more prominent as more MF coal is used, which has been a major cause of reducing the estimation accuracy of coke strength (for example, Patent Document 1 [Prior Art] and [Invention will be solved]. [See the problem to be considered]].

そこで、配合炭のMFを、配合される各石炭の各々の流動曲線に基づいて推定する配合炭のMFの推定方法が検討された。具体的には、前記配合される石炭の各々の流動曲線に基づき、その流動開始温度、最高流動温度、固化温度および流動度から、前記流動曲線を数式化し、得られた数式に基づき、前記流動開始温度から前記固化温度までの間の一定温度毎の、前記石炭の各々の流動度の対数値を求めそして求められた流動度の対数値を加重平均することにより前記配合炭の流動度を算出し、このようにして算出された前記配合炭の流動度の最大値を前記配合炭のMFと推定する方法が提案されている(例えば特許文献1〔請求項1〕参照)。   Then, the estimation method of MF of the coal blend which estimates MF of coal blend based on each flow curve of each coal blended was examined. Specifically, based on the flow curve of each of the blended coal, the flow curve is formulated from the flow start temperature, the maximum flow temperature, the solidification temperature, and the fluidity, and based on the obtained mathematical formula, the flow The flow rate of the blended coal is calculated by calculating the logarithmic value of the flow rate of each of the coals at a constant temperature from the start temperature to the solidification temperature, and calculating the weighted average of the logarithm values of the obtained flow rates. And the method of estimating the maximum value of the fluidity | liquidity of the said coal blend calculated in this way with MF of the said coal blend is proposed (for example, refer patent document 1 [Claim 1]).

特開平02−20592号公報Japanese Patent Laid-Open No. 02-20592

しかしながら、上記のような場合、次のような問題が生じる。
(i)特許文献1の方法は、粘結炭を主体とした原料炭に、配合する低品位炭のlogMFは検出できないため、配合炭のMFあるいはlogMFは原料炭のMFあるいはlogMFと差異がないこととなり、推定方法として適用することができない。
(ii)一方、従前のような各石炭単味のMFあるいはlogMFの加重平均での推定値では、実際の配合炭のMFあるいはlogMFの推定値と大きなズレが生じることがあり、推定方法として適用することができない。
(iii)特に、同じ原料炭を用いて、同じ比率で低品位炭との配合を行なった場合であっても、低品位炭の銘柄によって、その各石炭単味のMFあるいはlogMFの加重平均での推定値とのズレが大きくなることがあった。
(iv)現状、個別の配合条件によって予め配合比率に対応した配合炭のMFあるいはlogMFを求める方法は、実測する以外に適用されていない。
However, in the above case, the following problems occur.
(I) Since the method of Patent Document 1 cannot detect log MF of low-grade coal to be blended with coking coal mainly composed of caking coal, MF or log MF of blended coal is not different from MF or log MF of raw coal. Therefore, it cannot be applied as an estimation method.
(Ii) On the other hand, the estimated value of the weight average of each MF or log MF of each coal as in the past may cause a large deviation from the estimated value of MF or log MF of the actual blended coal. Can not do it.
(Iii) In particular, even when blending with low grade coal at the same ratio using the same raw coal, depending on the brand of low grade coal, the weight average of each MF or log MF of each coal The deviation from the estimated value may increase.
(Iv) Currently, a method for obtaining the MF or log MF of the coal blend corresponding to the blending ratio in advance according to the individual blending conditions is not applied except for actual measurement.

本発明の目的は、上記従来技術の有する問題点に鑑みて、低品位炭が配合されたコークス製造用原料を作製する場合に、簡便な手法によって、効率的に最適な配合条件を推定し、粘結性あるいは流動性に優れたコークス製造用原料を作製することができるコークス製造用原料の最高流動度の推定方法,該推定方法により従来のコークス品質に比して維持あるいは向上させるコークス製造用原料の配合方法および該配合方法により作製されるコークス製造用原料を提供することにある。   The purpose of the present invention is to estimate the optimum blending conditions efficiently by a simple method when producing a raw material for coke production blended with low-grade coal in view of the problems of the above-mentioned prior art, A method for estimating the maximum fluidity of a coke production raw material capable of producing a coke production raw material having excellent caking or fluidity, and for coke production that maintains or improves compared to conventional coke quality by the estimation method An object of the present invention is to provide a raw material blending method and a coke production raw material produced by the blending method.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、以下に示すコークス製造用原料の最高流動度の推定方法,コークス製造用原料の配合方法および該配合方法により作製されたコークス製造用原料によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventor has obtained the following estimation method of the maximum fluidity of the raw material for coke production, the blending method of the raw material for coke production, and the coke produced by the blending method The inventors have found that the above object can be achieved by using raw materials for production, and have completed the present invention.

本発明に係るコークス製造用原料の最高流動度の推定方法は、原料炭に低品位炭を配合して作製される配合炭を主成分とするコークス製造用原料を作製する場合に、
予め原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求めるとともに、
実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合された配合炭の最高流動度を推定することを特徴とする。
The method for estimating the maximum fluidity of the raw material for coke production according to the present invention is to produce a raw material for coke production whose main component is blended coal produced by blending low-grade coal with raw coal.
One or more types of coking coal are selected in advance as a reference coal, a range of an appropriate fluidity of the reference coal, a fluidity characteristic curve with respect to the temperature of the reference coal, and the reference based on the fluidity characteristic curve The maximum fluidity of charcoal is obtained, and for one or more low-grade coal blended, the fluidity of the low-grade coal based on the change in the maximum fluidity of the reference coal relative to the blending ratio of the low-grade coal While finding the decline slope,
Based on the maximum fluidity of the raw coal actually used and the flow rate decrease gradient of the low-grade coal actually blended, the blending ratio of the low-grade coal blended with the raw coal The maximum fluidity of the blended coal in which the low-grade coal is blended with the charcoal is estimated.

コークス製造用原料となる配合炭には、適正な流動性あるいは流動度を指標とする粘結性が求められることから、所定の原料炭と低品位炭の配合時の最高流動度の推定が非常に重要となる一方、従前のように配合炭ごとにその流動度を測定する方法では、効率的に所望の配合炭を確保することが難しい。本発明は、原料炭に低品位炭が配合された配合炭の最高流動度(MF)を推定する方法を検証した結果、以下のような特性があるとの知見から、配合炭のMFの推定を行うことができることを見出した。
(a)低品位炭の配合に伴う流動度低下勾配は、原料炭(基準炭)の炭種や特性に依存しない。
(b)低品位炭が配合された流動度低下勾配は、低品位炭の銘柄固有で、配合の都度求める必要はない。
具体的には、使用される1または2以上の低品位炭を、基準炭(予めMFを求めておく)と配合し、予め各低品位炭に係る流動度低下勾配を求めておく。実際に使用される原料炭のMFと配合される低品位炭の配合比率と流動度低下勾配から、簡便な手法によって、効率的に配合炭のMFを推定することが可能となった。ここで、「低品位炭」とは、無煙炭など石炭化度が進み軟化溶融しない石炭や炭化物および、石炭化の進んでいない亜瀝青炭や褐炭あるいは泥炭等をいい、特に石炭化度の進んでいない石炭は、水分,酸素分,揮発分が多く、炭素成分の少ない比較的粗な組織構造となったもので、流動性や粘結性がほとんどなく、それ自体ではコークス化しない。なお、実際の評価においては、一般に、MFではなく、その常用対数logMFとして対比される。
Because the blended coal used as a raw material for coke production is required to have proper fluidity or caking property based on fluidity, estimation of the maximum fluidity at the time of blending the specified raw coal and low-grade coal is extremely important. On the other hand, it is difficult to efficiently secure a desired blended coal by the method of measuring the fluidity for each blended coal as before. As a result of verifying the method of estimating the maximum fluidity (MF) of a coal blend in which low-grade coal is blended with raw coal, the present invention estimates the MF of the coal blend from the knowledge that it has the following characteristics. Found that can be done.
(A) The fluidity decrease gradient accompanying the blending of low-grade coal does not depend on the coal type and characteristics of the raw coal (reference coal).
(B) The fluidity decline gradient with low-grade coal blended is unique to the brand of low-grade coal and does not need to be obtained each time blending.
Specifically, one or two or more low-grade coals to be used are blended with reference coal (MF is obtained in advance), and a fluidity decrease gradient related to each low-grade coal is obtained in advance. It became possible to estimate the MF of the blended coal efficiently by a simple method from the blending ratio of the low-grade coal blended with the MF of the raw coal actually used and the flow rate gradient. Here, “low-grade coal” refers to coal or carbide that has not been softened and melted, such as anthracite, and sub-bituminous coal, lignite, or peat, etc. Coal has a relatively coarse structure with a large amount of moisture, oxygen and volatile components and a small amount of carbon. It has little fluidity and caking properties and does not coke itself. In actual evaluation, the comparison is generally made not as MF but as the common logarithm log MF.

本発明は、上記コークス製造用原料の最高流動度の推定方法であって、配合される前記低品位炭の酸素含有率に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の酸素含有率によって補正することを特徴とする。
上記検証の結果において、配合炭のMFは、配合される低品位炭の銘柄に依存することの知見とともに、配合された低品位炭の酸素合有量が多いほど流動性が低くなる傾向を示すとの知見を得た。こうした傾向は、低品位炭の流動度低下勾配に影響を与えることから、配合される低品位炭の酸素含有率(一般に販売される石炭の特性表に明示される)を基に補正することによって、より正確に配合炭のMFを推定することが可能となった。
The present invention is a method for estimating the maximum fluidity of the coke production raw material, wherein the flow rate decrease gradient with respect to the oxygen content of the blended low-grade coal is determined, and the low-grade coal used is used The flow rate decreasing gradient is corrected by the oxygen content of the low-grade coal.
In the results of the above verification, the MF of the blended coal shows a tendency to decrease in fluidity as the oxygen content of the blended low-grade coal increases with the knowledge that it depends on the brand of blended low-grade coal. And gained knowledge. Since these tendencies affect the flow rate gradient of low-grade coal, they can be corrected based on the oxygen content of the low-grade coal blended (shown in the characteristic chart of coal sold in general). Thus, the MF of the blended coal can be estimated more accurately.

本発明は、上記コークス製造用原料の最高流動度の推定方法であって、配合される前記低品位炭の揮発分に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の揮発分によって補正することを特徴とする。
上記検証の結果においては、配合炭のMFは、配合された低品位炭の酸素合有量以外に、低品位炭の揮発分が多いほど流動性が低くなる傾向を示すとの知見を得た。こうした傾向は、酸素合有量同様、低品位炭の流動度低下勾配に影響を与えることから、配合される低品位炭の揮発分(同様に石炭の特性表に明示される)を基に補正することによって、より正確に配合炭のMFを推定することが可能となった。
The present invention is a method for estimating the maximum fluidity of the raw material for producing coke, wherein the flow of the low-grade coal to be used is determined by determining the fluctuation of the fluidity-decreasing gradient with respect to the volatile content of the low-grade coal to be blended. The degree-decreasing gradient is corrected by the volatile content of the low-grade coal.
As a result of the above verification, MF of blended coal obtained knowledge that, in addition to the oxygen content of blended low-grade coal, fluidity tends to decrease as the volatile content of low-rank coal increases. . These tendencies affect the flow rate gradient of low-grade coal as well as the oxygen content, and are therefore corrected based on the volatile content of the low-grade coal blended (also clearly indicated in the coal characteristics table). This makes it possible to estimate the MF of the coal blend more accurately.

また、本発明は、上記いずれかのコークス製造用原料の最高流動度の推定方法を用いたコークス製造用原料の配合方法であって、実際に使用する原料炭の最高流動度と、使用する低品位炭に係る流動度低下勾配に基づき、前記適正流動度の範囲となるように、該原料炭に配合される該低品位炭の配合比率を設定することを特徴とする。
配合炭のMFを精度高く推定できることは、作製されるコークス製造用原料の最高流動度を適正に調整することができることを意味する。本発明は、上記のような配合炭のMFの推定方法において得た低品位炭の流動度低下勾配に基づき、原料炭に配合される低品位炭の配合比率を設定することによって、配合炭のMFが適正流動度の範囲となるようにすることが可能となった。
Further, the present invention is a method for blending raw materials for coke production using any one of the above-described methods for estimating the maximum fluidity of raw materials for coke production, wherein the maximum fluidity of raw coal used actually is low, The blending ratio of the low-grade coal blended with the raw coal is set so as to be within the range of the proper fluidity based on the fluidity decrease gradient related to the grade coal.
The ability to estimate the MF of the blended coal with high accuracy means that the maximum fluidity of the produced coke production raw material can be adjusted appropriately. The present invention sets the blending ratio of the low-grade coal blended with the raw coal based on the flow rate decrease gradient of the low-grade coal obtained in the MF estimation method of the blended coal as described above. It became possible to make MF become the range of the appropriate fluidity.

また、本発明は、上記コークス製造用原料の配合方法によって、原料炭に低品位炭を配合して作製される配合炭を主成分とするコークス製造用原料であって、前記低品位炭の配合比率0.1〜10%,前記配合炭の最高流動度の常用対数値2〜3を有することを特徴とする。
上記配合方法によって作製された配合炭は、優れた粘結性あるいは流動性を有している。こうした特性は、コークス製造用原料としての適性を確保するに十分であり、こうして作製された配合炭をコークス製造用原料として用いることが有用である。
Further, the present invention is a raw material for coke production mainly composed of blended coal produced by blending low-grade coal with raw coal by the above-described method for blending raw materials for coke production, and the blending of the low-grade coal It has a ratio of 0.1 to 10% and a common logarithmic value of 2 to 3 of the maximum fluidity of the blended coal.
The blended charcoal produced by the blending method has excellent caking properties or fluidity. Such characteristics are sufficient to ensure suitability as a raw material for coke production, and it is useful to use the blended coal thus produced as a raw material for coke production.

冶金用コークスの製造工程を示す説明図Explanatory drawing showing the manufacturing process of metallurgical coke 基準炭の温度に対する流動度特性曲線を例示する概略図Schematic illustrating the flow characteristic curve with respect to the temperature of the reference coal 低品位炭の配合比率に対応した配合炭の流動度の変動を例示する概略図Schematic illustrating the variation in fluidity of blended coal corresponding to the blending ratio of low-grade coal 原料炭の炭種,流動度に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the fluctuation of the flow rate decrease gradient of the blended coal corresponding to the coal type and fluidity of the raw coal 低品位炭の酸素含有率に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the variation in flow rate decline gradient of blended coal corresponding to the oxygen content of low grade coal 低品位炭の酸素含有率に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the variation in flow rate decline gradient of blended coal corresponding to the oxygen content of low grade coal 低品位炭の揮発分に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the fluctuation of the flow rate decrease gradient of coal blends corresponding to the volatile content of low grade coal

本発明に係るコークス製造用原料の最高流動度(MF)の推定方法(以下「本推定方法」という)は、原料炭に低品位炭を配合して作製される配合炭を主成分とするコークス製造用原料を作製する場合に、予め原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求めるとともに、実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合された配合炭の最高流動度を推定することを特徴とする。以下、本発明の実施の形態について、図面を参照しながら説明する。   The estimation method of the maximum fluidity (MF) of the raw material for coke production according to the present invention (hereinafter referred to as “the present estimation method”) is a coke mainly composed of blended coal produced by blending low-grade coal with raw coal. When producing a raw material for production, one or more types of coking coal are selected in advance as a reference coal, a range of an appropriate fluidity of the reference coal, a fluidity characteristic curve with respect to the temperature of the reference coal, The maximum fluidity of the reference coal is determined based on the fluidity characteristic curve, and the change in the maximum fluidity of the reference coal with respect to the blending ratio of the low-grade coal is further determined for one or more low-grade coal blended. Based on the maximum fluidity of the coking coal actually used and the flowability decreasing gradient of the low-grade coal that is actually blended. Mixing ratio of the low-grade coal blended in Et al., Low-grade coal in the raw material coal and estimates a maximum fluidity degree of coal blend formulated. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<コークスの製造工程>
冶金用コークスの製造工程を、図1により簡単に説明する。岸壁に接岸した石炭運搬船1から石炭が陸上げされ、貯炭場2において、石炭の性状(銘柄)ごとに貯蔵される。貯炭場2に貯蔵されている石炭(原料炭および低品位炭を含む)は、銘柄ごとに必要な分量がリクレーマーで払い出され、ベルトコンベアにより配合槽3へと送り出される。配合槽3は複数槽を有しており、1つの配合槽に1つの銘柄の石炭が貯蔵される。石炭は、その性状によりコストの高低があり、品質のよいコークスを安価なコストで製造するために、複数の配合槽から性状の異なる石炭を最適な配合比率で切り出し、コークス製造用原料(配合炭)としての配合が完了する。すなわち、コークス製造には、種々の種類(銘柄)の石炭を海外から輸入し、銘柄ごとに貯炭場2に貯蔵する。これは、各炭鉱で採掘される石炭は、炭鉱ごとに性状が異なり、性状が異なれば製造されるコークスの性状も異なるため、複数の石炭を配合することで、最も安価なコストでユーザーから要求されるコークス性状(品質)を満足することが必要となるためである。
<Coke production process>
The manufacturing process of metallurgical coke will be briefly described with reference to FIG. Coal is landed from the coal carrier 1 berthed at the quay and stored in the coal storage 2 for each property (brand) of the coal. Coal (including coking coal and low-grade coal) stored in the coal storage 2 is dispensed by a reclaimer for each brand and sent to the blending tank 3 by a belt conveyor. The blending tank 3 has a plurality of tanks, and one brand of coal is stored in one blending tank. Coal has high and low costs due to its properties, and in order to produce coke with good quality at low cost, coal with different properties is cut out from multiple blending tanks at the optimum blending ratio, and raw materials for coke production (blended coal ) Is completed. That is, for coke production, various types (brands) of coal are imported from overseas and stored in the coal storage 2 for each brand. This is because coal mined in each coal mine has different properties for each coal mine, and the properties of coke produced differ depending on the properties. Therefore, by combining multiple coals, it is requested by the user at the cheapest cost. This is because it is necessary to satisfy the coke properties (quality).

粉砕設備4には、公知の粉砕機が設けられており、配合された石炭の粉砕処理を行う。粉砕設備4において粉砕された石炭は、ベルトコンベア等によりコークス炉6へと移送される。移送された石炭は、コールビン(石炭塔)6aに一旦貯蔵された後、装入車6bによりコークス炉6に装入され、乾留(蒸し焼き)される。乾留された石炭はコークスとなり、押出機6cによりコークス炉外に押し出される。得られた製品コークスは、最終的に高炉へと送り込まれる。   The pulverization equipment 4 is provided with a known pulverizer, and pulverizes the blended coal. The coal pulverized in the pulverization facility 4 is transferred to the coke oven 6 by a belt conveyor or the like. The transferred coal is temporarily stored in a coal bin (coal tower) 6a, and then charged into the coke oven 6 by a charging vehicle 6b and dry-distilled (steamed). The dry-distilled coal becomes coke and is pushed out of the coke oven by the extruder 6c. The obtained product coke is finally fed into the blast furnace.

<本発明に係る配合炭のMFの推定方法>
本推定方法は、コークス製造プロセスにおいて供給されるコークス製造用原料である配合炭の特性を、原料炭の特性および低品位炭の特性を基に推定する。つまり、本推定方法は、次のような知見を基に、後述する(1)〜(5)の手順によって、簡便かつ効率的に配合炭のMFを推定することができる。
(a)低品位炭の配合に伴う流動度低下勾配(以下「△logMF」ということがある)は、原料炭(基準炭)の炭種や特性への依存性が低い。
(b)低品位炭の△logMFは、低品位炭の銘柄固有である。
ここで、「logMF」は、最高流動度(MF)の常用対数値を示し、実際の評価において使用される。「△logMF」は、その勾配(流動度低下勾配)を示す。
以下、その知見を得た検証過程を詳述するとともに、本推定方法における配合炭のMFの
<Method for estimating MF of blended coal according to the present invention>
In this estimation method, the characteristics of the blended coal that is a raw material for coke production supplied in the coke production process is estimated based on the characteristics of the raw coal and the characteristics of the low-grade coal. That is, this estimation method can estimate MF of coal blend simply and efficiently by the procedures (1) to (5) described later based on the following knowledge.
(A) The fluidity decrease gradient (hereinafter sometimes referred to as “Δlog MF”) accompanying the blending of low-grade coal is less dependent on the coal type and characteristics of the raw coal (reference coal).
(B) Δlog MF of low grade coal is unique to the brand of low grade coal.
Here, “log MF” indicates a common logarithm of the maximum fluidity (MF), and is used in actual evaluation. “Δlog MF” indicates the gradient (fluidity decreasing gradient).
In the following, the verification process in which the knowledge was obtained will be described in detail, and the MF of the blended coal in this estimation method will be described.

〔石炭の特性〕
通常石炭の品質は、物理的性質として粘結性あるいは流動性等によって、化学的性質として4つの工業分析値(水分,灰分,揮発分,固定炭素)等によって評価される。本推定方法においては、こうした特性のうち、特に流動性によってコークス製造用原料としての適正を評価するために、配合炭の流動度を推定した。
[Characteristics of coal]
The quality of coal is usually evaluated by caking or fluidity as physical properties and by four industrial analysis values (water, ash, volatile, fixed carbon) as chemical properties. In this estimation method, the fluidity of the blended coal was estimated in order to evaluate the suitability as a raw material for producing coke by using the fluidity among these characteristics.

(i)流動度の測定方法の検証
石炭の流動度は、JIS−M8801で規格化されたギーセラープラストメータ測定法によって測定される。具体的には、図2(A)に例示するように、温度を指標として、評価対象となる石炭の軟化溶融状態下での流動度の変動を追跡して、流動度特性曲線(ギースラー流動度曲線)が求められ、その最大値である最高流動度(MF)をもって当該石炭の流動性が評価される。なお、実際の評価においては、一般に、MF値ではなく、その常用対数logMFとして対比される。ギーセラープラストメータ測定法は、測定対象である石炭が、攪拌棒を備えたるつぼに装填され、金属浴(はんだ浴)中で、例えば昇温速度3.0±0.1℃/分で昇温される。概念的には温度上昇に伴い石炭の軟化が始まり、これに伴って攪拌棒が回転し始める(流動性の現出)。そして石炭固有の温度で最高回転数を示した後(MFに相当)、石炭の再固化が始まり、次第に回転数は低下して所定の温度で攪拌棒の回転が完全に停止する。こうした流動度特性曲線は、石炭の種類で異なる。
(I) Verification of flow rate measurement method The flow rate of coal is measured by the Gieseler plastometer measurement method standardized in JIS-M8801. Specifically, as illustrated in FIG. 2 (A), by using the temperature as an index, the fluctuation of the fluidity in the softened and melted state of the coal to be evaluated is traced, and the fluidity characteristic curve (Giesler fluidity) Curve) and the fluidity of the coal is evaluated with the maximum fluidity (MF) which is the maximum value. Note that, in actual evaluation, it is generally compared not as an MF value but as a common logarithm log MF. In the Gisela plastometer measurement method, the coal to be measured is loaded into a crucible equipped with a stirrer and is heated in a metal bath (solder bath), for example, at a heating rate of 3.0 ± 0.1 ° C./min. Be warmed. Conceptually, the softening of coal starts with the temperature rise, and the stirring rod starts to rotate along with this (the appearance of fluidity). And after showing the maximum number of rotations at the temperature peculiar to coal (equivalent to MF), re-solidification of coal starts, the number of rotations gradually decreases, and the rotation of the stirring rod completely stops at a predetermined temperature. These flow characteristics curves vary with the type of coal.

(ii)配合炭の特性
図2(B)は、本推定方法において原料炭(基準炭)に低品位炭を配合したときの、原料炭(基準炭),低品位炭,配合炭のそれぞれの流動度曲線を示す。また、原料炭(基準炭)の最高流動度MFoが、低品位炭(MF=0とする)の配合により作製された配合炭の最高流動度MFmに変化(低下)した状態を示す。このとき、後述するように、このMFmを常用対数に換算して得られたlogMFm値と、単純に原料炭のlogMFoと低品位炭のlogMF(=0)を加重平均して推定するlogMFm値と対比した場合、両者に大きなズレが生じる場合があることが判った。と同時に、以下の知見を得ることができた。
(a)異なる原料炭(基準炭)に対して、同一の低品位炭を配合させた場合の△logMFが、原料炭(基準炭)の炭種やMF等の特性に依存しない。従って、同一の低品位炭について、共通の推定値を設定することができる。
(b)同一原料炭(基準炭)に対して、異なる低品位炭を配合させた場合の△logMFは、配合される低品位炭の銘柄によって決定される。従って、異なる低品位炭を配合することによって、同一の原料炭(基準炭)について異なる推定値の設定することができる。
(Ii) Characteristics of blended coal Fig. 2 (B) shows the raw coal (standard coal), low-grade coal, and blended coal when blending low-grade coal with coking coal (standard coal) in this estimation method. A flow rate curve is shown. In addition, the maximum fluidity MFo of the raw coal (reference coal) is changed (decreased) to the maximum fluidity MFm of the coal blend produced by blending the low-grade coal (MF = 0). At this time, as will be described later, a log MFm value obtained by converting this MFm into a common logarithm, and a log MFm value simply estimated by weighted averaging of log MFo of raw coal and log MF (= 0) of low-grade coal When compared, it was found that there may be a large gap between the two. At the same time, the following findings were obtained.
(A) Δlog MF when the same low-grade coal is blended with different raw coal (reference coal) does not depend on the characteristics of the raw coal (reference coal) such as the type of coal and MF. Therefore, a common estimated value can be set for the same low-grade coal.
(B) Δlog MF when different low-grade coal is blended with the same raw coal (reference coal) is determined by the brand of the low-grade coal to be blended. Therefore, different estimated values can be set for the same raw coal (reference coal) by blending different low-grade coals.

〔本推定方法の手順〕
本推定方法は、基本的に、以下の5つのステップから構成される。
(1)予め準備された基準炭の流動度特性曲線を実測するステップ
(2)基準炭のMFを設定するステップ
(3)予め準備された低品位炭を基準炭に配合し、配合炭の流動度特性曲線からMFを実測するステップ
(4)実測された配合炭のMFから、各低品位炭についての△logMFを設定するステップ
(5)実際に使用される配合炭のMFを推定するステップ
具体的な配合炭のMFの推定手順について、詳述する。
[Procedure of this estimation method]
This estimation method basically includes the following five steps.
(1) Step of actually measuring the fluidity characteristic curve of reference coal prepared in advance (2) Step of setting MF of reference coal (3) Mixing low-grade coal prepared in advance with reference coal, Step of actually measuring MF from degree characteristic curve (4) Step of setting ΔlogMF for each low-grade coal from MF of actually measured blended coal (5) Step of estimating MF of actually used blended coal A procedure for estimating the MF of a typical blended coal will be described in detail.

(1)予め準備された基準炭の流動度特性曲線を実測するステップ
実際に配合される予定の1以上の低品位炭の特性を、予め検証しておくために、基準炭を選定し、基準炭の流動度に係る情報を実測する。具体的には、図2(A)に示すような基準炭の流動度特性曲線を実測する。基準炭は、低品位炭の配合に伴う流動度の変化を十分に検証できるように、高流動性の粘結炭が好ましい。例えばlogMF=2〜4[logddpm]の高流動度を有する粘結炭が好ましい。
(1) Step of actually measuring the fluidity characteristic curve of reference coal prepared in advance In order to verify in advance the characteristics of one or more low-grade coals that are actually planned to be blended, a reference coal is selected and Measure the information on charcoal fluidity. Specifically, a fluidity characteristic curve of the reference coal as shown in FIG. The standard coal is preferably a high-fluid caking coal so that the change in fluidity associated with the blending of the low-grade coal can be sufficiently verified. For example, caking coal having a high fluidity of logMF = 2 to 4 [logddpm] is preferable.

(2)基準炭のMFを設定するステップ
上記(1)で得られた流動度特性曲線に基づき、図2(A)に示すような基準高品位炭の最高流動度(MF)を設定する。具体的には、図2(A)に示すゼロベースから流動度特性曲線の最大値までをMFとして設定する。
(2) Step of setting MF of reference coal Based on the fluidity characteristic curve obtained in (1) above, the maximum fluidity (MF) of reference high-grade coal as shown in FIG. 2 (A) is set. Specifically, the range from the zero base shown in FIG. 2A to the maximum value of the fluidity characteristic curve is set as the MF.

(3)予め準備された低品位炭を基準炭に配合し、配合炭の流動度特性曲線からMFを実測するステップ
予め準備された1以上の低品位炭について、少なくともそれぞれ2種類の配合比率によって上記(2)の基準炭に配合し、各配合炭の流動度特性曲線を実測する。実測された流動度特性曲線から、それぞれのMFを設定する。
(3) A step of blending low-grade coal prepared in advance with reference coal and measuring MF from a flow characteristic curve of the blended coal With respect to one or more low-grade coal prepared in advance, at least two blending ratios are used. It mix | blends with the reference | standard coal of said (2), and the fluidity | liquidity characteristic curve of each combination charcoal is measured. Each MF is set from the actually measured fluidity characteristic curve.

(4)実測された配合炭のMFから、各低品位炭についての△logMFを設定するステップ
上記(3)で実測・設定された各配合炭のMFから、各低品位炭についての△logMFを設定する。このとき、基準炭が高流動性の粘結炭であれば、基準炭のlogMFを切片とする直線近似された特性線に類似した特性線となる。
(4) Step of setting Δlog MF for each low-grade coal from the measured MF of the blended coal From the MF of each blended coal measured and set in (3) above, Δlog MF for each low-grade coal Set. At this time, if the reference coal is a high-fluidity caking coal, it becomes a characteristic line similar to a linearly approximated characteristic line with the log MF of the reference coal as an intercept.

(5)実際に使用される配合炭のMFを推定するステップ
実際に使用される原料炭のMFと、実際に配合される(予定の)低品位炭についての上記(4)で設定された△logMFを用い、配合炭のMF(logMF)を推定する。低品位炭の配合に伴う配合炭の流動度は、一般式として、下式1によって表すことができる。
Y=S+α×X …式1
ここで、Yは配合炭のlogMF
Sは原料炭のlogMF
αは低品位炭の△logMF[1/%]
Xは低品位炭配合率[%]
なお、予め配合炭のMF(logMF)の範囲が設定されている場合には、実際に配合される(予定の)低品位炭の配合比率を設定することによって、所望の配合炭のMF(logMF)を推定することができる。また、配合する予定の低品位炭では所望の配合炭のMF(logMF)の設定が難しい場合には、上記(4)で△logMFが設定された他の低品位炭のうちから、適正な△logMFが設定された低品位炭を選定し、配合炭のMF(logMF)を推定する。さらに、低品位炭の選定が難しい場合には、原料炭に使用されている粘結炭の一部を流動性の異なる粘結炭に振り替えて低品位炭配合時のlogMFを適正範囲に設定することも可能である。
(5) Step of estimating MF of blended coal actually used MF of raw coal used actually and Δ set in (4) above for (planned) low-grade coal actually blended LogMF is used to estimate the MF (logMF) of the blended coal. The fluidity of blended coal accompanying blending of low-grade coal can be expressed by the following formula 1 as a general formula.
Y = S + α × X Equation 1
Where Y is the log MF of the blended coal
S is logMF of coking coal
α is △ logMF [1 /%] of low-grade coal
X is low-grade coal content rate [%]
In addition, when the range of MF (log MF) of blended coal is set in advance, the MF (log MF) of desired blended coal is set by setting the blending ratio of the low-grade coal that is actually blended (planned). ) Can be estimated. In addition, when it is difficult to set the MF (log MF) of the desired blended coal with the low-grade coal to be blended, an appropriate Δ is selected from the other low-grade coals for which Δlog MF is set in (4) above. A low-grade coal for which log MF is set is selected, and the MF (log MF) of the blended coal is estimated. Furthermore, when it is difficult to select low-grade coal, part of the caking coal used in the raw coal is transferred to caking coal with different fluidity, and the log MF at the time of blending the low-grade coal is set within an appropriate range. It is also possible.

<原料炭,低品位炭および配合炭の特性の検証>
(i)検証に使用した石炭
本推定方法の検証に用いた原料炭(基準炭),低品位炭および配合炭の特性を、下表1に示す。以下、実施例を含む本推定方法の検証に用いた。
<Verification of characteristics of coking coal, low grade coal and blended coal>
(I) Coal used for verification Table 1 shows the characteristics of coking coal (reference coal), low-grade coal, and blended coal used for verification of this estimation method. In the following, this estimation method including examples was used for verification.

Figure 2013053189
Figure 2013053189

(ii)原料炭(基準炭),低品位炭および配合炭の流動度の検証
上表1の原料炭(基準炭),低品位炭および配合炭を用いて、その流動度特性曲線を求め、原料炭(基準炭)および低品位炭のMFおよびlogMFを設定した。下表2に、原料炭Jまたは原料炭Kに、低品位炭Aまたは低品位炭Bを配合したときの流動度測定結果を例示するとともに、図3,4に図示する。下表2( )内は低品位炭のlogMF=0として加重平均した値を示す。
(Ii) Verification of fluidity of coking coal (standard coal), low-grade coal and blended coal Using the raw coal (reference coal), low-grade coal and blended coal in Table 1 above, its fluidity characteristic curve was obtained, MF and log MF of raw coal (reference coal) and low grade coal were set. Table 2 below illustrates the flow rate measurement results when low grade coal A or low grade coal B is blended with raw coal J or raw coal K, and is illustrated in FIGS. The values in () below show the weighted average value of log MF = 0 for low-grade coal.

Figure 2013053189
Figure 2013053189

上表2の測定結果を基に、低品位炭が配合された配合炭の△logMFを求める。図3および図4中、◆は、原料炭(基準炭)J,L,Kに低品位炭Aを1%または3%配合した時の配合炭のlogMFを示し、■は、原料炭(基準炭)L,Kに低品位炭Bを1%または3%配合した時の配合炭のlogMFを示す。図3および図4に例示するように、低品位炭の配合比率に対応した配合炭の流動度logMFを、炭種ごとおよび低品位炭に比較すると、上記の知見(a),(b)を定量的に検証することができる。
(a)図3および図4に示すように、MFが1388[ddpm](logMF3.14),949[ddpm](logMF2.98),206[ddpm](logMF2.31)を有する異なる原料炭(基準炭)J,L,Kに対して、低品位炭Aを配合させた場合の△logMFが、それぞれ−0.096,−0.096,−0.099であり、原料炭(基準炭)の炭種やMF等の特性に依存しないといえる。また、MFが949[ddpm](logMF2.98),226[ddpm](logMF2.35)を有する異なる原料炭(基準炭)L,Kに対して、低品位炭Bを配合させた場合の△logMFが、それぞれ−0.130,−0.128であり、同様の結果が得られた。同一の低品位炭について、共通の推定値を設定することができる。
(b)図3に示すように、同一原料炭(基準炭)に対して、低品位炭Aを配合させた場合の△logMFが−0.099に対して、低品位炭Bを配合させた場合の△logMFが−0.128とあり、△logMFは、配合される低品位炭の銘柄によって決定される。異なる低品位炭を配合することによって、同一の原料炭(基準炭)について異なる推定値の設定することができる。
Based on the measurement results in Table 2 above, ΔlogMF of the coal blended with the low-grade coal is obtained. In FIG. 3 and FIG. 4, ♦ indicates the log MF of the coal blend when 1% or 3% of the low-grade coal A is blended with the coking coal (reference coal) J, L, K, and ■ indicates the coking coal (standard Charcoal) The log MF of blended coal when 1% or 3% of low-grade coal B is blended with L and K. As illustrated in FIGS. 3 and 4, when the fluidity log MF of the blended coal corresponding to the blending ratio of the low-grade coal is compared with each coal type and the low-grade coal, the above findings (a) and (b) are obtained. It can be verified quantitatively.
(A) As shown in FIG. 3 and FIG. 4, different coking coals having MFs of 1388 [ddpm] (log MF3.14), 949 [ddpm] (log MF2.98), 206 [ddpm] (log MF2.31) Reference coal) Δlog MF when low grade coal A is blended with respect to J, L and K are -0.096, -0.096 and -0.099, respectively, and raw coal (reference coal) It can be said that it does not depend on the characteristics of coal types, MF, etc. Further, Δ when low grade coal B is blended with different coking coals (reference coals) L and K having MF of 949 [ddpm] (log MF 2.98) and 226 [ddpm] (log MF 2.35). The log MF was -0.130 and -0.128, respectively, and similar results were obtained. A common estimate can be set for the same low-grade coal.
(B) As shown in FIG. 3, low grade coal B was blended with respect to the same raw coal (reference coal) with ΔlogMF of −0.099 when blended with low grade coal A. ΔlogMF in the case is −0.128, and ΔlogMF is determined by the brand of the low-grade coal to be blended. By blending different low-grade coals, different estimated values can be set for the same raw coal (reference coal).

<本発明に係る配合炭のMFの推定における補正要素の検証>
上記のような方法によって、従前にない簡便な手法によって、効率的に配合炭のMFを推定することが可能となった。一方、配合炭のMFは、配合される低品位炭の銘柄に依存することの知見とともに、配合された低品位炭のその特性によって推定値と実測値とのズレが生じることがわかった。具体的には、下表3に示すような5種類の低品位炭A〜Eを原料炭(基準炭)に配合し、配合炭の△logMFを実証したところ、同表に示す推定値および実測値が得られた。
<Verification of correction factors in estimation of MF of blended coal according to the present invention>
By the method as described above, it has become possible to estimate the MF of the blended coal efficiently by an unprecedented simple method. On the other hand, it was found that the MF of the blended coal depends on the brand of the low-grade coal to be blended, and a deviation between the estimated value and the actual measurement value occurs depending on the characteristics of the blended low-grade coal. Specifically, when five types of low-grade coals A to E as shown in Table 3 below were blended with raw coal (reference coal) and ΔlogMF of the blended coal was verified, estimated values and actual measurements shown in the same table were obtained. A value was obtained.

Figure 2013053189
Figure 2013053189

〔低品位炭の酸素含有率による特性の補正〕
上表3に示す実証結果から、配合炭の流動性は、配合される低品位炭の銘柄に依存するとともに、低品位炭の酸素合有率が高いほど流動性が低くなる傾向を示すことが判る。具体的には、図5に例示するように、低品位炭の酸素合有量が多いほど、配合炭の流動性の推定プロセスの最終段階に近い低品位炭に係る△logMFの設定に影響を与えている。このとき、実際の補正曲線としては、図6に例示するように、特性線が所定の幅(図中0.046)を有する曲線が用いられる。下表3に、低品位炭の配合率10〜30%時の中央値,上限値および下限値を例示する。炭種によって、異なる所定の幅が設定される。酸素合有率が異なる場合、各低品位炭は同一銘柄といえない場合があるためである。つまり、特定の低品位炭によっては、酸素合有率が異なることから、銘柄の相違に伴う△logMFの変動の要因の1つとなる可能性がある。
[Characteristic correction by oxygen content of low-grade coal]
From the verification results shown in Table 3 above, the fluidity of the blended coal depends on the brand of the low-grade coal to be blended, and the fluidity tends to decrease as the oxygen content of the low-grade coal increases. I understand. Specifically, as illustrated in FIG. 5, as the oxygen content of the low-grade coal increases, the setting of ΔlogMF related to the low-grade coal that is closer to the final stage of the fluidity estimation process of the blended coal is affected. Giving. At this time, as an actual correction curve, as illustrated in FIG. 6, a curve having a predetermined width (0.046 in the figure) of the characteristic line is used. Table 3 below illustrates the median, upper limit, and lower limit when the blending ratio of low-grade coal is 10 to 30%. Different predetermined widths are set depending on the coal type. This is because the low grade coal may not be the same brand when the oxygen content is different. That is, depending on the specific low-grade coal, the oxygen content rate is different, which may be one of the factors of fluctuation of Δlog MF due to the difference in brands.

Figure 2013053189
Figure 2013053189

本推定方法は、図6に示す酸素含有率に対する△logMFの変動を求め、予め銘柄によって設定された低品位炭に係る△logMFを補正することによって、後述する実施例のように、より正確に配合炭のMFを推定することが可能となった。
具体的には、酸素含有率aの場合、下式2に基づき、△logMFを算出し、上式1に挿入し、補正される。
△logMF=−0.0061×a+0.0135 …式2
ここで、酸素合有率は、通常石炭の特性表に明示されることから、特に実測が要求されることはなく、補正に伴う煩雑さを招くことはない。また、上記のような工業分析値として石炭の品質表記がある場合には、下式3によって酸素含有率を算出することができる。
酸素含有率[%]=100−元素C,H,N,S[%] …式3
This estimation method obtains the fluctuation of Δlog MF with respect to the oxygen content shown in FIG. 6 and corrects Δlog MF related to low-grade coal set in advance by the brand, thereby more accurately as in the examples described later. It became possible to estimate the MF of the blended coal.
Specifically, in the case of the oxygen content rate a, ΔlogMF is calculated based on the following formula 2, and is inserted into the above formula 1 to be corrected.
ΔlogMF = −0.0061 × a + 0.0135 Equation 2
Here, since the oxygen content is normally specified in the characteristic table of coal, actual measurement is not particularly required, and there is no inconvenience associated with correction. Further, when there is a coal quality notation as the industrial analysis value as described above, the oxygen content can be calculated by the following equation 3.
Oxygen content [%] = 100−elements C, H, N, S [%] (Formula 3)

〔低品位炭の揮発分による特性の補正〕
揮発分は、既述のように石炭の品質を化学的に評価する上において重要な要素である。上表3に示す実証結果から、低品位炭の揮発分が多いほど配合炭の流動性が低くなる傾向を示すことが判る。本推定方法においても、こうした傾向は、低品位炭は配合された配合炭の△logMFに影響を与えることが判った。具体的には、図7に例示するように、低品位炭の揮発分が多いほど、配合炭の△logMFに影響を与えている。本推定方法は、図7に示す揮発分に対する△logMFの変動を求め、予め銘柄によって設定された低品位炭に係る△logMFを補正することによって、後述する実施例のように、より正確に配合炭のMFを推定することが可能となった。なお、配合される低品位炭の揮発分は、通常石炭の特性表に明示されることから、特に実測が要求されることはなく、補正に伴う煩雑さを招くことはない。
具体的には、図7において、揮発分b[%]の場合、下式4に基づき、△logMFを算出し、上式1に挿入し、補正される。
△logMF=−0.000313×b+0.0216×b−0.413 …式4
[Characteristic correction due to volatile content of low-grade coal]
The volatile matter is an important factor in chemically evaluating the quality of coal as described above. From the verification results shown in Table 3 above, it can be seen that as the volatile content of low-grade coal increases, the fluidity of the blended coal tends to decrease. Also in this estimation method, it has been found that such tendency affects the low-log coal of Δlog MF of the blended coal. Specifically, as illustrated in FIG. 7, as the volatile content of the low-grade coal increases, the ΔlogMF of the blended coal is affected. This estimation method obtains the fluctuation of Δlog MF with respect to the volatile content shown in FIG. 7 and corrects Δlog MF related to low-grade coal set in advance by the brand, thereby more accurately blending as in the examples described later. It became possible to estimate the MF of charcoal. Note that the volatile content of the low-grade coal to be blended is normally specified in the characteristic table of the coal, so that no actual measurement is required, and there is no inconvenience associated with the correction.
Specifically, in FIG. 7, in the case of the volatile content b [%], ΔlogMF is calculated based on the following formula 4, and is inserted into the above formula 1 to be corrected.
ΔlogMF = −0.000313 × b 2 + 0.0216 × b−0.413 Formula 4

<実施例>
以上の本推定方法の有効性について、以下の内容について実証試験を行なった。
〔実施例1〕原料炭のlogMFを高めに設定した場合の配合炭の流動度の推定
〔実施例2〕原料炭のlogMFを低めに設定した場合の配合炭の流動度の推定
〔実施例3〕流動性のない炭材を配合した場合の配合炭の流動度の推定
〔実施例4〕△logMFを用いた低品位炭配合焼成試験
<Example>
About the effectiveness of the above estimation method, the following content was verified.
[Example 1] Estimation of fluidity of blended coal when logMF of coking coal is set high [Example 2] Estimation of fluidity of blended coal when logMF of coking coal is set low [Example 3] ] Estimation of fluidity of blended coal when blended with non-flowable charcoal [Example 4] Low grade coal blended firing test using Δlog MF

〔実施例1〕
原料炭のlogMFを高めに設定した場合の配合炭の流動度の推定を行なった。
(i)実験条件
logMF:2.98である原料炭Lに対して、低品位炭A,BおよびCを配合率5〜10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表5に示すように、配合炭のlogMFについて、推定値と実測値が非常に一致し、相関性が高いことが判った。本推定方法の優れた機能が証明された。
[Example 1]
The fluidity of the coal blend was estimated when the log MF of the raw coal was set higher.
(I) Experimental condition log MF: Measure and set log MF and Δlog MF of coking coal under conditions of blending ratio of 5 to 10% of low grade coal A, B and C with respect to coking coal L of 2.98 Compared with the estimated value.
(Ii) Experimental results As shown in Table 5 below, it was found that for log MF of coal blend, the estimated value and the actually measured value were very consistent and the correlation was high. The excellent function of this estimation method is proved.

Figure 2013053189
Figure 2013053189

〔実施例2〕
原料炭のlogMFを低めに設定した場合の配合炭の流動度の推定を、上記実施例1と同様の方法にて行った
(i)実験条件
logMFの低い(2.00前後)原料炭Mおよび原料炭Nを用い、低品位炭の炭種を低品位炭D,低品位炭Eおよび低品位炭Fとして,配合率1〜10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表6に示すように、原料炭のlogMFを低く設定した場合においても、配合炭のlogMFについて、推定値は実測値と合致している。
[Example 2]
The estimation of the fluidity of the blended coal when the log MF of the raw coal was set low was performed in the same manner as in Example 1 above (i) the raw coal M having a low experimental condition log MF (around 2.00) and Using coking coal N, low grade coal D, low grade coal E, low grade coal E and low grade coal F are used, and logMF and ΔlogMF of raw coal are measured and set under the conditions of 1 to 10% of the blending ratio. And compared with the estimated values.
(Ii) Experimental results As shown in Table 6 below, even when the log MF of the raw coal is set low, the estimated value of the log MF of the coal blend is in agreement with the measured value.

Figure 2013053189
Figure 2013053189

〔実施例3〕
上記実施例1,2における低品位炭に代え、原料炭に流動性のない炭材を配合した場合の配合炭の流動度の推定を行なった
(i)実験条件
logMFの低い(2.00前後)原料炭Mおよび原料炭Nを用い、流動性のない炭材の炭種として低品位炭Gおよび低品位炭Hを用い,配合率10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表7に示すように、無煙炭など石炭化度が進み軟化溶融しない低品位炭Gおよび低品位炭H等の炭材を用いても、配合炭のlogMFについて、推定値と実測値が非常に一致し、配合炭の流動度の推定は可能であることが判った。
Example 3
In place of the low-grade coal in Examples 1 and 2 above, the fluidity of the coal blend was estimated when blending a non-fluid carbon material with the raw coal (i) low experimental condition log MF (around 2.00) ) Using raw coal M and raw coal N, using low-grade coal G and low-grade coal H as coal types of non-fluid coal, measured logMF and ΔlogMF of raw coal under the condition of 10% blending ratio , Set and compare with estimated values.
(Ii) Experimental results As shown in Table 7 below, even when using coals such as anthracite and low grade coal G and low grade coal H that are not softened and melted, an estimated value and The measured values are very consistent, and it was found that the fluidity of the blended coal can be estimated.

Figure 2013053189
Figure 2013053189

〔実施例4〕
△logMFを用い、低品位炭が配合された配合炭の焼成試験を行い、コークス強度を検証した。
(i)実験条件
原料炭として配合粘結炭(イ)およびその一部を粘結補填材に置き換えた配合粘結炭(ロ)を用い、低品位炭の炭種を低品位炭Fとして,配合率0〜10%の条件で、配合粘結炭(イ)および配合粘結炭(ロ)のlogMFおよび△logMFを実測、設定し、推定値と比較した。また、このときのコークス落下後粉率,コークス強度を比較した。
ここで、低品位炭Fの流動度低下勾配は、△logMF=−0.12[logddpm/%]であった。また、配合粘結炭(ロ)は、予め低品位炭Fの配合によるlogMFの低下分を、既述のlogMF推定式(式1)を用いて算出し、低品位炭Fの配合時のlogMFが2.0(コークス強度の安定領域とされる)となるように、高流動性石炭の配合率を増加させた高流動性配合炭で、実測のlogMF=2.66であった。
(ii)実験結果
下表8に示すように、△logMFを用いた配合炭のlogMFについて、推定値は、実測値を良くあっている。この推定値を、ベース並みに流動度調整すると、コークス強度が回復する。
Example 4
Using Δlog MF, a coking strength was verified by conducting a firing test of the coal blended with low-grade coal.
(I) Experimental conditions Using mixed caking coal (I) as a raw coal and blended caking coal (B) in which a part of the caking coal is replaced with a caking filler, the low-grade coal type is defined as low-grade coal F, The log MF and Δlog MF of the blended caking coal (I) and the blended caking coal (B) were measured and set under conditions of a blending rate of 0 to 10%, and compared with the estimated values. Moreover, the powder ratio and coke strength after coke dropping at this time were compared.
Here, the flow rate decreasing gradient of the low-grade coal F was ΔlogMF = −0.12 [logddpm /%]. In addition, the blended caking coal (b) is calculated in advance by using the previously described log MF estimation formula (formula 1), and the log MF at the time of blending the low grade coal F. Is a high fluidity blended coal in which the blending ratio of the high fluidity coal is increased so as to be 2.0 (a coke strength stable region), and the measured log MF = 2.66.
(Ii) Experimental Results As shown in Table 8 below, the estimated value of the log MF of the coal blend using Δlog MF matches the measured value well. If this estimated value is adjusted to the same level as the base, the coke strength is restored.

Figure 2013053189
Figure 2013053189

<本推定方法を用いたコークス製造用原料の配合方法>
上記のように、本推定方法は、種々の原料炭や低品位炭を用いた場合にあっても、配合炭のMFを精度高く推定できる。従って、本推定方法を利用すれば、作製されるコークス製造用原料の最高流動度を適正に調整することが可能である。つまり、実際に使用される原料炭の最高流動度と、これに配合される低品位炭に係る△logMFに基づき、適正な流動度の範囲となるように、原料炭に配合される品位炭の配合比率を設定することによって、効率的で優れたコークス製造用原料の配合方法(以下「本配合方法」という)とすることができる。
<Method of blending raw materials for coke production using this estimation method>
As described above, the present estimation method can accurately estimate the MF of blended coal even when various raw coals and low-grade coals are used. Therefore, by using this estimation method, it is possible to appropriately adjust the maximum fluidity of the coke production raw material to be produced. In other words, based on the maximum fluidity of the coking coal that is actually used and the ΔlogMF related to the low-grade coal blended with it, the grade coal blended with the coking coal so as to have an appropriate fluidity range. By setting the blending ratio, an efficient and excellent blending method of raw materials for coke production (hereinafter referred to as “the present blending method”) can be obtained.

<本推定方法を用いたコークス製造用原料の配合方法>
また、本配合方法によって作製された配合炭は、優れた粘結性あるいは流動性を有している。こうした特性は、コークス製造用原料としての適性を確保するに十分であり、こうして作製された配合炭をコークス製造用原料として用いることが有用である。つまり、上記本推定方法の説明において詳述したように、原料炭に配合する低品位炭の配合率が0.1〜10%,配合炭のMFについてlogMF=2〜3を有することによって、コークス強度に優れ、かつ粘結性に優れたコークス製造用原料を確保することが可能となった。
<Method of blending raw materials for coke production using this estimation method>
Moreover, the coal blend produced by this blending method has excellent caking properties or fluidity. Such characteristics are sufficient to ensure suitability as a raw material for coke production, and it is useful to use the blended coal thus produced as a raw material for coke production. That is, as described in detail in the explanation of the estimation method, the blending ratio of the low-grade coal to be blended with the raw coal is 0.1 to 10%, and the log MF is 2 to 3 with respect to the MF of the blended coal. It became possible to secure a raw material for producing coke that was excellent in strength and caking.

1 石炭運搬船
2 貯炭場
3 配合槽
4 粉砕設備
6 コークス炉
6a コールビン
6b 装入車
6c 押出機
DESCRIPTION OF SYMBOLS 1 Coal carrier 2 Coal storage place 3 Mixing tank 4 Crushing equipment 6 Coke oven 6a Coalbin 6b Charged vehicle 6c Extruder

こうした石炭の粘結性は、流動性、膨張性および粘着性などの性質によって定まるが、特に流動性がコークス強度に大きく影響する。このために、配合炭の最高流動度(以下「MF(Maximum Fluidity)」ということがある)を把握することは、高強度のコークスを製造するための重要な因子である。従来、配合炭のMFは、配合される単味の石炭の各々のMFの加重平均値によって推定していた。しかしながら、配合される単味の石炭の各々の流動開始温度(ST)、最高流動温度(MFT)および固化温度(FT)は異なる。従って、各石炭単味のMFの加重平均値と配合炭のMFとは一致しない。従来行なわれていた配合炭の最高流動度の常用対数値(以下「logMF」ということがある)の推定値は、その実測値よりも高い。このような傾向は,MFの高い石炭を多く使用するほど顕著になり、コークス強度の推定精度を低下させる大きな原因になっていた(例えば特許文献1〔従来の技術〕および〔発明が解決しようとする課題〕参照)。
The cohesiveness of such coal is determined by properties such as fluidity, expansibility, and tackiness, but fluidity greatly affects the coke strength. For this reason, grasping the maximum fluidity of blended coal (hereinafter sometimes referred to as “MF (Maximum Fluidity)”) is an important factor for producing high-strength coke. Conventionally, the MF of blended coal has been estimated by the weighted average value of each MF of blended simple coal. However, the flow start temperature (ST), maximum flow temperature (MFT) and solidification temperature (FT) of each of the blended plain coals are different. Therefore, the weighted average value of each coal simple MF and the MF of blended coal do not match. The estimated value of the common logarithm value (hereinafter sometimes referred to as “logMF”) of the maximum fluidity of the blended coal, which has been conventionally performed, is higher than the actually measured value. Such a tendency becomes more prominent as coal having a higher MF is used, which has been a major cause of lowering the estimation accuracy of coke strength (for example, Patent Document 1 [Prior Art] and [Invention try to solve]. Issue)].

<本発明に係る配合炭のMFの推定方法>
本推定方法は、コークス製造プロセスにおいて供給されるコークス製造用原料である配合炭の特性を、原料炭の特性および低品位炭の特性を基に推定する。つまり、本推定方法は、次のような知見を基に、後述する(1)〜(5)の手順によって、簡便かつ効率的に配合炭のMFを推定することができる。
(a)低品位炭の配合に伴う流動度低下勾配(以下「△logMF」ということがある)は、原料炭(基準炭)の炭種や特性への依存性が低い。
(b)低品位炭の△logMFは、低品位炭の銘柄固有である。
ここで、「logMF」は、最高流動度(MF)の常用対数値を示し、実際の評価において使用される。「△logMF」は、その勾配(流動度低下勾配)を示す
<Method for estimating MF of blended coal according to the present invention>
In this estimation method, the characteristics of the blended coal that is a raw material for coke production supplied in the coke production process is estimated based on the characteristics of the raw coal and the characteristics of the low-grade coal. That is, this estimation method can estimate MF of coal blend simply and efficiently by the procedures (1) to (5) described later based on the following knowledge.
(A) The fluidity decrease gradient (hereinafter sometimes referred to as “Δlog MF”) accompanying the blending of low-grade coal is less dependent on the coal type and characteristics of the raw coal (reference coal).
(B) Δlog MF of low grade coal is unique to the brand of low grade coal.
Here, “log MF” indicates a common logarithm of the maximum fluidity (MF), and is used in actual evaluation. “Δlog MF” indicates the gradient (fluidity decreasing gradient) .

Claims (5)

原料炭に低品位炭を配合して作製される配合炭を主成分とするコークス製造用原料を作製する場合に、
予め原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求めるとともに、
実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合された配合炭の最高流動度を推定することを特徴とするコークス製造用原料の最高流動度の推定方法。
When producing raw materials for coke production whose main component is blended coal produced by blending low-grade coal with raw coal,
One or more types of coking coal are selected in advance as a reference coal, a range of an appropriate fluidity of the reference coal, a fluidity characteristic curve with respect to the temperature of the reference coal, and the reference based on the fluidity characteristic curve The maximum fluidity of charcoal is obtained, and for one or more low-grade coal blended, the fluidity of the low-grade coal based on the change in the maximum fluidity of the reference coal relative to the blending ratio of the low-grade coal While finding the decline slope,
Based on the maximum fluidity of the raw coal actually used and the flow rate decrease gradient of the low-grade coal actually blended, the blending ratio of the low-grade coal blended with the raw coal A method for estimating the maximum fluidity of a raw material for coke production, characterized by estimating the maximum fluidity of a blended coal in which the low-grade coal is blended with charcoal.
配合される前記低品位炭の酸素含有率に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の酸素含有率によって補正することを特徴とする請求項1記載のコークス製造用原料の最高流動度の推定方法。   Fluctuation of the fluidity lowering gradient with respect to the oxygen content of the low-grade coal to be blended is obtained, and the fluidity-decreasing gradient according to the low-grade coal used is corrected by the oxygen content of the low-grade coal. The method for estimating the maximum fluidity of a raw material for producing coke according to claim 1. 配合される前記低品位炭の揮発分に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の揮発分によって補正することを特徴とする請求項1または2記載のコークス製造用原料の最高流動度の推定方法。   Fluctuation of the flow rate decrease gradient with respect to the volatile content of the low-grade coal to be blended is obtained, and the fluidity decrease gradient according to the low-grade coal used is corrected by the volatile content of the low-grade coal The method for estimating the maximum fluidity of the raw material for coke production according to claim 1 or 2. 請求項1〜3にいずれかに記載のコークス製造用原料の最高流動度の推定方法を用い、実際に使用する原料炭の最高流動度と、使用する低品位炭に係る流動度低下勾配に基づき、前記適正流動度の範囲となるように、該原料炭に配合される該低品位炭の配合比率を設定することを特徴とするコークス製造用原料の配合方法。   Using the estimation method of the maximum fluidity of the raw material for coke production according to any one of claims 1 to 3, based on the maximum fluidity of the raw coal actually used and the fluidity decrease gradient related to the low-grade coal used A method for blending raw materials for coke production, wherein the blending ratio of the low-grade coal blended with the raw coal is set so as to fall within the proper fluidity range. 原料炭に低品位炭を配合して作製される配合炭を主成分とするコークス製造用原料であって、前記低品位炭の配合比率0.1〜10%,前記配合炭の最高流動度の常用対数値2〜3を有することを特徴とする請求項4に記載のコークス製造用原料の配合方法により作製されたコークス製造用原料。
A raw material for coke production mainly composed of blended coal produced by blending low-grade coal with coking coal, the blending ratio of the low-grade coal of 0.1 to 10%, the maximum fluidity of the blended coal The raw material for coke production produced by the method for blending raw materials for coke production according to claim 4, which has a common logarithm value of 2 to 3.
JP2011190864A 2011-09-01 2011-09-01 Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method Active JP5820668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190864A JP5820668B2 (en) 2011-09-01 2011-09-01 Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190864A JP5820668B2 (en) 2011-09-01 2011-09-01 Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method

Publications (2)

Publication Number Publication Date
JP2013053189A true JP2013053189A (en) 2013-03-21
JP5820668B2 JP5820668B2 (en) 2015-11-24

Family

ID=48130479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190864A Active JP5820668B2 (en) 2011-09-01 2011-09-01 Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method

Country Status (1)

Country Link
JP (1) JP5820668B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938085B1 (en) 2017-08-23 2019-01-14 현대제철 주식회사 Methods of predicting fluidity of coal
CN110938452A (en) * 2018-09-25 2020-03-31 宝山钢铁股份有限公司 Coal blending and coking method for regulating and controlling strong caking coal ratio
CN113621393A (en) * 2021-07-21 2021-11-09 武汉钢铁有限公司 Classification matching method for coking coal with volatile content of 18-22%

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698653A (en) * 1980-01-11 1981-08-08 Kawasaki Steel Corp Melt sticking property measuring method for coke-oven charged material, etc.
JPH039991A (en) * 1989-06-06 1991-01-17 Nkk Corp Method for estimating apparent fluidity of noncaking coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698653A (en) * 1980-01-11 1981-08-08 Kawasaki Steel Corp Melt sticking property measuring method for coke-oven charged material, etc.
JPH039991A (en) * 1989-06-06 1991-01-17 Nkk Corp Method for estimating apparent fluidity of noncaking coal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938085B1 (en) 2017-08-23 2019-01-14 현대제철 주식회사 Methods of predicting fluidity of coal
CN110938452A (en) * 2018-09-25 2020-03-31 宝山钢铁股份有限公司 Coal blending and coking method for regulating and controlling strong caking coal ratio
CN110938452B (en) * 2018-09-25 2021-06-15 宝山钢铁股份有限公司 Coal blending and coking method for regulating and controlling strong caking coal ratio
CN113621393A (en) * 2021-07-21 2021-11-09 武汉钢铁有限公司 Classification matching method for coking coal with volatile content of 18-22%
CN113621393B (en) * 2021-07-21 2022-11-01 武汉钢铁有限公司 Classification matching method of coking coal with 18-22% of volatile matter

Also Published As

Publication number Publication date
JP5820668B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP2010043196A (en) Method for preparing high strength coke
JP5045039B2 (en) Manufacturing method of high strength coke
JP5820668B2 (en) Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method
JP6379934B2 (en) Coke strength estimation method
JP6680252B2 (en) Coal evaluation method and coke manufacturing method
JP2015199791A (en) Method for producing coke
JP2018048297A (en) Estimation method of coke strength
JP5833473B2 (en) Coke production raw material production method and coke production raw material produced by the production method
CN105073953B (en) The manufacturing method of metallurgical coke
JP5590071B2 (en) Manufacturing method of high strength coke
JP2000063846A (en) Estimation of coke&#39;s strength
JP6107374B2 (en) Coke production method
JP5833474B2 (en) Coke production raw material production method and coke production raw material produced by the production method
JP3051193B2 (en) Manufacturing method of coke for metallurgy
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
WO2013129650A1 (en) Process for producing raw material for coke production, and raw material for coke production produced by said process
JP2020026472A (en) Method for estimating surface fracture strength of coke
JP2016164546A (en) Method of evaluating coal and method of producing coke
AU2020376541B2 (en) Method for estimating surface tension of coal and method for producing coke
JP6740833B2 (en) Bulk density estimation method and compounding adjustment method for coke oven charging coal
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
KR101910405B1 (en) Ferrocoke manufacturing method
CN114556079A (en) Method for estimating surface tension of coal inertinite structure, method for estimating surface tension of coal, and method for producing coke
JP2017173294A (en) Method for estimating strength of coke and method for manufacturing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5820668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250