JP5833474B2 - Coke production raw material production method and coke production raw material produced by the production method - Google Patents

Coke production raw material production method and coke production raw material produced by the production method Download PDF

Info

Publication number
JP5833474B2
JP5833474B2 JP2012045648A JP2012045648A JP5833474B2 JP 5833474 B2 JP5833474 B2 JP 5833474B2 JP 2012045648 A JP2012045648 A JP 2012045648A JP 2012045648 A JP2012045648 A JP 2012045648A JP 5833474 B2 JP5833474 B2 JP 5833474B2
Authority
JP
Japan
Prior art keywords
coal
fluidity
low
blended
grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012045648A
Other languages
Japanese (ja)
Other versions
JP2013181100A (en
Inventor
一秀 石田
一秀 石田
西村 勝
勝 西村
濱口 眞基
眞基 濱口
貴洋 宍戸
貴洋 宍戸
憲幸 奥山
憲幸 奥山
康爾 堺
康爾 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2012045648A priority Critical patent/JP5833474B2/en
Priority to PCT/JP2013/055681 priority patent/WO2013129650A1/en
Priority to TW102107267A priority patent/TWI498418B/en
Publication of JP2013181100A publication Critical patent/JP2013181100A/en
Application granted granted Critical
Publication of JP5833474B2 publication Critical patent/JP5833474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス製造用原料の作製方法および該作製方法により作製されたコークス製造用原料に関し、特に原料炭に低品位炭が配合された配合炭を主成分とするコークス製造用原料の作製方法および該作製方法により作製されたコークス製造用原料に関する。   TECHNICAL FIELD The present invention relates to a method for producing a coke production raw material and a coke production raw material produced by the production method, and in particular, a method for producing a coke production raw material mainly composed of a blended coal in which low-grade coal is blended with raw coal. And a coke production raw material produced by the production method.

冶金用コークスの原料として用いられる石炭(以下原料炭)は、加熱時に軟化溶融し、その後再固化して強固なコークスとなるもので、瀝青炭に分類され、一般に粘結炭と称している。しかし、コークス製造用原料として使用することのできる瀝青炭については、その資源量に限りがあり、かつコスト高という問題がある。そこで低品位な弱粘結炭または非微粘結炭やさらに低品位な石炭の増配が求められている。低品位炭をコークス製造用原料として用いる場合、性質の異なる多くの石炭が存在しているため、粘結性と石炭化度とが適当な範囲にある石炭を使用することが必要である。そこで、性質の異なる複数の種類の石炭を組み合わせて配合する配合炭の設計の試みが行なわれてきた。   Coal used as a raw material for metallurgical coke (hereinafter referred to as raw coal) is softened and melted when heated and then re-solidified to form strong coke, which is classified as bituminous coal and is generally referred to as caking coal. However, bituminous coal that can be used as a raw material for coke production has a problem of limited resources and high cost. Accordingly, there is a demand for an increase in the distribution of low-grade weakly caking coal or non-slightly caking coal or even lower grade coal. When low-grade coal is used as a raw material for coke production, since many coals having different properties exist, it is necessary to use coal having caking properties and a degree of coalification in an appropriate range. Therefore, attempts have been made to design a blended coal in which a plurality of types of coal having different properties are combined and blended.

こうした石炭の粘結性は、流動性、膨張性および粘着性などの性質によって定まるが、特に流動性がコークス強度に大きく影響する。このために、配合炭の最高流動度(以下「MF(Maximum Fluidity)」ということがある)を把握することは、高強度のコークスを製造するための重要な因子である。従来、配合炭のMFは、配合される単味の石炭の各々のMFの加重平均値によって推定していた。しかしながら、配合される単味の石炭の各々の流動開始温度(ST)、最高流動温度(MFT)および固化温度(FT)は異なる。従って、各石炭単味のMFの加重平均値と配合炭のMFとは一致しない。従来行なわれていた配合炭の最高流動度の常用対数値(以下「logMF」ということがある)の推定値は、その実測値よりも低い。このような傾向は,MFの高い石炭を多く使用するほど顕著になり、コークス強度の推定精度を低下させる大きた原因になっていた(例えば特許文献1〔従来の技術〕および〔発明が解決しようとする課題〕参照)。   The cohesiveness of such coal is determined by properties such as fluidity, expansibility, and tackiness, but fluidity greatly affects the coke strength. For this reason, grasping the maximum fluidity of blended coal (hereinafter sometimes referred to as “MF (Maximum Fluidity)”) is an important factor for producing high-strength coke. Conventionally, the MF of blended coal has been estimated by the weighted average value of each MF of blended simple coal. However, the flow start temperature (ST), maximum flow temperature (MFT) and solidification temperature (FT) of each of the blended plain coals are different. Therefore, the weighted average value of each coal simple MF and the MF of blended coal do not match. The estimated value of the common logarithm (hereinafter sometimes referred to as “logMF”) of the maximum fluidity of the blended coal, which has been conventionally performed, is lower than the actually measured value. Such a tendency becomes more prominent as more MF coal is used, which has been a major cause of reducing the estimation accuracy of coke strength (for example, Patent Document 1 [Prior Art] and [Invention will be solved]. [See the problem to be considered]]).

また、性質の異なる複数の種類の石炭を組み合わせて配合する配合炭の作製方法については、粘結材を、その特性を十分に活かすことができる性状を有する非微粘結炭と組み合わせて使用することで、非微粘結炭の配合割合をこれまでと同等またはそれ以上に高めた配合炭を使用しても、近年求められている強度を満足するコークスを製造できる方法が検討されている(例えば特許文献2参照)。具体的には、コークス炉原料の調製に際して、揮発分が25%以下で最高流動度が1ddpm以上10ddpm以下の低揮発性非微粘結炭を前記配合炭にさらに配合する工程および粘結材を添加する工程を備え、前記低揮発性非微粘結炭の前記粘結材に対する質量比(非微粘結炭/粘結材)が1以上3以下、および/または前記低揮発性非微粘結炭の配合炭に対する質量比率が2〜9%であることを特徴とするコークス製造方法が提案されている(例えば特許文献2〔請求項1〜3〕参照)。   Moreover, about the preparation method of the coal blend which mixes and mixes several types of coal from which a property differs, a caking additive is used in combination with the non-slightly caking coal which has the property which can fully utilize the characteristic. Thus, even when using a blended coal in which the blending ratio of non-slightly caking coal is equal to or higher than before, a method that can produce coke that satisfies the recently required strength has been studied ( For example, see Patent Document 2). Specifically, in the preparation of the coke oven raw material, a step of further blending a low-volatile non-slightly caking coal having a volatile content of 25% or less and a maximum fluidity of 1 ddpm or more and 10 ddpm or less into the blended coal, and a binder A step of adding, wherein a mass ratio of the low volatility non-minor caking coal to the caking material (non-minor caking coal / caking material) is 1 or more and 3 or less, and / or the low volatility non-minor viscosity There has been proposed a coke production method characterized in that the mass ratio of coal to coal blend is 2 to 9% (see, for example, Patent Document 2 [Claims 1 to 3]).

特開平02−20592号公報Japanese Patent Laid-Open No. 02-20592 特開2009−249596号公報JP 2009-249596 A

しかしながら、上記のような場合、次のような問題が生じる。
(i)特許文献1の方法は、粘結炭を主体とした原料炭に流動性のない低品位炭を配合した場合、配合する低品位炭のlogMFは検出できないため、配合炭のMFあるいはlogMFは原料炭のMFあるいはlogMFと差異がないこととなり、原料炭に低品位炭を配合した配合炭のMFあるいはlogMFの推定方法として適用することができず、所望のMFあるいはlogMFを有する配合炭の作製が困難であった。
(ii)一方、従前のような各石炭単味のMFあるいはlogMFの加重平均での推定値では、実際の配合炭のMFあるいはlogMFの推定値と大きなズレが生じることがあり、推定方法として適用することができず、所望のMFあるいはlogMFを有する配合炭の作製が困難であった。
(iii)特に、同じ原料炭を用いて、同じ比率で低品位炭との配合を行なった場合であっても、低品位炭の銘柄によって、その各石炭単味のMFあるいはlogMFの加重平均での推定値とのズレが大きくなることがあった。
(iv)特許文献2の方法によって、粘結材を原料炭に低品位炭および流動性の高い粘結材等を配合させる場合にあっては、配合される低品位炭に対して所定の特性を有する炭種に限定され、原料炭/低品位炭および低品位炭/粘結材の配合比率が制限され、低品位炭の増量要請に十分応えることができなかった。また、原料炭の炭種が異なれば流動度が相違することから、これに応じた低品位炭の配合比率も制限され、適用範囲の拡大が困難であった。さらに、原料炭に低品位炭が配合された配合炭の流動性は、個別に実測する以外になく、上記(i)〜(iii)の課題を解消するものではなかった。
(v)また、粘結材の配合によって期待される技術的効果の1つは、原料炭に低品位炭が配合されることによる流動度の低下を補填する機能である。しかしながら、原料炭と低品位炭が均一に配合された配合炭に対して粘結材を配合した場合、こうした補填機能にバラツキが生じることがあった。特に、低品位炭の増量が要求される場合には、こうしたバラツキは無視することができなかった。
However, in the above case, the following problems occur.
(I) In the method of Patent Document 1, when low-grade coal having no fluidity is blended with coking coal mainly composed of caking coal, logMF of low-grade coal to be blended cannot be detected, so MF or logMF of blended coal Is not different from MF or log MF of coking coal, and cannot be applied as a method of estimating MF or log MF of blended coal in which low-grade coal is blended with coking coal, and a blended coal having a desired MF or log MF It was difficult to produce.
(Ii) On the other hand, the estimated value of the weight average of each MF or log MF of each coal as in the past may cause a large deviation from the estimated value of MF or log MF of the actual blended coal. Therefore, it was difficult to produce a blended coal having desired MF or log MF.
(Iii) In particular, even when blending with low grade coal at the same ratio using the same raw coal, depending on the brand of low grade coal, the weight average of each MF or log MF of each coal The deviation from the estimated value may increase.
(Iv) When the low-grade coal and the high-fluidity binder are blended into the raw coal by the method of Patent Document 2, predetermined characteristics are obtained with respect to the low-grade coal to be blended. However, the ratio of raw coal / low-grade coal and low-grade coal / caking additive was limited, and the demand for increasing the amount of low-grade coal could not be fully met. Moreover, since the fluidity is different when the coal type of the raw coal is different, the blending ratio of the low-grade coal according to this is limited, and it is difficult to expand the application range. Furthermore, the fluidity of the blended coal in which the low-grade coal is blended with the raw coal is not only measured individually, but does not solve the above problems (i) to (iii).
(V) In addition, one of the technical effects expected by blending the binder is a function to compensate for a decrease in fluidity caused by blending low-grade coal with raw coal. However, when the caking agent is blended with the blended coal in which the raw coal and the low-grade coal are blended uniformly, such a filling function may vary. In particular, when the increase in low-grade coal is required, such variations cannot be ignored.

本発明の目的は、上記従来技術の有する問題点に鑑みて、原料炭に過剰量の低品位炭が配合された配合炭を主成分とし、高流動性の石炭または材料を配合させて所望の流動性を有するコークス製造用原料を作製する場合に、簡便な手法によって、効率的に最適な該配合炭の配合条件を推定するとともに、高流動性の石炭または粘結材等の配合量を設定し、優れた粘結性あるいは流動性を安定して確保することができるコークス製造用原料を作製することができるコークス製造用原料の作製方法および該作製方法により作製されたコークス製造用原料を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to have a blended coal in which an excessive amount of low-grade coal is blended with coking coal as a main component, and to blend a high-fluidity coal or material into a desired one. When preparing raw materials for coke production with fluidity, the optimum blending conditions for the blended coal are efficiently estimated by a simple method, and the blending amount of highly fluid coal or binder is set. A method for producing a coke production raw material capable of producing a coke production raw material capable of stably ensuring excellent caking or fluidity, and a coke production raw material produced by the production method are provided. There is to do.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、以下に示すコークス製造用原料の作製方法および該作製方法により作製されたコークス製造用原料によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventor has found that the above object can be achieved by a method for producing a coke production raw material shown below and a coke production raw material produced by the production method, The present invention has been completed.

本発明に係るコークス製造用原料の作製方法は、原料炭に低品位炭を配合してコークス製造用原料を作製する場合に、
該原料炭に該低品位炭が配合される1次配合炭の特性と所望のコークス製造用原料の特性との差異を補填するために配合される高流動度炭または高流動度材料を、予め前記低品位炭に近接させて配合して前駆配合炭を作製し、該前駆配合炭を前記原料炭に配合して2次配合炭を作製するとともに、
原料炭,低品位炭,高流動度炭または高流動度材料,および前駆配合炭の配合比率を、それぞれの特性の指標である最高流動度を基に設定することを特徴とする。
The method for producing a raw material for coke production according to the present invention is a method for producing a raw material for coke production by blending low-grade coal with raw coal.
In order to compensate for the difference between the characteristics of the primary blended coal in which the low-grade coal is blended with the raw coal and the characteristics of the desired coke production raw material, Mixing in the vicinity of the low-grade coal to produce a precursor blended coal, blending the precursor blended coal with the raw coal and creating a secondary blended coal,
The blending ratio of the raw coal, the low grade coal, the high fluidity coal or the high fluidity material, and the precursor blended coal is set based on the maximum fluidity that is an index of each characteristic.

原料炭に過剰量の低品位炭が配合された配合炭(1次配合炭)を主成分とし、高流動性の石炭または材料を配合させて所望の特性を有するコークス製造用原料を作製する場合において、コークス製造用原料には、適正な流動性あるいは流動度を指標とする粘結性が求められることから、原料炭,低品位炭,これらが配合された1次配合炭,これらに配合される高流動度炭または高流動度材料(以下「高流動度材」ということがある),および高流動度材が低品位炭に配合された前駆配合炭の最高流動度(MF)が非常に重要となる。本発明は、こうした原料炭等の配合比率を、MFを指標として設定することを特徴の1つとする。また、検証過程において、高流動度材が有する原料炭への低品位炭の配合に伴う流動度の低下を補填する機能は、低品位炭に近接させて高流動度材を配合する(以下「近接配合」ということがある)ことによって、コークス強度も一層高い2次配合炭を作製することができるという技術的効果を得るとの知見を得た。本発明は、こうした補填機能を効果的に活用すべく、原料炭に低品位炭が均一に配合された1次配合炭に対して高流動度炭を均一に配合して2次配合炭を作製する(「単純配合」という)のではなく、低品位炭に対して予め高流動度材を近接配合して前駆配合炭を作製するとともに、該前駆配合炭を原料炭に配合して2次配合炭を作製することによって、過剰量の低品位炭の配合によって生じた所望のMFとの差異を、精度よく補填することが可能となり、優れた粘結性あるいは流動性を安定して確保することができるコークス製造用原料の作製方法を提供することが可能となった。   When producing raw materials for coke production with desired characteristics by blending coal (primary blended coal) in which an excessive amount of low-grade coal is blended with raw coal into a main component and blending high-fluidity coal or materials. In coke production raw materials, since appropriate flowability or caking property based on fluidity is required, raw coal, low-grade coal, primary blended coal blended with these, blended with these High fluidity coal or high fluidity material (hereinafter sometimes referred to as “high fluidity material”), and the maximum fluidity (MF) of the precursor coal blended with high fluidity material blended with low grade coal It becomes important. One feature of the present invention is that the blending ratio of such raw coal is set using MF as an index. In addition, in the verification process, the function of compensating for the decrease in fluidity accompanying the blending of low-grade coal with the raw coal of the high-fluidity material is blended with the high-fluidity material close to the low-grade coal (hereinafter referred to as “ In other words, it was sometimes referred to as “proximity blending”, thereby obtaining a technical effect that a secondary blended coal with higher coke strength can be produced. In order to effectively utilize such a compensation function, the present invention produces a secondary coal blend by uniformly blending a high-flow coal with a primary coal blended with low-grade coal uniformly in the raw coal. Rather than doing (referred to as “simple blending”), a high-fluidity material is preliminarily blended with low-grade coal in advance to produce a precursor blended coal, and the precursor blended coal is blended with the raw coal to provide a secondary blend. By producing charcoal, it becomes possible to accurately compensate for the difference from the desired MF generated by blending an excessive amount of low-grade coal, and stably securing excellent caking or fluidity It has become possible to provide a method for producing a raw material for coke production.

ここで、「低品位炭」とは、無煙炭など石炭化度が進み軟化溶融しない石炭や炭化物および、石炭化の進んでいない亜瀝青炭や褐炭あるいは泥炭等をいい、特に石炭化度の進んでいない石炭は、水分,酸素分,揮発分が多く、炭素成分の少ない比較的粗な組織構造となったもので、流動性や粘結性がほとんどなく、それ自体ではコークス化しない。また、「高流動度炭または高流動度材料」とは、原料炭よりも高い流動性を有する石炭や石炭と配合可能な材料をいう(以下「高流動度材」ということがある)。具体的には、高い流動度を有する粘結炭や、溶剤で石炭から抽出した可溶成分に改質処理を施した石炭抽出物(無機物が取り除かれ有機物を主成分とし、一般に「無灰炭」と呼ばれることがある)や、石炭系ピッチあるいは石油系ピッチなどの粘結材を挙げることができる。なお、実際の流動度の指標は、一般に、MFではなく、その常用対数logMFとして対比される。「近接配合」とは、特定の材料(高流動度材)を、複数の配合材料(原料炭と低品位炭)の一方または特定の配合材料(低品位炭)に対して近接させて配合し、他の配合材料(原料炭)との近接を回避することをいい、具体的な処理方法は、後述する。   Here, “low-grade coal” refers to coal or carbide that has not been softened and melted, such as anthracite, and sub-bituminous coal, lignite, or peat, etc. Coal has a relatively coarse structure with a large amount of moisture, oxygen and volatile components and a small amount of carbon. It has little fluidity and caking properties and does not coke itself. Further, “high-flow coal or high-fluidity material” refers to coal having higher fluidity than raw coal or a material that can be blended with coal (hereinafter also referred to as “high-fluidity material”). Specifically, caking coal with a high fluidity or coal extract obtained by modifying soluble components extracted from coal with a solvent (inorganics are removed and organics are the main components. And a caking agent such as coal-based pitch or petroleum-based pitch. Note that the actual fluidity index is generally compared not as MF but as its common logarithm log MF. “Proximity blending” refers to blending a specific material (high fluidity material) close to one of a plurality of blending materials (coking coal and low-grade coal) or a specific blending material (low-grade coal). It means to avoid proximity to other compounding materials (coking coal), and a specific processing method will be described later.

本発明は、上記コークス製造用原料の作製方法であって、前記前駆配合炭の作製において、圧着や成型,造粒,接着または混練のいずれかの処理、あるいはこれらの処理のいくつかの組合せによって、前記低品位炭に前記高流動度炭または高流動度材料を近接させて配合することを特徴とする。
上記のように、高流動度材の補填機能は、単純に高流動度材を低品位炭に配合する単純配合ではなく低品位炭に対する近接配合が効果的であることが判った。配合された高流動度材が同じように高い流動性を有する原料炭に近接することによって、高流動度材の配合効果を低減することを防止することができる。具体的には、流動性の小さな低品位炭の表面に高流動度材を定着させる処理を施すことが必要であり、近接配合の処理として、圧着処理や成型処理,造粒処理,接着処理または混練処理が挙げられる。こうした処理によって、過剰量の低品位炭の配合によって生じた所望のMFとの差異を、精度よく補填することが可能となる。各処理の詳細は後述する。
The present invention is a method for producing the above-mentioned raw material for producing coke, and in the production of the precursor blended coal, by any one of pressure bonding, molding, granulation, adhesion or kneading, or some combination of these treatments. The low-grade coal is mixed with the high-flow coal or the high-fluidity material.
As described above, it was found that the high-fluidity material supplementing function is effective not by simply blending the high-fluidity material with the low-grade coal but by the close blending with the low-grade coal. It is possible to prevent the blending effect of the high fluidity material from being reduced by bringing the blended high fluidity material close to the raw coal having the same high fluidity. Specifically, it is necessary to apply a process for fixing a high-fluidity material on the surface of low-grade coal with low fluidity, and as a process of proximity blending, a crimping process, a molding process, a granulation process, an adhesion process or A kneading process is mentioned. Such treatment makes it possible to accurately compensate for the difference from the desired MF caused by the blending of an excessive amount of low-grade coal. Details of each process will be described later.

本発明は、上記コークス製造用原料の作製方法であって、予め前記原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求め、
実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合される1次配合炭の最高流動度を推定するとともに、
予め前記原料炭よりも高い流動性を有する高流動度炭または高流動度材料の最高流動度を求め、
前記1次配合炭の最高流動度と所望のコークス製造用原料の最高流動度との差異を補填するように、前記高流動度炭または高流動度材料の配合率zを、下式1に基づき設定することを特徴とする。
z=f(Y2,Y1,Yo,T,α) …式1
ここで、Y2:所望の2次配合炭の最高流動度
Y1:1次配合炭の最高流動度
Yo:低品位炭の最高流動度
T :高流動度炭または高流動度材料の最高流動度
α :低品位炭の流動度低下勾配
原料炭に過剰量の低品位炭を配合してコークス製造用原料を作製する場合において、主成分となる原料炭と低品位炭から構成される1次配合炭のMFが重要となる。このとき、従前のように配合処理ごとに1次配合炭の流動度を測定する方法では、効率的に所望のMFを有する配合炭を確保することが難しい。本発明は、原料炭に低品位炭が配合された1次配合炭のMFを推定する方法を検証した結果、以下のような特性があるとの知見から、1次配合炭のMFの推定を行うことができることを見出した。
(a)低品位炭の配合に伴う流動度低下勾配は、原料炭(基準炭)の炭種や特性に依存しない。
(b)低品位炭が配合された流動度低下勾配は、低品位炭の銘柄固有で、配合の都度求める必要はない。
具体的には、使用される1または2以上の低品位炭を、基準炭(予めMFを求めておく)と配合し、予め各低品位炭に係る流動度低下勾配を求めておく。実際に使用される原料炭のMFと配合される低品位炭の配合比率と流動度低下勾配から、簡便な手法によって、効率的に1次配合炭のMFを推定することが可能となった。このとき、2次配合炭,1次配合炭,低品位炭,高流動度材のMFあるいは低品位炭の流動度低下勾配を指標とする関数を基に、高流動度材の配合率zを上式1のように設定することによって、過剰量の低品位炭の配合によって生じた所望のコークス製造用原料のMFとの差異を、精度よく補填することが可能となり、適正範囲の流動度を有し、粘結性あるいは流動性に優れたコークス製造用原料を作製することが可能となった。なお、配合率zの設定につき、上式1における具体的な関数は後述する。
The present invention is a method for producing the above-mentioned raw material for coke production, wherein one or two or more types of the raw coal are selected in advance as the reference coal, the range of the appropriate fluidity of the reference coal, and the reference coal A flowability characteristic curve with respect to temperature, and a maximum fluidity of the reference coal based on the flowability characteristic curve are obtained. Further, for one or two or more low-grade coals to be blended, the standard for the blending ratio of the low-grade coals Find the flow rate decline gradient for the low-grade coal based on the change in the maximum fluidity of the coal,
Based on the maximum fluidity of the raw coal actually used and the flow rate decrease gradient of the low-grade coal actually blended, the blending ratio of the low-grade coal blended with the raw coal Estimating the maximum fluidity of the primary coal blended with the low-grade coal in the coal,
Find the maximum fluidity of high-flow coal or high-fluidity material having a higher fluidity than the raw coal in advance,
In order to compensate for the difference between the maximum fluidity of the primary blended coal and the maximum fluidity of the desired coke production raw material, the blending ratio z of the high fluidity coal or the high fluidity material is based on the following formula 1. It is characterized by setting.
z = f (Y2, Y1, Yo, T, α) Equation 1
Where Y2: Maximum fluidity of desired secondary coal blend Y1: Maximum fluidity of primary coal blend Yo: Maximum fluidity of low grade coal T: Maximum fluidity of high fluidity coal or high fluidity material α : Primary blended coal composed of raw coal and low-grade coal as main components when low-grade coal is mixed with an excess amount of low-grade coal into low-grade coal MF is important. At this time, it is difficult to ensure a blended coal having a desired MF efficiently by the method of measuring the fluidity of the primary blended coal for each blending treatment as before. As a result of verifying the method of estimating the MF of the primary coal blend in which the low-grade coal is blended with the raw coal, the present invention estimates the MF of the primary coal blend from the knowledge that the following characteristics exist. Found that can be done.
(A) The fluidity decrease gradient accompanying the blending of low-grade coal does not depend on the coal type or characteristics of the raw coal (reference coal).
(B) The flow rate decrease gradient in which the low-grade coal is blended is unique to the brand of the low-grade coal and does not need to be obtained every time the blending is performed.
Specifically, one or two or more low-grade coals to be used are blended with reference coal (MF is obtained in advance), and a fluidity decrease gradient related to each low-grade coal is obtained in advance. It became possible to estimate the MF of the primary blended coal efficiently by a simple method from the blending ratio of the low-grade coal blended with the MF of the raw coal actually used and the flow rate decrease gradient. At this time, the blending rate z of the high fluidity material is determined based on the function using the secondary blended coal, the primary blended coal, the low grade coal, the MF of the high fluidity material or the flow rate decrease gradient of the low grade coal as an index. By setting as in the above formula 1, it becomes possible to accurately compensate for the difference from the MF of the desired raw material for coke production caused by the blending of an excessive amount of low-grade coal, and the fluidity in the appropriate range It has become possible to produce a coke production raw material having excellent caking or fluidity. A specific function in the above formula 1 will be described later for setting the blending ratio z.

本発明は、上記コークス製造用原料の作製方法であって、配合される前記低品位炭の酸素含有率に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の酸素含有率によって補正することを特徴とする。
上記検証の結果において、1次配合炭のMFは、配合される低品位炭の銘柄に依存することの知見とともに、配合された低品位炭の酸素合有量が多いほど流動性が低くなる傾向を示すとの知見を得た。こうした傾向は、低品位炭の流動度低下勾配に影響を与えることから、配合される低品位炭の酸素含有率(一般に販売される石炭の特性表に明示される)を基に補正することによって、より正確に1次配合炭のMFを推定することが可能となった。
The present invention is a method for producing the above-mentioned raw material for producing coke, wherein the fluidity reduction gradient according to the low-grade coal to be used is obtained by determining the fluctuation of the fluidity-decrease gradient with respect to the oxygen content of the low-grade coal to be blended. Is corrected by the oxygen content of the low-grade coal.
As a result of the above verification, the MF of the primary coal blend is dependent on the brand of the low-grade coal to be blended, and the fluidity tends to decrease as the oxygen content of the blended low-grade coal increases. We obtained the knowledge that Since these tendencies affect the flow rate gradient of low-grade coal, they can be corrected based on the oxygen content of the low-grade coal blended (shown in the characteristic chart of coal sold in general). It became possible to estimate the MF of the primary blended coal more accurately.

本発明は、上記コークス製造用原料の作製方法であって、配合される前記低品位炭の揮発分に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の揮発分によって補正することを特徴とする。
上記検証の結果においては、1次配合炭のMFは、配合された低品位炭の酸素合有量以外に、低品位炭の揮発分が多いほど流動性が低くなる傾向を示すとの知見を得た。こうした傾向は、酸素合有量同様、低品位炭の流動度低下勾配に影響を与えることから、配合される低品位炭の揮発分(同様に石炭の特性表に明示される)を基に補正することによって、より正確に1次配合炭のMFを推定することが可能となった。
The present invention is a method for producing the above-mentioned raw material for producing coke, wherein the flow rate decrease gradient related to the low-grade coal to be used is determined by determining the fluctuation of the flow rate decrease gradient with respect to the volatile content of the low-grade coal to be blended. The correction is made according to the volatile content of the low-grade coal.
According to the results of the above verification, the MF of the primary coal blend shows that the fluidity tends to decrease as the volatile content of the low-grade coal increases in addition to the oxygen content of the blended low-grade coal. Obtained. These tendencies affect the flow rate gradient of low-grade coal as well as the oxygen content, and are therefore corrected based on the volatile content of the low-grade coal blended (also clearly indicated in the coal characteristics table). This makes it possible to estimate the MF of the primary coal blend more accurately.

また、本発明は、上記コークス製造用原料の作製方法により作製され、原料炭に低品位炭が配合されたコークス製造用原料であって、前記低品位炭の配合比率0.1〜20%,前記2次配合炭の最高流動度の常用対数値2〜3を有することを特徴とする。
上記作製方法によって作製された2次配合炭は、優れた粘結性あるいは流動性を有している。こうした特性は、コークス製造用原料としての適性を確保するに十分であり、こうして作製された2次配合炭をコークス製造用原料として用いることが有用である。
Further, the present invention is a coke production raw material prepared by the above-described method for producing a coke production raw material, wherein low grade coal is blended with raw coal, the blending ratio of the low grade coal being 0.1 to 20%, It has a common logarithmic value 2-3 of the maximum fluidity of the secondary coal blend.
The secondary coal blend produced by the above production method has excellent caking properties or fluidity. Such characteristics are sufficient to ensure suitability as a coke production raw material, and it is useful to use the secondary blended coal thus produced as a coke production raw material.

冶金用コークスの製造工程を示す説明図Explanatory drawing showing the manufacturing process of metallurgical coke 原料炭の温度に対する流動度特性曲線を例示する概略図Schematic illustrating the flow characteristic curve with temperature of coking coal 本発明に係るコークス製造用原料の作製プロセスを例示する概略図Schematic illustrating the production process of a raw material for coke production according to the present invention 本発明に係るコークス製造用原料の作製プロセスの概要を例示する説明図Explanatory drawing illustrating the outline of the production process of the raw material for coke production according to the present invention 低品位炭の配合比率に対応した配合炭の流動度の変動を例示する概略図Schematic illustrating the variation in fluidity of blended coal corresponding to the blending ratio of low-grade coal 原料炭の炭種,流動度に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the fluctuation of the flow rate decrease gradient of the blended coal corresponding to the coal type and fluidity of the raw coal 低品位炭の酸素含有率に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the variation in flow rate decline gradient of blended coal corresponding to the oxygen content of low grade coal 低品位炭の酸素含有率に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the variation in flow rate decline gradient of blended coal corresponding to the oxygen content of low grade coal 低品位炭の揮発分に対応した配合炭の流動度低下勾配の変動を例示する概略図Schematic illustrating the fluctuation of the flow rate decrease gradient of coal blends corresponding to the volatile content of low grade coal

本発明に係るコークス製造用原料の作製方法(以下「本作製方法」という)は、原料炭に低品位炭を配合してコークス製造用原料を作製する場合に、
該原料炭に該低品位炭が配合される1次配合炭の特性と所望のコークス製造用原料の特性との差異を補填するために配合される高流動度炭または高流動度材料(高流動度材)を、予め前記低品位炭に近接させて配合して前駆配合炭を作製し、該前駆配合炭を前記原料炭に配合して2次配合炭を作製するとともに、
原料炭,低品位炭,高流動度材,および前駆配合炭の配合比率を、それぞれの特性の指標である最高流動度を基に設定することを特徴とする。
The method for producing a coke production raw material according to the present invention (hereinafter referred to as “the present production method”) is a method for producing a coke production raw material by blending a low-grade coal with a raw coal.
High fluidity coal or high fluidity material (high fluidity) blended to compensate for the difference between the characteristics of the primary blended coal in which the low-grade coal is blended with the raw coal and the characteristics of the desired coke production raw material Premixed in advance in the vicinity of the low-grade coal to produce a precursor blended coal, blending the precursor blended coal with the raw coal to produce a secondary blended coal,
The blending ratio of the raw coal, the low-grade coal, the high fluidity material, and the precursor blended coal is set based on the maximum fluidity that is an index of each characteristic.

つまり、本作製方法は、作製プロセスにおける原料炭,低品位炭および高流動度材の配合条件を、各素材,1次配合炭,2次配合炭および前駆配合炭のMFを指標として、個々の特性を実測することなく設定するとともに、予め低品位炭に高流動度材を近接配合させて前駆配合炭を作製することによって、粘結性あるいは流動性に優れたコークス製造用原料(2次配合炭)を作製することを特徴とする。原料炭,低品位炭,高流動度材を単純配合ではなく、予め低品位炭に高流動度材を近接配合させた後に2次配合炭を作製することによって、コークス強度も一層高い2次配合炭を作製することができる。これは、後述する種々の検証からの知見に加え、次の観点からも妥当性を有するものである。
(i)既述のように、高品位の原料炭に高品位の石炭を配合した場合の配合炭のMFは、両者の加重平均に近くコークス強度も高いが、高品位の原料炭と低品位炭を配合した場合の配合炭のMFは、両者の加重平均よりも低下しコークス強度も低下する。
(ii)本作製方法における低品位炭に高流動度材を近接配合して得られた前駆配合炭は、見かけ上、高品位の石炭を形成している。
(iii)従って、高品位の原料炭に低品位炭を配合した場合の配合炭(1次配合炭)のMFは過度に低下し、コークス強度も低下する一方、高品位の原料炭に(見かけ上高品位の)前駆配合炭を配合した場合の配合炭(2次配合炭)のMFは過度の低下を生じず、高いコークス強度を期待することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
In other words, this production method is based on the blending conditions of raw coal, low-grade coal, and high fluidity material in the production process, using the MF of each material, primary blended coal, secondary blended coal and precursor blended coal as an index. The raw material for coke production with excellent caking or fluidity (secondary blending) is prepared by setting the characteristics without actually measuring, and preparing the precursor blended coal by preliminarily blending the low-grade coal with the high fluidity material. Charcoal). Coking coal, low-grade coal, and high-fluidity material are not simply blended, but secondary blending with higher coke strength is made by pre-blending high-fluidity material in close proximity to low-grade coal in advance. Charcoal can be made. This has validity from the following viewpoints in addition to the findings from various verifications described later.
(I) As mentioned above, MF of blended coal when blending high-grade coal with high-grade coking coal is close to the weighted average of both, and coke strength is high, but high-grade coking coal and low-grade coal When coal is blended, the MF of the blended coal is lower than the weighted average of both, and the coke strength is also lowered.
(Ii) Preliminary blended coal obtained by blending a high-fluidity material close to the low-grade coal in this production method apparently forms high-grade coal.
(Iii) Therefore, MF of blended coal (primary blended coal) when blending low-grade coal with high-grade coking coal is excessively lowered and coke strength is reduced, while The MF of the blended coal (secondary blended coal) in the case of blending a high-quality precursor blended coal does not cause an excessive decrease, and a high coke strength can be expected.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<コークスの製造工程>
冶金用コークスの製造工程を、図1により簡単に説明する。岸壁に接岸した石炭運搬船1から石炭が陸上げされ、貯炭場2において、石炭の性状(銘柄)ごとに貯蔵される。貯炭場2に貯蔵されている石炭(原料炭および低品位炭を含む)は、銘柄ごとに必要な分量がリクレーマーで払い出され、ベルトコンベアにより配合槽3へと送り出される。配合槽3は複数槽を有しており、1つの配合槽に1つの銘柄の石炭が貯蔵される。石炭は、その性状によりコストの高低があり、品質のよいコークスを安価なコストで製造するために、複数の配合槽から性状の異なる石炭を最適な配合比率で切り出すとともに、処理槽8において投入された低品位炭に対して適量の高流動度材7を近接配合し、さらに原料炭と配合することによって、コークス製造用原料(2次配合炭)としての配合が完了する。このとき、近接配合された前駆配合炭は、粉砕処理しないことが好ましい。前駆配合炭が細分化,分散され、流動度の低下を補填する機能等近接配合の効果が低下する可能性がある。コークス製造には、種々の種類(銘柄)の石炭を海外から輸入し、銘柄ごとに貯炭場2に貯蔵する。これは、各炭鉱で採掘される石炭は、炭鉱ごとに性状が異なり、性状が異なれば製造されるコークスの性状も異なるため、複数の石炭および適量の高流動度材を配合することで、最も安価なコストでユーザーから要求されるコークス性状(品質)を満足することが必要となるためである。
<Coke production process>
The manufacturing process of metallurgical coke will be briefly described with reference to FIG. Coal is landed from the coal carrier 1 berthed at the quay and stored in the coal storage 2 for each property (brand) of the coal. Coal (including coking coal and low-grade coal) stored in the coal storage 2 is dispensed by a reclaimer for each brand and sent to the blending tank 3 by a belt conveyor. The blending tank 3 has a plurality of tanks, and one brand of coal is stored in one blending tank. Coal has high and low costs due to its properties, and in order to produce high quality coke at a low cost, coal with different properties is cut out from a plurality of blending tanks at an optimum blending ratio, and is introduced into the processing tank 8. By blending an appropriate amount of the high fluidity material 7 in close proximity to the low-grade coal and further blending with the raw coal, blending as a raw material for coke production (secondary blended coal) is completed. At this time, it is preferable not to pulverize the precursor blended charcoal blended in close proximity. There is a possibility that the effect of proximity blending such as the function of compensating for the decrease in fluidity may be reduced by fragmenting and dispersing the precursor blended coal. For coke production, various kinds (brands) of coal are imported from overseas and stored in the coal storage 2 for each brand. This is because coal mined in each coal mine has different properties depending on the coal mine, and the properties of coke produced differ depending on the properties, so by combining multiple coals and appropriate amount of high fluidity material, This is because it is necessary to satisfy the coke properties (quality) required by the user at a low cost.

粉砕設備4には、公知の粉砕機が設けられており、配合された石炭(2次配合炭)の粉砕処理を行う。粉砕設備4において粉砕された石炭は、ベルトコンベア等によりコークス炉6へと移送される。移送された石炭は、コールビン(石炭塔)6aに一旦貯蔵された後、装入車6bによりコークス炉6に装入され、乾留(蒸し焼き)される。乾留された石炭はコークスとなり、押出機6cによりコークス炉外に押し出される。得られた製品コークスは、最終的に高炉へと送り込まれる。   The pulverization equipment 4 is provided with a known pulverizer, and pulverizes the blended coal (secondary blended coal). The coal pulverized in the pulverization facility 4 is transferred to the coke oven 6 by a belt conveyor or the like. The transferred coal is temporarily stored in a coal bin (coal tower) 6a, and then charged into the coke oven 6 by a charging vehicle 6b and dry-distilled (steamed). The dry-distilled coal becomes coke and is pushed out of the coke oven by the extruder 6c. The obtained product coke is finally fed into the blast furnace.

〔石炭の特性〕
通常石炭の品質は、物理的性質として粘結性あるいは流動性等によって、化学的性質として4つの工業分析値(水分,灰分,揮発分,固定炭素)等によって評価される。本作製方法においては、こうした特性のうち、特に流動性によってコークス製造用原料としての適正を評価した。また、石炭の強度(コークス強度)を、ドラム強度(DI15)および熱間強度(RSI)によって評価した。
[Characteristics of coal]
The quality of coal is usually evaluated by caking or fluidity as physical properties and by four industrial analysis values (water, ash, volatile, fixed carbon) as chemical properties. In this production method, among these characteristics, the suitability as a raw material for producing coke was evaluated based on the fluidity. The strength of the coal (coke strength) was evaluated by drum strength (DI 15 ) and hot strength (RSI).

(i)流動度の測定方法
石炭および高流動度材の流動度は、JIS−M8801で規格化されたギーセラープラストメータ測定法によって測定される。具体的には、図2(A)に例示するように、温度を指標として、評価対象となる石炭の軟化溶融状態下での流動度の変動を追跡して、流動度特性曲線(ギースラー流動度曲線)が求められ、その最大値である最高流動度(MF)をもって当該石炭の流動性が評価される。なお、実際の評価においては、一般に、MF値ではなく、その常用対数logMFとして対比される。ギーセラープラストメータ測定法は、測定対象である石炭あるいは高流動度材が、攪拌棒を備えたるつぼに装填され、金属浴(はんだ浴)中で、例えば昇温速度3.0±0.1℃/分で昇温される。概念的には温度上昇に伴い石炭あるいは高流動度材の軟化が始まり、これに伴って攪拌棒が回転し始める(流動性の現出)。そして、石炭あるいは高流動度材が固有の温度で最高回転数を示した後(MFに相当)、石炭あるいは高流動度材の再固化が始まり、次第に回転数は低下して所定の温度で攪拌棒の回転が完全に停止する。こうした流動度特性曲線は、石炭あるいは高流動度材の種類で異なる。
(I) Measuring method of fluidity The fluidity of coal and a high fluidity material is measured by the Gieseler plastometer measuring method standardized by JIS-M8801. Specifically, as illustrated in FIG. 2 (A), by using the temperature as an index, the fluctuation of the fluidity in the softened and melted state of the coal to be evaluated is traced, and the fluidity characteristic curve (Giesler fluidity) Curve) and the fluidity of the coal is evaluated with the maximum fluidity (MF) which is the maximum value. Note that, in actual evaluation, it is generally compared not as an MF value but as a common logarithm log MF. In the Gisela plastometer measurement method, coal or high fluidity material to be measured is loaded into a crucible equipped with a stirring rod, and in a metal bath (solder bath), for example, a rate of temperature increase of 3.0 ± 0.1. The temperature is raised at a rate of ° C / min. Conceptually, the softening of coal or high-fluidity material begins as the temperature rises, and the stirrer begins to rotate along with this (appearance of fluidity). Then, after the coal or high fluidity material exhibits the maximum rotation speed at a specific temperature (corresponding to MF), the resolidification of the coal or high fluidity material starts, and the rotation speed gradually decreases and stirring is performed at a predetermined temperature. The rod rotation stops completely. Such fluidity characteristic curves differ depending on the type of coal or high fluidity material.

(ii)配合炭の特性
図2(B)は、原料炭に低品位炭を配合したときの、原料炭,低品位炭,配合炭(1次配合炭)のそれぞれの流動度曲線を示す。原料炭の最高流動度MFoが、低品位炭(MF=0とする)の配合により作製された1次配合炭の最高流動度MFmに変化(低下)した状態を示す。このとき、このMFmを常用対数に換算して得られたlogMFm値と、単純に原料炭のlogMFoと低品位炭のlogMF(=0)を加重平均して推定するlogMFm値と対比した場合、両者に大きなズレが生じる場合があることが判った。と同時に、後述するようないくつかの知見から、1次配合炭のMFmを精度よく推定することが可能であることが判った。本作製方法は、こうした知見に基づく推定を利用することを特徴の1つとする。ここで、「logMF」は、最高流動度(MF)の常用対数値を示し、実際の評価において使用される。
(Ii) Characteristics of blended coal FIG. 2 (B) shows flow curves of raw coal, low-grade coal, and blended coal (primary blended coal) when blending low-grade coal with raw coal. The state where the maximum fluidity MFo of the raw coal is changed (decreased) to the maximum fluidity MFm of the primary coal blend produced by blending the low-grade coal (MF = 0) is shown. At this time, when comparing the log MFm value obtained by converting this MFm into a common logarithm, and the log MFm value estimated by weighted averaging of log MFo of raw coal and log MF (= 0) of low-grade coal, both It has been found that there may be large deviations in At the same time, it was found from several findings as described later that the MFm of the primary coal blend can be accurately estimated. One feature of this production method is to use estimation based on such knowledge. Here, “log MF” indicates a common logarithm of the maximum fluidity (MF), and is used in actual evaluation.

(iii)コークス強度の測定
原料炭あるいは作製された石炭を、小型試験炉(幅430mm、横380mm、350mm)に730kg/mで充填し、炉温1070℃で乾留し、中心温度が1030℃到達後に窒素雰囲気で冷却処理し、得られたコークスについて、以下の測定方法によりドラム強度(DI15)および熱間強度(RSI)を測定してコークス強度を評価した。
(iii−1)ドラム強度測定方法
上記処理により得られたコークスについて、JIS−K2151で規格化された落下強度試験法に準拠したシャッター試験を2回施した試料から25mm篩上のコークス塊を採取し、これらを用いてJIS−K2151に準拠したドラム強度指数(DI15)を測定した。
(iii−2)熱間強度測定方法
上記処理により得られたコークスを平均粒径19〜21mmに整粒し、この試料より19mm篩上から21mm篩以下のコークス塊200gを用い、1100℃で2時間CO(5L/min)と反応させる。反応後、反応残試料を、内径132mm、高さ700mmの筒状のI型ドラム試験機(長谷川製作所製)に入れ、20回転/分で30分間回転させた。その後、9.56mmの篩で篩い分け、篩上に残った試料重量を測定し、反応残試料に対する篩上の残存試料割合を熱間強度(RSI)とした。
(Iii) Measurement of coke strength Raw coal or produced coal is charged into a small test furnace (width 430 mm, width 380 mm, 350 mm) at 730 kg / m 3 , dry-distilled at a furnace temperature of 1070 ° C., and a center temperature of 1030 ° C. After reaching, the steel was cooled in a nitrogen atmosphere, and the resulting coke was evaluated for coke strength by measuring drum strength (DI 15 ) and hot strength (RSI) by the following measurement method.
(Iii-1) Drum strength measurement method About the coke obtained by the above process, a coke lump on a 25 mm sieve is collected from a sample subjected to a shutter test based on the drop strength test method standardized in JIS-K2151 twice. These were used to measure the drum strength index (DI 15 ) according to JIS-K2151.
(Iii-2) Hot strength measurement method Coke obtained by the above treatment is sized to an average particle size of 19 to 21 mm, and 200 g of a coke lump of 21 mm or less from a 19 mm sieve is used from this sample at 1100 ° C. React with time CO 2 (5 L / min). After the reaction, the reaction residual sample was placed in a cylindrical type I drum tester (manufactured by Hasegawa Seisakusho) having an inner diameter of 132 mm and a height of 700 mm, and rotated at 20 rpm for 30 minutes. Then, it sieved with the 9.56 mm sieve, the sample weight which remained on the sieve was measured, and the residual sample ratio on the sieve with respect to the reaction residual sample was made into hot strength (RSI).

<本発明に係るコークス製造用原料の作製方法>
本作製方法の基本的な作製プロセスの概要を、図3に例示する。コークス製造用原料として用いられる2次配合炭に対する所望の流動度(例えばlogMFが2〜3の範囲)およびコークス強度(例えばDI15が85.0以上,RSIが38.0以上)が設定された場合、以下の工程(1)〜(7)の作製プロセスによって、2次配合炭が作製される。
(1)原料炭,低品位炭および高流動度材の選定
(2)1次配合炭のMFの推定
(3)1次配合炭のMFと所望のMFとの差異の確認
(4)高流動度材の配合量の算出
(5)前駆配合炭の作製:低品位炭と高流動度材との配合
(6)2次配合炭の作製:前駆配合炭と原料炭との配合
(7)2次配合炭のコークス強度の確認:所望のコークス強度の範囲内の確認
<Method for producing raw material for coke production according to the present invention>
An outline of a basic manufacturing process of this manufacturing method is illustrated in FIG. Desired fluidity (for example, log MF ranges from 2 to 3) and coke strength (for example, DI 15 is 85.0 or more, RSI is 38.0 or more) for the secondary blended coal used as a raw material for coke production In this case, secondary blended charcoal is produced by the production processes of the following steps (1) to (7).
(1) Selection of coking coal, low grade coal and high fluidity material (2) Estimation of MF of primary coal blend (3) Confirmation of difference between MF of primary coal blend and desired MF (4) High fluidity (5) Preparation of precursor blended coal: blend of low-grade coal and high fluidity material (6) Preparation of secondary blended coal: blend of precursor blended coal and raw coal (7) 2 Confirmation of coke strength of next blended coal: Confirmation within the range of desired coke strength

種々の原料炭や低品位炭を用いた場合、特に過剰量の低品位炭を用いた場合であっても、1次配合炭のMFを精度高く推定できるとともに、既知のMFを有する高流動度材を用いて補填することによって、2次配合炭のMFを適正に調整することができる。また、低品位炭と高流動度材を近接配合した後に、原料炭と均一に配合することによって、加熱時に低品位炭と高流動度材が近接して軟化溶融し、その後再固化して前駆配合炭のコークス強度を上げることができる。つまり、原料炭に対して流動性が高い「低品位炭」が配合された状態を形成することができる。コークス製造用原料として使用される粒状あるいは粉状の石炭は、個々の各粒子あるいは粉状体として機能するものであり、各粒子あるいは粉状体が高品位な特性を有することによって、高品位炭と同等の機能を確保することが可能であると推定される。以下、上記工程(1)〜(7)の詳細を説明する。なお、工程(2)1次配合炭のMFの推定については、後述する別項において、詳述する。   When various raw coals and low-grade coals are used, even when an excessive amount of low-grade coals is used, the MF of the primary blended coal can be estimated with high accuracy and high fluidity with a known MF. By supplementing with the material, the MF of the secondary blended coal can be adjusted appropriately. In addition, the low-grade coal and the high-fluidity material are blended in close proximity, and then blended uniformly with the raw coal, so that the low-grade coal and the high-fluidity material are softened and melted close to each other during heating, and then re-solidified to form a precursor. Coke strength of blended coal can be increased. That is, it is possible to form a state where “low-grade coal” having high fluidity with respect to the raw coal is blended. Granular or pulverized coal used as a raw material for coke production functions as individual particles or powders, and each particle or powder has high-grade characteristics. It is estimated that it is possible to ensure the same function as Hereinafter, the details of the steps (1) to (7) will be described. In addition, about estimation of MF of a process (2) primary coal blend, it mentions in full detail in the separate item mentioned later.

(1)原料炭,低品位炭および高流動度材を選定するステップ
所望のコークス製造用原料(2次配合炭)を作製するために、原料炭,低品位炭および高流動度材が選定される。通常、既知あるいは実測のMFを有する原料炭および低品位炭が選定され、各々の配合量が設定される。例えば、所望の2次配合炭のMFがlogMF=3[logddpm]である場合、原料炭としてlogMF=2〜4[logddpm]の高流動度を有する粘結炭を選定し、低品位炭としてlogMF=0.1〜1[logddpm]の低流動度の褐炭を選定し、予め実際に配合される各石炭の流動度に係る情報を検証あるいは実測する。具体的には、上記図2(A)に示すような流動度特性曲線を入手あるいは実測する。また、同時に、選定された原料炭と低品位炭との配合性の優れた高流動度材としてタールピッチを選定し、その流動度に係る情報を検証あるいは実測する。なお、予め原料炭と低品位炭の流動度に係る情報が入手可能で、かかる情報を基に、任意の配合比率における1次配合炭のMFが推定可能な場合には、これらの配合比率を指標とし1次配合炭を構成する原料炭と低品位炭および配合比率を選定することができる。このとき、各々の石炭は1つの炭種に限定されず、複数の炭種が配合された石炭を用いることができる。
(1) Step of selecting coking coal, low grade coal and high fluidity material Coal coal, low grade coal and high fluidity material are selected to produce the desired raw material for coke production (secondary blended coal). The Normally, raw coal and low-grade coal having known or actually measured MF are selected, and the respective blending amounts are set. For example, when the desired MF of the secondary coal blend is logMF = 3 [logddpm], caking coal having a high fluidity of logMF = 2 to 4 [logddpm] is selected as the raw coal, and logMF is selected as the low-grade coal. = 0.1-1 [logddpm] low flow rate lignite is selected, and information on the flow rate of each coal actually blended in advance is verified or measured. Specifically, a fluidity characteristic curve as shown in FIG. 2A is obtained or measured. At the same time, tar pitch is selected as a high-fluidity material excellent in blendability of the selected raw coal and low-grade coal, and information relating to the fluidity is verified or measured. In addition, when the information regarding the fluidity of coking coal and low-grade coal is available in advance and the MF of the primary blended coal at an arbitrary blending ratio can be estimated based on such information, these blending ratios are As an index, raw coal, low-grade coal, and blending ratio constituting the primary blended coal can be selected. At this time, each coal is not limited to one coal type, and coal in which a plurality of coal types are blended can be used.

(2)1次配合炭のMFを推定するステップ
上記(1)で得られた原料炭と低品位炭の流動度特性曲線に基づき、原料炭と低品位炭ついての図2(A)に示すような最高流動度(MF)を設定する。また、選定された原料炭と同種あるいは異種の類似した流動度を有する基準炭を設定し、該基準炭の流動度特性曲線を入手あるいは実測する。原料炭,低品位炭および基準炭のMFを基に、複数の配合比率における1次配合炭のMFを推定する。推定方法の詳細は、後述する。
(2) Step of estimating the MF of the primary blended coal Based on the flow characteristics curve of the raw coal and the low-grade coal obtained in the above (1), the raw coal and the low-grade coal are shown in FIG. Such maximum fluidity (MF) is set. Further, a reference coal having the same or different fluidity as that of the selected raw coal is set, and a fluidity characteristic curve of the reference coal is obtained or measured. Based on the MF of the raw coal, the low-grade coal and the reference coal, the MF of the primary coal blend at a plurality of blend ratios is estimated. Details of the estimation method will be described later.

(3)1次配合炭のMFと所望のMFとの差異を確認するステップ
推定された1次配合炭のMFと所望の(2次配合炭の)MFとの差異を確認する。つまり、上記(2)で推定された1次配合炭のMFによって、原料炭への過剰量の低品位炭の配合によって生じた所望のMFとの差異を確認させ、補填に必要な高流動度材の配合量を確定させる。
(3) The step of confirming the difference between the MF of the primary blended coal and the desired MF The difference between the estimated MF of the primary blended coal and the desired (secondary blended) MF is confirmed. In other words, the MF of the primary coal blend estimated in (2) above confirms the difference from the desired MF produced by blending an excessive amount of low-grade coal with the raw coal, and has a high fluidity necessary for compensation. Determine the amount of ingredients.

(4)高流動度材の配合量を算出するステップ
推定された1次配合炭のMFと所望のMFとの差異を補填すべく、高流動度材の配合量が算出される。1次配合炭への高流動度材の配合率zは、下式1のように、所望の2次配合炭の最高流動度(MFあるいはlogMF)を基に、1次配合炭の最高流動度(MFあるいはlogMF),配合される低品位炭の最高流動度(MFあるいはlogMF),高流動度材の最高流動度(MFあるいはlogMF),低品位炭の流動度低下勾配のいずれか,あるいはそのいくつかを指標として設定される。具体的には、後述に例示するような下式2−1や2−2に基づき設定することができる。
z=f(Y2,Y1,Yo,T) …式1
ここで、Y2:所望の2次配合炭の最高流動度
Y1:1次配合炭の最高流動度
Yo:低品位炭の最高流動度
T :高流動度炭または高流動度材料の最高流動度
α :低品位炭の流動度低下勾配
(4) Step of calculating the blending amount of the high fluidity material The blending amount of the high fluidity material is calculated in order to compensate for the difference between the estimated MF of the primary coal blend and the desired MF. The blending ratio z of the high fluidity material to the primary blended coal is the maximum fluidity of the primary blended coal based on the desired maximum fluidity (MF or log MF) of the secondary blended coal as shown in the following formula 1. (MF or log MF), the highest fluidity of the low-grade coal to be blended (MF or logMF), the highest fluidity of the high-fluidity material (MF or logMF), or the lowering of the fluidity of the low-grade coal, or Some are set as indicators. Specifically, it can be set based on the following expressions 2-1 and 2-2 as exemplified below.
z = f (Y2, Y1, Yo, T) Equation 1
Where Y2: Maximum fluidity of desired secondary coal blend Y1: Maximum fluidity of primary coal blend Yo: Maximum fluidity of low grade coal T: Maximum fluidity of high fluidity coal or high fluidity material α : Low-grade coal fluidity gradient

具体的には、配合率zは、例えば、所望の2次配合炭のMF(logMF)と1次配合炭のMF(logMF)および高流動度材のMF(logMF)を指標として、下式2−1に基づき設定することができる。
z=(Y2−Y1)/T …式2−1
ここで、Y2:所望の2次配合炭のlogMF
Y1:1次配合炭のlogMF
T :高流動度炭または高流動度材料のlogMF
過剰量の低品位炭の配合によって生じた所望のMFとの差異を、高流動度材を適量配合することによって精度よく補填することが可能となり、適正範囲の流動度を有する2次配合炭を作製することできる。
Specifically, the blending ratio z is expressed, for example, by using MF (log MF) of the desired secondary blended coal, MF (log MF) of the primary blended coal, and MF (log MF) of the high fluidity material as indexes. -1 can be set.
z = (Y2-Y1) / T ... Formula 2-1.
Where Y2: logMF of desired secondary coal blend
Y1: log MF of primary coal blend
T: log MF of high flow charcoal or high flow material
It becomes possible to accurately compensate for the difference from the desired MF generated by blending an excessive amount of low-grade coal by blending an appropriate amount of a high fluidity material, and a secondary blended coal having an appropriate range of fluidity. Can be produced.

また、配合率zは、例えば、低品位炭の流動度低下勾配(△logMF)と低品位炭のMF(logMF)よび高流動度材のMF(logMF)を指標として、下式2−2に基づき設定することができる。
z=α×Yo/T …式2−2
ここで、α :低品位炭の流動度低下勾配(△logMF)
Yo:低品位炭のlogMF
T :高流動度炭または高流動度材料のlogMF
低品位炭の配合によって生じた原料炭のMFとの差異を、低品位炭の特性から推定された適量の高流動度材を配合することによって精度よく補填することが可能となり、適正範囲の流動度を有する原料炭と同等の品位および強度を有する2次配合炭を作製することできる。ここで、「△logMF」は、最高流動度(MF)の常用対数値logMFの勾配(流動度低下勾配)を示し、実際の評価において使用される。
In addition, the blending ratio z is expressed by the following equation 2-2 using, for example, the low-grade coal fluidity decrease gradient (ΔlogMF), the low-grade coal MF (logMF), and the high-fluidity material MF (logMF). Can be set based on.
z = α × Yo / T (Formula 2-2)
Here, α: Flow rate decreasing gradient of low-grade coal (ΔlogMF)
Yo: low-grade coal logMF
T: log MF of high flow charcoal or high flow material
It is possible to accurately compensate for the difference from the MF of raw coal generated by blending low-grade coal by blending an appropriate amount of high-fluidity material estimated from the characteristics of low-grade coal, and flow in an appropriate range A secondary blended coal having the same grade and strength as the raw coal having a high degree can be produced. Here, “Δlog MF” indicates a slope of the common logarithm log MF (fluidity lowering slope) of the maximum fluidity (MF), and is used in the actual evaluation.

(5)前駆配合炭を作製するステップ
上記(1)で選定された低品位炭と高流動度材を、高流動度材が上記(4)で算出された配合率zとなるように配合し、前駆配合炭を作製する。具体的には、1次配合炭を構成する原料炭と低品位炭の配合比率x:y(x+y+z=1)から、低品位炭と高流動度材の配合比率y:zとなるように配合する。原料炭に低品位炭が均一に配合された1次配合炭に対して高流動度炭を均一に配合して2次配合炭を作製する単純配合ではなく、低品位炭に高流動度材を近接配合して前駆配合炭を作製した後に、該前駆配合炭を原料炭と均一に配合するによって、原料炭への低品位炭の配合に伴う流動度の低下を補填することができるとともに、コークス強度が一層高い2次配合炭を作製することができる。
(5) Step of preparing the precursor blended coal The low grade coal and the high fluidity material selected in the above (1) are blended so that the high fluidity material has the blending ratio z calculated in the above (4). A precursor blended charcoal is produced. Specifically, the blending ratio x: y (x + y + z = 1) of the raw coal and the low grade coal constituting the primary blended coal is blended so that the blending ratio y: z of the low grade coal and the high fluidity material is obtained. To do. A high-flowability material is used for low-grade coal, rather than a simple blending method in which high-flowability coal is uniformly blended with primary-mixture coal in which low-grade coal is uniformly blended with raw coal. After preparing the precursor blended coal by blending close together, the precursor blended coal is blended uniformly with the raw coal to compensate for the decrease in fluidity due to the blending of the low-grade coal into the raw coal and coke. A secondary blended charcoal with higher strength can be produced.

ここで、近接配合の処理として、圧着(成型)処理,造粒処理,接着処理または混練処理が挙げられる。こうした処理によって、配合された高流動度材が原料炭に近接し高流動度材の配合効果を低減することを防止し、過剰量の低品位炭の配合によって生じた所望のMFとの差異を、精度よく補填することができる。各処理の具体的な内容は、以下の通りである。
(i)圧着(成型)処理とは、粉末や微粒子状の低品位炭と高流動度材の混合物を加圧条件で圧着し、所定の形状に成型する処理をいう。加温処理によって流動性を上げて含浸率を上げることができる。例えば、プレス圧力1〜30MPaという加圧条件を形成するために不活性ガスが用いられる。
(ii)造粒処理とは、粉末や微粒子状の低品位炭を、高流動度材をバインダーとして造粒し、粒状の前駆配合炭を作製することをいう。前駆配合炭の表面が高流動度材に被覆されることによって、高品位炭に似た流動性の高い特性を有することができる。
(iii)接着処理とは、粉末や微粒子状の低品位炭を、高流動度材をバインダーとして所定の大きさの前駆配合炭を作製することをいう。上記(ii)同様、前駆配合炭の表面が高流動度材に被覆されることによって、高品位炭に似た流動性の高い特性を有することができる。
(iv)混練処理とは、粉末や微粒子状の低品位炭を、高流動度材をバインダーとして練って成形することをいう。均一性の高い前駆配合炭が作製され、より高品位炭に似た流動性の高い特性を有することができる。
Here, examples of the process of proximity blending include a pressure bonding (molding) process, a granulation process, an adhesion process, and a kneading process. By such treatment, the blended high fluidity material is prevented from approaching the raw coal and reducing the blending effect of the high fluidity material, and the difference from the desired MF generated by blending an excessive amount of low grade coal is eliminated. Can be compensated with high accuracy. The specific contents of each process are as follows.
(I) The pressure bonding (molding) process refers to a process in which a mixture of powder or particulate low-grade coal and a high fluidity material is pressure-bonded under pressure and molded into a predetermined shape. The fluidity can be increased by heating treatment to increase the impregnation rate. For example, an inert gas is used to form a pressurizing condition of a press pressure of 1 to 30 MPa.
(Ii) The granulation treatment refers to granulating a powder or fine particulate low grade coal using a high fluidity material as a binder to produce a granular precursor blended coal. By covering the surface of the precursor blended coal with a high fluidity material, it can have high fluidity characteristics similar to high-grade coal.
(Iii) Adhesion treatment refers to preparing a precursor blended charcoal of a predetermined size using a low-grade coal in the form of powder or fine particles and a high fluidity material as a binder. Similarly to the above (ii), the surface of the precursor blended coal is coated with a high fluidity material, so that it can have high fluidity characteristics similar to high-grade coal.
(Iv) Kneading treatment refers to molding by molding powder or fine particle low-grade coal using a high fluidity material as a binder. Precursor coal with high uniformity can be produced and can have high fluidity characteristics similar to higher grade coal.

(6)2次配合炭を作製するステップ
前駆配合炭に、上記(1)で選定された原料炭を配合し、2次配合炭を作製する。このように、原料炭,低品位炭,高流動度材を、単純配合でなく、低品位炭と高流動度材を近接配合した後に、原料炭と均一に配合することによって、加熱時に低品位炭と高流動度材が近接して軟化溶融し、その後再固化して前駆配合炭のコークス強度を上げることができる。
(6) Step for producing secondary blended coal The raw coal selected in (1) above is blended with the precursor blended coal to produce a secondary blended coal. In this way, coking coal, low-grade coal, and high fluidity material are not simply blended, but low-grade coal and high-fluidity material are blended in close proximity, and then blended uniformly with coking coal, resulting in low grade during heating. The charcoal and the high fluidity material are softened and melted in close proximity, and then resolidified to increase the coke strength of the precursor blended coal.

(7)2次配合炭のコークス強度を確認するステップ
作製された2次配合炭(抜き取り)のコークス強度を実測し、所望のコークス強度の所定範囲(以下「許容範囲」ということがある)内であることを確認する。該許容範囲を超える場合には、作製された2次配合炭のうちから再度抜き取られた石炭を実測し,原料炭や低品位炭および高流動度材のMFのばらつき,上記(2)で推定された1次配合炭のMFとの相違等を検証し、各要素を補正して1次配合炭のMFを確定する。確定された1次配合炭のMFから、推定された2次配合炭のMFが、所望のMFの所定範囲(以下「許容範囲」ということがある)内になるように高流動度材の配合量を設定し、再度、上記(4)〜(6)の作製ステップを行う。なお、推定された2次配合炭のMFが、所望のMFの許容範囲を超えて異なる場合には、再度、上記(1)〜(6)の作製ステップを行う。所望のMFの許容範囲内にある2次配合炭を、コークス製造用原料として使用する。
(7) Step of confirming the coke strength of the secondary blended coal The coke strength of the prepared secondary blend (extracted) is measured, and within a predetermined range of the desired coke strength (hereinafter sometimes referred to as “allowable range”). Make sure that When the allowable range is exceeded, the coal extracted again from the prepared secondary coal is measured, and the MF variation of the raw coal, the low grade coal, and the high fluidity material is estimated in the above (2). The difference from the MF of the primary coal blend is verified, and each element is corrected to determine the MF of the primary coal blend. Formulation of high fluidity material so that the estimated MF of the secondary coal blend is within the predetermined range of the desired MF (hereinafter sometimes referred to as “acceptable range”) from the determined MF of the primary coal blend The amount is set, and the production steps (4) to (6) are performed again. In addition, when the estimated MF of the secondary coal blend is different beyond the allowable range of the desired MF, the production steps (1) to (6) are performed again. Secondary blended coal within the desired MF tolerance is used as a raw material for coke production.

〔本作製方法により作製されたコークス製造用原料〕
本作製方法によって作製された2次配合炭は、優れた粘結性あるいは流動性を有し、コークス製造用原料として用いられる。低品位炭が増配された1次配合炭のMFを正確に推定し、高流動度材によって所望の流動性を有する2次配合炭とすることによって、高価な高品位の石炭の消費量を低減し、余剰品として少量しか使用できなかった低品位炭の使用範囲を拡大し消費量の増大を図ることが可能となった。と同時に、予め低品位炭に対して高流動度材を近接配合させて前駆配合炭を作製した後に、該前駆配合炭を原料炭に配合して2次配合炭を作製することによって、所望のMFと高いコークス強度を有する粘結性あるいは流動性に優れたコークス製造用原料を作製することができる。
[Raw material for coke production produced by this production method]
The secondary blended coal produced by this production method has excellent caking properties or fluidity and is used as a raw material for coke production. Accurately estimate the MF of the primary blend with increased distribution of low-grade coal, and reduce the consumption of expensive high-grade coal by making it a secondary blend with the desired fluidity using a high fluidity material In addition, it has become possible to increase the consumption by expanding the range of use of low-grade coal that could only be used in small quantities as surplus. At the same time, a high-fluidity material is preliminarily blended with low-grade coal in advance to produce a precursor blended coal, and then the precursor blended coal is blended with raw coal to produce a secondary blended coal. A raw material for coke production having excellent cohesiveness or fluidity having high coke strength with MF can be produced.

具体的には、後述する実施例のように、通常のlogMF=2〜3あるいはこれに近い特性を有する原料炭に対して、配合する低品位炭の配合比率を0.1〜10%とすることによって、2次配合炭のMFについてlogMF=2〜3あるいはこれに近い特性を確保することができる。また、logMFが3を超える炭種あるいは配合炭を用いる場合には、低品位炭の配合比率を10〜20%とすることによって、2次配合炭のMFについてlogMF=2〜3あるいはこれに近い特性を確保することができる。こうした製造方法によって、従前使用が限定されていた低品位炭の消費量を増大させることができるとともに、コークス強度に優れ、かつ粘結性に優れたコークス製造用原料を安価に確保することが可能となった。   Specifically, as in the examples described later, the blending ratio of the low-grade coal to be blended is 0.1 to 10% with respect to the raw coal MF having normal log MF = 2 to 3 or characteristics close thereto. By this, logMF = 2-3 or the characteristic close | similar to this can be ensured about MF of secondary coal blend. In addition, when using a coal type or blended coal with a log MF exceeding 3, log MF = 2 to 3 or close to the MF of the secondary blended coal by setting the blending ratio of the low-grade coal to 10 to 20%. Characteristics can be secured. Such a production method can increase the consumption of low-grade coal, which has been limited to conventional use, and at the same time, can secure a low-cost coke production raw material with excellent coke strength and excellent caking properties. It became.

図4は、上記作製プロセスにおいて、2次配合炭の作製プロセスの配合処理における原料炭や作製された2次配合炭等のMFの変化を例示する。ここでは、原料炭が所望の(許容範囲内の)MFを有する石炭の場合を実線,これを超える流動性を有する石炭の場合を破線,およびそれ以下の流動性を有する石炭の場合を一点鎖線によって区分する。図中、原料炭,低品位炭および高流動度材の配合量を固定した場合において、
(A)低品位炭に対して高流動度材を近接配合させた前駆配合炭のMFの変化と、
(B)原料炭に前駆配合炭を配合させた2次配合炭のMFの変化
を太線によって示すように、予め低品位炭に高流動度材を近接配合させて、所望の(許容範囲内の)MFを有する前駆配合炭を作製することによって、所望のMFを有し、コークス強度も一層高い2次配合炭を作製することができる。一方、
(C)原料炭への低品位炭の配合による1次配合炭のMFの変化と、
(D)1次配合炭への高流動度材の配合による2次配合炭のMFの変化
を細線によって示すように、過剰の低品位炭の配合によって所望のMFを下回る1次配合炭が作製された場合には、固定された配合量では原料炭のMFによって2次配合炭の特性が影響される。しかしながら、本作製方法においては、上記作製プロセスの工程(1)〜(4)のように、原料炭のMFに応じて、高流動度材の配合量が算出され設定されることによって、図中d1やd2のように許容範囲内の2次配合炭を作製することができる。図中d2は、原料炭への低品位炭の配合による流動度低下分を補填する高流動度材の配合量を、logMF補填比率(高流動度材の配合比率/低品位炭の配合比率)1.0以上とした場合を示し、2次配合炭のMFの向上を図り、コークス強度を含むコークス品位を向上させることができる。
FIG. 4 illustrates the change in MF of the raw coal and the produced secondary blended coal in the blending process of the production process of the secondary blended coal in the above production process. Here, the solid line represents the case where the raw coal has MF having a desired (within tolerance) MF, the broken line represents the case of coal having fluidity exceeding this, and the alternate long and short dash line represents the case of coal having fluidity below that. Sort by. In the figure, when the blending amount of coking coal, low grade coal and high fluidity material is fixed,
(A) change in MF of a precursor blended coal in which a high fluidity material is blended close to a low-grade coal;
(B) A high fluidity material is preliminarily blended with a low-grade coal in advance so as to indicate a change in MF of the secondary blended coal obtained by blending the precursor blended coal with the raw coal, and a desired (within an allowable range). ) By producing a precursor blended coal having MF, a secondary blended coal having a desired MF and higher coke strength can be produced. on the other hand,
(C) Change in MF of primary blended coal by blending low-grade coal with raw coal,
(D) As shown by a thin line, the change in the MF of the secondary coal blend due to the blending of the high fluidity material into the primary coal blend is produced as a primary coal blend that is less than the desired MF by blending the excess low-grade coal. In such a case, the characteristics of the secondary coal blend are affected by the MF of the raw coal at the fixed blend amount. However, in this production method, as shown in steps (1) to (4) of the production process, the blending amount of the high fluidity material is calculated and set according to the MF of the raw coal, so that Secondary blended coal within an allowable range such as d1 and d2 can be produced. In the figure, d2 is the log MF supplementation ratio (the blending ratio of the high fluidity material / the blending ratio of the low-grade coal). The case where it is 1.0 or more is shown, and the MF of the secondary blended coal can be improved, and the coke quality including the coke strength can be improved.

〔本発明に係る1次配合炭のMFの推定方法〕
上記作製プロセスの工程(2)に係る1次配合炭のMFの推定方法(以下「本推定方法」という)は、原料炭の1または2以上の炭種を基準炭として選択し、予め該基準炭の特性と、配合される1または2以上の低品位炭に対する基準炭のMFの変化に基づく該低品位炭に係る流動度低下勾配を求めるとともに、実際に使用される前記原料炭のMFと、実際に配合される低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合された1次配合炭のMFを推定する。つまり、本推定方法は、次のような知見を基に、予め基準炭によって得られた後述する「本推定方法の手順」によって、簡便かつ効率的に1次配合炭のMFを高い精度で推定することができる。
(a)低品位炭の配合に伴う流動度低下勾配(以下「△logMF」ということがある)は、原料炭(基準炭)の炭種や特性への依存性が低い。つまり、異なる原料炭(基準炭)に対して、同一の低品位炭を配合させた場合の△logMFが、原料炭(基準炭)の炭種やMF等の特性に依存しない。従って、同一の低品位炭について、共通の推定値を設定することができる。
(b)低品位炭の△logMFは、低品位炭の銘柄固有である。つまり、同一原料炭(基準炭)に対して、異なる低品位炭を配合させた場合の△logMFは、配合される低品位炭の銘柄によって決定される。従って、異なる低品位炭を配合することによって、同一の原料炭(基準炭)について異なる推定値の設定することができる。
ここで、「logMF」は、最高流動度(MF)の常用対数値を示し、実際の評価において使用される。「△logMF」は、その勾配(流動度低下勾配)を示す。
以下、その知見を得た検証過程を詳述する。
[Method for estimating MF of primary coal blend according to the present invention]
The primary blended coal MF estimation method (hereinafter referred to as “the present estimation method”) according to step (2) of the production process selects one or more types of raw coal as reference coals, While determining the fluidity decreasing gradient of the low-grade coal based on the characteristics of the coal and the MF of the reference coal relative to one or more low-grade coal to be blended, and the MF of the raw coal actually used Based on the flow rate decrease gradient of the low-grade coal that is actually blended, the primary blended coal in which the low-grade coal is blended with the raw coal from the blending ratio of the low-grade coal blended with the raw coal Is estimated. In other words, the present estimation method estimates the MF of the primary coal blend with high accuracy simply and efficiently by the “procedure of the present estimation method” to be described later obtained in advance with reference coal based on the following knowledge. can do.
(A) The fluidity decrease gradient (hereinafter sometimes referred to as “Δlog MF”) accompanying the blending of low-grade coal is less dependent on the coal type and characteristics of the raw coal (reference coal). That is, Δlog MF when the same low-grade coal is blended with different raw coal (reference coal) does not depend on the characteristics of the raw coal (reference coal), such as the type of coal and MF. Therefore, a common estimated value can be set for the same low-grade coal.
(B) Δlog MF of low grade coal is unique to the brand of low grade coal. That is, Δlog MF when different low-grade coal is blended with the same raw coal (reference coal) is determined by the brand of the low-grade coal to be blended. Therefore, different estimated values can be set for the same raw coal (reference coal) by blending different low-grade coals.
Here, “log MF” indicates a common logarithm of the maximum fluidity (MF), and is used in actual evaluation. “Δlog MF” indicates the gradient (fluidity decreasing gradient).
Hereinafter, the verification process for obtaining the knowledge will be described in detail.

(i)本推定方法の手順
本推定方法は、基本的に、以下の5つのステップから構成される。
(i−1)予め準備された基準炭の流動度特性曲線(例えば図2(A)に例示する特性)を実測するステップ
(i−2)上記(1)で得られた流動度特性曲線に基づき、基準炭のMFを設定するステップ
(i−3)予め準備された低品位炭を基準炭に配合し、1次配合炭の流動度特性曲線からMFを実測するステップ
(i−4)実測された1次配合炭のMFから、各低品位炭についての△logMFを設定するステップ
(i−5)実際に使用される1次配合炭のMFを推定するステップ
実際に使用される原料炭のMFと、実際に配合される(予定の)低品位炭について設定された△logMFを用い、1次配合炭のMF(logMF)を推定する。低品位炭の配合に伴う1次配合炭の流動度は、一般式として、下式3によって表すことができる。
Y=S+α×X …式3
ここで、Yは1次配合炭のlogMF
Sは原料炭のlogMF
αは低品位炭の△logMF[1/%]
Xは低品位炭配合比率[%]
なお、予め1次配合炭のMF(logMF)の範囲が設定されている場合には、実際に配合される(予定の)低品位炭の配合比率を設定することによって、所望の1次配合炭のMF(logMF)を推定することができる。また、配合する予定の低品位炭では所望の1次配合炭のMF(logMF)の設定が難しい場合には、上記(4)で△logMFが設定された他の低品位炭のうちから、適正な△logMFが設定された低品位炭を選定し、1次配合炭のMF(logMF)を推定する。さらに、低品位炭の選定が難しい場合には、原料炭に使用されている粘結炭の一部を流動性の異なる粘結炭に振り替えて低品位炭配合時のlogMFを適正範囲に設定することも可能である。
(I) Procedure of this estimation method This estimation method basically includes the following five steps.
(I-1) Step of actually measuring a fluidity characteristic curve of reference coal prepared in advance (for example, the characteristic illustrated in FIG. 2A) (i-2) The flowability characteristic curve obtained in the above (1) Step (i-3) of setting the MF of the reference coal Based on the low-grade coal prepared in advance to the reference coal and measuring the MF from the flow characteristic curve of the primary coal (i-4) Step (i-5) Estimating MF of Primary Coal Coal that is actually used Step of setting Δlog MF for each low-grade coal from MF of Primary Coal Coal The MF of the primary blended coal (log MF) is estimated using MF and Δlog MF set for the low-grade coal that is actually blended (planned). The fluidity of the primary coal blend accompanying the blending of the low-grade coal can be expressed by the following formula 3 as a general formula.
Y = S + α × X Equation 3
Where Y is the log MF of the primary blended coal
S is logMF of coking coal
α is △ logMF [1 /%] of low-grade coal
X is low-grade coal blending ratio [%]
In addition, when the range of MF (log MF) of the primary blended coal is set in advance, the desired primary blended coal is set by setting the blending ratio of the low-grade coal that is actually blended (planned). The MF (log MF) of can be estimated. In addition, if it is difficult to set the desired primary blended coal MF (log MF) for the low-grade coal to be blended, the appropriate one of the other low-grade coals for which Δlog MF is set in (4) above. A low-grade coal with Δlog MF set is selected, and the MF (log MF) of the primary blended coal is estimated. Furthermore, when it is difficult to select low-grade coal, part of the caking coal used in the raw coal is transferred to caking coal with different fluidity, and the log MF at the time of blending the low-grade coal is set within an appropriate range. It is also possible.

(ii)原料炭,低品位炭および1次配合炭の特性の検証
(ii−1)検証に使用した石炭
本推定方法の検証に用いた原料炭(基準炭),低品位炭および1次配合炭の特性を、下表1に示す。以下、実施例を含む本推定方法の検証に用いた。
(Ii) Verification of characteristics of coking coal, low-grade coal and primary blended coal (ii-1) Coal used for verification Coking coal (reference coal), low-grade coal and primary blend used for verification of this estimation method The characteristics of charcoal are shown in Table 1 below. In the following, this estimation method including examples was used for verification.

Figure 0005833474
Figure 0005833474

(ii−2)原料炭(基準炭),低品位炭および1次配合炭の流動度の検証
上表1の原料炭(基準炭),低品位炭および1次配合炭を用いて、その流動度特性曲線を求め、原料炭(基準炭)および低品位炭のMFおよびlogMFを設定した。下表2に、原料炭Jまたは原料炭Kに、低品位炭Aまたは低品位炭Bを配合したときの流動度測定結果を例示するとともに、図6および図7に図示する。下表2( )内は低品位炭のlogMF=0として加重平均した値を示す。
(Ii-2) Verification of fluidity of coking coal (standard coal), low-grade coal, and primary blended coal Using the raw coal (standard coal), low-grade coal and primary blended coal in Table 1 above, the flow A degree characteristic curve was obtained, and MF and log MF of coking coal (reference coal) and low-grade coal were set. Table 2 below illustrates the flow rate measurement results when low grade coal A or low grade coal B is blended with raw coal J or raw coal K, and is illustrated in FIGS. 6 and 7. The values in () below show the weighted average value of log MF = 0 for low-grade coal.

Figure 0005833474
Figure 0005833474

上表2の測定結果を基に、低品位炭が配合された1次配合炭の△logMFを求める。図6および図7中、◆は、原料炭(基準炭)J,L,Kに低品位炭Aを1%または3%配合した時の1次配合炭のlogMFを示し、■は、原料炭(基準炭)L,Kに低品位炭Bを1%または3%配合した時の1次配合炭のlogMFを示す。図6および図7に例示するように、低品位炭の配合比率に対応した1次配合炭の流動度logMFを、炭種ごとおよび低品位炭に比較すると、上記の知見(a),(b)を定量的に検証することができる。
(a)図6および図7に示すように、異なる原料炭(基準炭)J,L,Kに対して、低品位炭Aを配合させた場合の△logMFが、原料炭(基準炭)の炭種やMF等の特性に依存しないといえる。また、MFが949[ddpm](logMF2.98),226[ddpm](logMF2.35)を有する異なる原料炭(基準炭)L,Kに対して、低品位炭Bを配合させた場合の△logMFが、それぞれ−0.130,−0.128であり、同様の結果が得られた。同一の低品位炭について、共通の推定値を設定することができる。
(b)図6に示すように、同一原料炭(基準炭)に対して、低品位炭Aを配合させた場合の△logMFが−0.099に対して、低品位炭Bを配合させた場合の△logMFが−0.128とあり、△logMFは、配合される低品位炭の銘柄によって決定される。異なる低品位炭を配合することによって、同一の原料炭(基準炭)について異なる推定値の設定することができる。
Based on the measurement results in Table 2 above, ΔlogMF of the primary blended coal blended with the low-grade coal is obtained. 6 and 7, ◆ indicates the log MF of the primary coal when 1% or 3% of the low-grade coal A is blended with the coking coal (reference coal) J, L, K, and ■ indicates the coking coal. (Reference coal) The log MF of the primary blended coal when 1% or 3% of the low-grade coal B is blended with L and K is shown. As illustrated in FIGS. 6 and 7, when the fluidity log MF of the primary coal blend corresponding to the blending ratio of the low-grade coal is compared with each coal type and the low-grade coal, the above findings (a) and (b ) Can be verified quantitatively.
(A) As shown in FIG. 6 and FIG. 7, ΔlogMF when low grade coal A is blended with different raw coals (reference coals) J, L, and K is the raw coal (reference coal). It can be said that it does not depend on characteristics such as charcoal type and MF. Further, Δ when low grade coal B is blended with different coking coals (reference coals) L and K having MF of 949 [ddpm] (log MF 2.98) and 226 [ddpm] (log MF 2.35). The log MF was -0.130 and -0.128, respectively, and similar results were obtained. A common estimate can be set for the same low-grade coal.
(B) As shown in FIG. 6, the low grade coal B was blended with respect to the same raw coal (reference coal) with respect to ΔlogMF of −0.099 when blended with the low grade coal A. ΔlogMF in the case is −0.128, and ΔlogMF is determined by the brand of the low-grade coal to be blended. By blending different low-grade coals, different estimated values can be set for the same raw coal (reference coal).

〔本発明に係る1次配合炭のMFの推定における補正要素の検証〕
上記のような方法によって、従前にない簡便な手法によって、効率的に1次配合炭のMFを推定することが可能となった。一方、1次配合炭のMFは、配合される低品位炭の銘柄に依存することの知見とともに、配合された低品位炭のその特性によって推定値と実測値とのズレが生じることがわかった。具体的には、下表3に示すような5種類の低品位炭A〜Eを原料炭(基準炭)に配合し、1次配合炭の△logMFを実証したところ、同表に示す推定値および実測値が得られた。
[Verification of correction factors in estimation of MF of primary coal blend according to the present invention]
By the method as described above, the MF of the primary blended coal can be efficiently estimated by an unprecedented simple method. On the other hand, it was found that the MF of the primary blended coal depends on the brand of the low-grade coal to be blended, and there is a difference between the estimated value and the actual measurement value due to the characteristics of the blended low-grade coal. . Specifically, when five types of low-grade coals A to E as shown in Table 3 below were blended with raw coal (reference coal) and ΔlogMF of the primary blended coal was verified, estimated values shown in the same table And the measured value was obtained.

Figure 0005833474
Figure 0005833474

〔低品位炭の酸素含有率による特性の補正〕
上表3に示す実証結果から、1次配合炭の流動性は、配合される低品位炭の銘柄に依存するとともに、低品位炭の酸素合有率が高いほど流動性が低くなる傾向を示すことが判る。具体的には、図8に例示するように、低品位炭の酸素合有量が多いほど、1次配合炭の流動性の推定プロセスの最終段階に近い低品位炭に係る△logMFの設定に影響を与えている。このとき、実際の補正曲線としては、図8に例示するように、特性線が所定の幅(図中0.046)を有する曲線が用いられる。下表4に、低品位炭の配合比率10〜30%時の中央値,上限値および下限値を例示する。炭種によって、異なる所定の幅が設定される。酸素合有率が異なる場合、各低品位炭は同一銘柄といえない場合があるためである。つまり、特定の低品位炭によっては、酸素合有率が異なることから、銘柄の相違に伴う△logMFの変動の要因の1つとなる可能性がある。
[Characteristic correction by oxygen content of low-grade coal]
From the verification results shown in Table 3 above, the fluidity of the primary blended coal depends on the brand of the low-grade coal to be blended, and the higher the oxygen content of the low-grade coal, the lower the fluidity. I understand that. Specifically, as illustrated in FIG. 8, as the oxygen content of the low-grade coal increases, the ΔlogMF for the low-grade coal that is closer to the final stage of the fluidity estimation process of the primary blend coal is set. It has an influence. At this time, as an actual correction curve, as illustrated in FIG. 8, a curve having a predetermined width (0.046 in the drawing) of the characteristic line is used. Table 4 below illustrates the median, upper limit, and lower limit when the blending ratio of low-grade coal is 10 to 30%. Different predetermined widths are set depending on the coal type. This is because the low grade coal may not be the same brand when the oxygen content is different. That is, depending on the specific low-grade coal, the oxygen content rate is different, which may be one of the factors of fluctuation of Δlog MF due to the difference in brands.

Figure 0005833474
Figure 0005833474

本推定方法は、図8に示す酸素含有率に対する△logMFの変動を求め、予め銘柄によって設定された低品位炭に係る△logMFを補正することによって、後述する実施例のように、より正確に1次配合炭のMFを推定することが可能となった。
具体的には、酸素含有率aの場合、下式4に基づき、△logMFを算出し、上式3に挿入し、補正される。
△logMF=−0.0061×a+0.0135 …式4
ここで、酸素合有率は、通常石炭の特性表に明示されることから、特に実測が要求されることはなく、補正に伴う煩雑さを招くことはない。また、上記のような工業分析値として石炭の品質表記がある場合には、下式5によって酸素含有率を算出することができる。
酸素含有率[%]=100−元素C,H,N,S[%] …式5
This estimation method obtains the fluctuation of Δlog MF with respect to the oxygen content shown in FIG. 8 and corrects Δlog MF related to low-grade coal set in advance by the brand, thereby more accurately as in the examples described later. It became possible to estimate the MF of the primary blended coal.
Specifically, in the case of the oxygen content rate a, ΔlogMF is calculated based on the following formula 4, and is inserted into the above formula 3 to be corrected.
ΔlogMF = −0.0061 × a + 0.0135 Formula 4
Here, since the oxygen content is normally specified in the characteristic table of coal, actual measurement is not particularly required, and there is no inconvenience associated with correction. Further, when there is a coal quality notation as the industrial analysis value as described above, the oxygen content can be calculated by the following formula 5.
Oxygen content [%] = 100-elements C, H, N, S [%] ... Formula 5

〔低品位炭の揮発分による特性の補正〕
揮発分は、既述のように石炭の品質を化学的に評価する上において重要な要素である。上表3に示す実証結果から、低品位炭の揮発分が多いほど1次配合炭の流動性が低くなる傾向を示すことが判る。本推定方法においても、こうした傾向は、低品位炭は配合された1次配合炭の△logMFに影響を与えることが判った。具体的には、図9に例示するように、低品位炭の揮発分が多いほど、1次配合炭の△logMFに影響を与えている。本推定方法は、図9に示す揮発分に対する△logMFの変動を求め、予め銘柄によって設定された低品位炭に係る△logMFを補正することによって、後述する実施例のように、より正確に1次配合炭のMFを推定することが可能となった。なお、配合される低品位炭の揮発分は、通常石炭の特性表に明示されることから、特に実測が要求されることはなく、補正に伴う煩雑さを招くことはない。
具体的には、図9において、揮発分b[%]の場合、下式6に基づき、△logMFを算出し、上式3に挿入し、補正される。
△logMF=−0.000313×b2+0.0216×b−0.413 …式6
[Characteristic correction due to volatile content of low-grade coal]
The volatile matter is an important factor in chemically evaluating the quality of coal as described above. From the verification results shown in Table 3 above, it can be seen that the greater the volatile content of the low-grade coal, the lower the fluidity of the primary blended coal. Also in this estimation method, it was found that this tendency affects the low-log coal of Δlog MF of the blended primary coal. Specifically, as illustrated in FIG. 9, the greater the volatile content of the low-grade coal, the more the ΔlogMF of the primary coal blend is affected. This estimation method obtains a change in Δlog MF with respect to the volatile content shown in FIG. 9 and corrects Δlog MF related to low-grade coal that is set in advance by the brand, thereby more accurately 1 It became possible to estimate the MF of the next blended coal. Note that the volatile content of the low-grade coal to be blended is normally specified in the characteristic table of the coal, so that no actual measurement is required, and there is no inconvenience associated with the correction.
Specifically, in FIG. 9, in the case of the volatile content b [%], ΔlogMF is calculated based on the following formula 6, inserted into the above formula 3, and corrected.
ΔlogMF = −0.000313 × b2 + 0.0216 × b−0.413 Equation 6

<実施例1>
本作製方法の特徴である近接配合に関し、その有効性および処理内容の相違による有効性の相違について、実証試験を行なった。試料炭として、予め細砕した低品位炭および高流動度材を所定重量比率で配合し、混合した試料を準備し、以下の通りの実施方法によって各処理を行った。
(i)圧着(成型)処理
円筒型成型器(BUEHLER製、SIMPLIMET−II)を用い、試料炭に対して、圧力約20〜30MPaで約10〜20分圧着処理を行った。見掛け密度約1.1〜1.5g/cmの成型物を得た。このとき、加熱しながら圧着処理すると、強固な成型物が得られた。また、加熱しながら圧着処理した場合、徐冷処理を行うことによって成型器からの脱着が容易となった。
(ii)造粒処理
佐藤式振動篩器(晃栄産業製、400−D)に試料炭を投入して、約10〜20分間振動処理して造粒品を作製した。また、別法として円筒型転動器(タナカテック製、RPB−3)に試料炭を充填し、回転速度約20〜30rpmで約1〜2時間転動処理して造粒品を作製した、
(iii)接着処理
V型ブレンダー(西村製作所製、NV−10)に試料炭を投入し回転速度約20〜30rpmで約10〜20分間混合処理し、約5%に調合したPVA水溶液を所定量添加して回転速度約20〜30rpmで10〜20分間混合処理したのち、乾燥機にて静置乾燥する。
(iv)混練処理
双腕式混練器(トーシン製、TK1−5M)に試料炭を投入し、ブレード回転約10〜20rpm,窒素注入量約2L/minで約250℃まで昇温し約20〜30分間混練後、冷却して混練品を得る。150℃以上に加熱すると、大気中の空気を取り込んで燃焼してしまうため、窒素雰囲気で処理を行い、流動性のよい混練物が得られた。
<Example 1>
With regard to proximity blending, which is a feature of this production method, a demonstration test was conducted on the difference in effectiveness due to the difference in effectiveness and processing content. As sample charcoal, preliminarily crushed low-grade charcoal and high fluidity material were blended at a predetermined weight ratio, a mixed sample was prepared, and each treatment was performed by the following implementation method.
(I) Crimping (molding) treatment Using a cylindrical molder (BUEHLER, SIMPLIMET-II), the sample charcoal was crimped at a pressure of about 20 to 30 MPa for about 10 to 20 minutes. A molded product having an apparent density of about 1.1 to 1.5 g / cm 3 was obtained. At this time, when a pressure-bonding treatment was performed while heating, a strong molded product was obtained. In addition, when the pressure-bonding process is performed while heating, the detachment from the molding machine is facilitated by performing the slow cooling process.
(Ii) Granulation treatment Sample charcoal was put into a Sato-type vibrating screen (400-D, manufactured by Sakae Sangyo Co., Ltd.) and subjected to vibration treatment for about 10 to 20 minutes to produce a granulated product. As another method, a cylindrical rolling device (manufactured by Tanaka Tech Co., Ltd., RPB-3) was filled with sample charcoal, and rolled for about 1-2 hours at a rotational speed of about 20-30 rpm to produce a granulated product.
(Iii) Adhesion treatment Sample charcoal was put into a V-type blender (Nishimura Seisakusho, NV-10), mixed at a rotation speed of about 20-30 rpm for about 10-20 minutes, and a predetermined amount of PVA aqueous solution prepared to about 5% was prepared. After adding and mixing for 10 to 20 minutes at a rotational speed of about 20 to 30 rpm, the mixture is left to dry in a dryer.
(Iv) Kneading treatment Sample charcoal is put into a double-arm kneader (manufactured by Toshin, TK1-5M), heated to about 250 ° C. with a blade rotation of about 10 to 20 rpm and a nitrogen injection amount of about 2 L / min, After kneading for 30 minutes, it is cooled to obtain a kneaded product. When heated to 150 ° C. or higher, air in the atmosphere is taken in and combusted, so that the treatment was performed in a nitrogen atmosphere, and a kneaded material having good fluidity was obtained.

〔実施例1−1〕
本作製方法の特徴である近接配合の有効性について、実証試験を行なった。
(i)実験条件
実測値logMF:2.1である原料炭Nに対して、ΔlogMF:−0.14[logddpm]である低品位炭Fを配合比率2.5〜5%の条件、および推定値logMF:13の高流動度材である粘結材Pを配合した2次原料炭を作製するに際し、低品位炭Fに対して粘結材Pを近接配合した場合としなかった場合における、logMFおよびコークス強度を推定あるいは実測して比較した。近接配合としては、窒素雰囲気下、250℃で30分間の混練処理を行った。
(ii)実験結果
下表5に示すように、低品位炭配合による流動度低下分を高流動度粘結材で補填することができるとともに、近接配合を行わなかった参考例1−1a,1−1bと比較して、混練処理を行った実施例1−1a,1−1bについて、高いコークス強度が得られることが判った。本作製方法の優れた機能が証明された。
[Example 1-1]
A demonstration test was conducted on the effectiveness of proximity blending, which is a feature of this production method.
(I) Experimental condition measured value log MF: 2.1 relative to raw coal N, Δlog MF: -0.14 [logddpm] low grade coal F The condition of blending ratio 2.5 to 5%, and estimation Log MF: logMF in the case where the caking material P is blended close to the low-grade coal F when the secondary raw material coal blended with the caking material P which is a high fluidity material having a value log MF: 13 And the coke strength was estimated or measured and compared. As the close blending, a kneading process was performed at 250 ° C. for 30 minutes in a nitrogen atmosphere.
(Ii) Experimental results As shown in Table 5 below, Reference Example 1-1a, 1 in which the decrease in fluidity due to the low-grade coal blending can be compensated with the high fluidity binder and the proximity blending was not performed. Compared to -1b, it was found that high coke strength was obtained for Examples 1-1a and 1-1b which were kneaded. The excellent function of this fabrication method was proved.

Figure 0005833474
Figure 0005833474

〔実施例1−2〕
次に、近接配合の処理内容の相違による有効性の相違について、実証試験を行なった。
(i)実験条件
実測値logMF:2.0である原料炭Naに対して、ΔlogMF:−0.10[logddpm]である低品位炭Fを配合比率2.5%の条件、および推定値logMF:13,6の高流動度材である粘結材P,Qを配合した2次原料炭を作製するに際し、低品位炭Fに対して粘結材P,Qを近接配合した場合としなかった場合における、logMFおよびコークス強度を推定あるいは実測して比較した。近接配合としては、次の3つの処理を行った。
(i−1)低品位炭Fと粘結材Pを、窒素雰囲気下、250℃で30分間の混練処理
(i−2)低品位炭Fと粘結材P,Qに対し、5%PVAを10%添加して混合し、振動篩上で10分間転動する造粒処理
(i−3)低品位炭Fと粘結材Pの混合物を、φ32円筒容器に入れ、29MPaで20分間圧着処理を行う成型処理
(ii)実験結果
下表6に示すように、近接配合を行わなかった参考例1−2a,1−2bと比較して、近接処理を行った実施例1−2a〜1−2dについて、高いコークス強度が得られるとともに、近接処理の効果は、圧着処理(成型処理)>混練処理>造粒処理の傾向となった。なお、実施例1−2dと参考例1−2bの差について、DIでは効果が見えないが、RSIで差があることがわかる。本作製方法の優れた機能が証明された。また、混練処理(上記〔実施例1−1)同様、造粒処理についても、logMF補填比率(高流動度材の配合比率/低品位炭の配合比率)が大きいほどコークス強度の向上が見られた。
[Example 1-2]
Next, a verification test was conducted on the difference in effectiveness due to the difference in the processing content of the proximity blending.
(I) Experimental condition measured value log MF: 2.0 relative to raw coal Na, Δlog MF: -0.10 [logddpm] low-grade coal F condition of 2.5% blending ratio, and estimated value log MF In the case of producing secondary raw coals containing caking materials P and Q, which are high fluidity materials of 13 and 6, it was not the case where caking materials P and Q were blended close to low-grade coal F. In some cases, log MF and coke strength were estimated or measured and compared. As the proximity blending, the following three treatments were performed.
(I-1) Kneading treatment of low-grade coal F and binder P for 30 minutes at 250 ° C. in a nitrogen atmosphere (i-2) 5% PVA with respect to low-grade coal F and binders P and Q (I-3) A mixture of low-grade coal F and caking additive P is placed in a φ32 cylindrical container and pressure-bonded at 29 MPa for 20 minutes. Molding process for processing (ii) Experimental results As shown in Table 6 below, Examples 1-2a to 1 in which proximity processing was performed in comparison with Reference Examples 1-2a and 1-2b in which proximity mixing was not performed With respect to -2d, high coke strength was obtained, and the effect of the proximity treatment was such that pressure treatment (molding treatment)> kneading treatment> granulation treatment. In addition, about the difference of Example 1-2d and Reference Example 1-2b, although an effect is not seen in DI, it turns out that there is a difference in RSI. The excellent function of this fabrication method was proved. In addition, as with the kneading process ([Example 1-1] above), also in the granulation process, the larger the log MF supplementation ratio (the blending ratio of the high fluidity material / the blending ratio of the low-grade coal), the more improved the coke strength. It was.

Figure 0005833474
Figure 0005833474

<実施例2>
以上の本推定方法の有効性について、以下の内容について実証試験を行なった。
〔実施例2−1〕原料炭のlogMFを高めに設定した場合の1次配合炭の流動度の推定
〔実施例2−2〕原料炭のlogMFを低めに設定した場合の1次配合炭の流動度の推定
〔実施例2−3〕流動性のない炭材を配合した場合の1次配合炭の流動度の推定
<Example 2>
About the effectiveness of the above estimation method, the following content was verified.
[Example 2-1] Estimation of fluidity of primary blended coal when log MF of coking coal is set high [Example 2-2] Primary blended coal when log MF of coking coal is set low Estimation of fluidity [Example 2-3] Estimation of fluidity of primary blended coal when blended with non-fluid coal

〔実施例2−1〕
原料炭のlogMFを高めに設定した場合の1次配合炭の流動度の推定を行なった。
(i)実験条件
logMF:2.98である原料炭Lに対して、低品位炭A,BおよびCを配合比率5〜10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表7に示すように、1次配合炭のlogMFについて、推定値と実測値が非常に一致し、相関性が高いことが判った。本推定方法の優れた機能が証明された。
[Example 2-1]
The fluidity of the primary coal blend was estimated when the log MF of the raw coal was set high.
(I) Experimental conditions log MF: For coking coal L of 2.98, low grade coals A, B, and C are blended at a ratio of 5 to 10%, and log MF and Δlog MF of coking coal are measured and set. Compared with the estimated value.
(Ii) Experimental results As shown in Table 7 below, it was found that for log MF of the primary blended coal, the estimated value and the actually measured value are very consistent and the correlation is high. The excellent function of this estimation method is proved.

Figure 0005833474
Figure 0005833474

〔実施例2−2〕
原料炭のlogMFを低めに設定した場合の1次配合炭の流動度の推定を、上記実施例2−1と同様の方法にて行った
(i)実験条件
logMFの低い(2.00前後)原料炭Mおよび原料炭Nを用い、低品位炭の炭種を低品位炭D,低品位炭Eおよび低品位炭Fとして,配合比率1〜10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表8に示すように、原料炭のlogMFを低く設定した場合においても、1次配合炭のlogMFについて、推定値は実測値と合致している。
[Example 2-2]
The estimation of the fluidity of the primary blended coal when the log MF of the raw coal was set to a low value was performed in the same manner as in Example 2-1 above (i) Low experimental condition log MF (around 2.00) Using coking coal M and coking coal N, low-grade coal D, low-grade coal E, and low-grade coal F as the coal grade of low-grade coal, logMF and ΔlogMF Was measured, set, and compared with the estimated value.
(Ii) Experimental results As shown in Table 8 below, even when the log MF of the raw coal is set low, the estimated value of the log MF of the primary coal blend is consistent with the actual measurement value.

Figure 0005833474
Figure 0005833474

〔実施例2−3〕
上記実施例2−1,2−2における低品位炭に代え、原料炭に流動性のない炭材を配合した場合の1次配合炭の流動度の推定を行なった
(i)実験条件
logMFの低い(2.00前後)原料炭Mおよび原料炭Nを用い、流動性のない炭材の炭種として低品位炭Gおよび低品位炭Hを用い,配合比率10%の条件で、原料炭のlogMFおよび△logMFを実測、設定し、推定値と比較した。
(ii)実験結果
下表9に示すように、無煙炭など石炭化度が進み軟化溶融しない低品位炭Gおよび低品位炭H等の炭材を用いても、1次配合炭のlogMFについて、推定値と実測値が非常に一致し、1次配合炭の流動度の推定は可能であることが判った。
[Example 2-3]
In place of the low-grade coal in the above Examples 2-1 and 2-2, the fluidity of the primary blended coal was estimated when blending non-fluid coal into the raw coal (i) of the experimental condition logMF Low (around 2.00) raw coal M and raw coal N, low-grade coal G and low-grade coal H as coal types of non-fluid coal, under the conditions of a blending ratio of 10%, Log MF and Δlog MF were actually measured, set, and compared with the estimated values.
(Ii) Experimental results As shown in Table 9 below, the log MF of the primary blended coal is estimated even when using low-grade coal G and low-grade coal H such as anthracite that have advanced coalification and do not soften and melt. The values and the measured values were very consistent, and it was found that the fluidity of the primary coal blend could be estimated.

Figure 0005833474
Figure 0005833474

1 石炭運搬船
2 貯炭場
3 配合槽
4 粉砕設備
6 コークス炉
6a コールビン
6b 装入車
6c 押出機
7 高流動度材
8 処理槽
DESCRIPTION OF SYMBOLS 1 Coal carrier 2 Coal storage yard 3 Mixing tank 4 Crushing equipment 6 Coke oven 6a Coalbin 6b Loading car 6c Extruder 7 High fluidity material 8 Processing tank

Claims (5)

原料炭に低品位炭を配合してコークス製造用原料を作製する場合に、
該原料炭に該低品位炭が配合される1次配合炭の特性と所望のコークス製造用原料の特性との差異を補填するために配合される高流動度炭または高流動度材料を、予め前記低品位炭に近接させて配合して前駆配合炭を作製し、該前駆配合炭を前記原料炭に配合して2次配合炭を作製するとともに、
原料炭,低品位炭,高流動度炭または高流動度材料,および前駆配合炭の配合比率を、それぞれの特性の指標である最高流動度を基に設定するコークス製造用原料の作製方法であり、
予め前記原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求め、
実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合される1次配合炭の最高流動度を推定するとともに、
予め前記原料炭よりも高い流動性を有する高流動度炭または高流動度材料の最高流動度を求め、
前記1次配合炭の最高流動度と所望のコークス製造用原料の最高流動度との差異を補填するように、前記高流動度炭または高流動度材料の配合率zを、下式2−1に基づき設定することを特徴とするコークス製造用原料の作製方法。
z=(Y2−Y1)/T …式2−1
ここで、Y2:所望の2次配合炭の最高流動度の常用対数値(logMF)
Y1:1次配合炭の最高流動度の常用対数値(logMF)
T :高流動度炭または高流動度材料の最高流動度の常用対数値(logMF)
When making raw materials for coke production by blending low-grade coal with raw coal,
In order to compensate for the difference between the characteristics of the primary blended coal in which the low-grade coal is blended with the raw coal and the characteristics of the desired coke production raw material, Mixing in the vicinity of the low-grade coal to produce a precursor blended coal, blending the precursor blended coal with the raw coal and creating a secondary blended coal,
Coking coal, low-grade coal, high fluidity of coal or high fluidity material, and the blending ratio of the precursor blend coal, a method for manufacturing a setting to Turkey Kusu raw material for producing on the basis of the maximum fluidity degree is indicative of respective characteristics And
One or more types of the coking coal are selected in advance as the reference coal, the appropriate fluidity range of the reference coal, the fluidity characteristic curve with respect to the temperature of the reference coal, and the fluidity characteristic curve based on the above The maximum fluidity of the reference coal is obtained, and the flow of the low-grade coal based on the change in the maximum fluidity of the reference coal with respect to the blending ratio of the low-grade coal for one or more low-grade coals to be blended Find the slope of the degree of decline,
Based on the maximum fluidity of the raw coal actually used and the flow rate decrease gradient of the low-grade coal actually blended, the blending ratio of the low-grade coal blended with the raw coal Estimating the maximum fluidity of the primary coal blended with the low-grade coal in the coal,
Find the maximum fluidity of high-flow coal or high-fluidity material having a higher fluidity than the raw coal in advance,
In order to compensate for the difference between the maximum fluidity of the primary blended coal and the maximum fluidity of the desired coke production raw material, the blending ratio z of the high fluidity coal or high fluidity material is expressed by the following formula 2-1. A method for producing a raw material for coke production, which is set based on the above.
z = (Y2-Y1) / T ... Formula 2-1.
Here, Y2: Common logarithm of the maximum fluidity of the desired secondary coal blend (log MF)
Y1: Common logarithm of the highest fluidity of primary blended coal (logMF)
T: Common logarithm of the highest fluidity of high flow coal or high fluidity material (logMF)
原料炭に低品位炭を配合してコークス製造用原料を作製する場合に、When making raw materials for coke production by blending low-grade coal with raw coal,
該原料炭に該低品位炭が配合される1次配合炭の特性と所望のコークス製造用原料の特性との差異を補填するために配合される高流動度炭または高流動度材料を、予め前記低品位炭に近接させて配合して前駆配合炭を作製し、該前駆配合炭を前記原料炭に配合して2次配合炭を作製するとともに、In order to compensate for the difference between the characteristics of the primary blended coal in which the low-grade coal is blended with the raw coal and the characteristics of the desired coke production raw material, Mixing in the vicinity of the low-grade coal to produce a precursor blended coal, blending the precursor blended coal with the raw coal and creating a secondary blended coal,
原料炭,低品位炭,高流動度炭または高流動度材料,および前駆配合炭の配合比率を、それぞれの特性の指標である最高流動度を基に設定するコークス製造用原料の作製方法であり、This is a method for producing raw materials for coke production, in which the blending ratio of coking coal, low grade coal, high fluidity coal or high fluidity material, and precursor blended coal is set based on the maximum fluidity that is the index of each characteristic. ,
予め前記原料炭の1または2以上の炭種を基準炭として選択し、該基準炭の適正流動度の範囲と、該基準炭の温度に対する流動度特性曲線と、該流動度特性曲線に基づく前記基準炭の最高流動度を求め、さらに、配合される1または2以上の低品位炭について、該低品位炭の配合比率に対する前記基準炭の最高流動度の変化に基づく該低品位炭に係る流動度低下勾配を求め、One or more types of the coking coal are selected in advance as the reference coal, the appropriate fluidity range of the reference coal, the fluidity characteristic curve with respect to the temperature of the reference coal, and the fluidity characteristic curve based on the above The maximum fluidity of the reference coal is obtained, and the flow of the low-grade coal based on the change in the maximum fluidity of the reference coal with respect to the blending ratio of the low-grade coal for one or more low-grade coals to be blended Find the slope of the degree of decline,
実際に使用される前記原料炭の最高流動度と、実際に配合される前記低品位炭に係る流動度低下勾配に基づき、該原料炭に配合される該低品位炭の配合比率から、該原料炭に該低品位炭が配合される1次配合炭の最高流動度を推定するとともに、Based on the maximum fluidity of the raw coal actually used and the flow rate decrease gradient of the low-grade coal actually blended, the blending ratio of the low-grade coal blended with the raw coal Estimating the maximum fluidity of the primary coal blended with the low-grade coal in the coal,
予め前記原料炭よりも高い流動性を有する高流動度炭または高流動度材料の最高流動度を求め、Find the maximum fluidity of high-flow coal or high-fluidity material having a higher fluidity than the raw coal in advance,
前記1次配合炭の最高流動度と所望のコークス製造用原料の最高流動度との差異を補填するように、前記高流動度炭または高流動度材料の配合率zを、下式2−2に基づき設定することを特徴とするコークス製造用原料の作製方法。In order to compensate for the difference between the maximum fluidity of the primary blended coal and the maximum fluidity of the desired coke production raw material, the blending ratio z of the high fluidity coal or high fluidity material is expressed by the following formula 2-2. A method for producing a raw material for coke production, which is set based on the above.
z=α×Yo/T …式2−2z = α × Yo / T (Formula 2-2)
ここで、α :低品位炭の流動度低下勾配(△logMF)Here, α: Flow rate decreasing gradient of low-grade coal (ΔlogMF)
Yo:低品位炭の最高流動度の常用対数値(logMF)Yo: Common logarithm of the highest fluidity of low grade coal (logMF)
T :高流動度炭または高流動度材料の最高流動度の常用対数値(logMF)T: Common logarithm of the highest fluidity of high flow coal or high fluidity material (logMF)
前記前駆配合炭の作製において、圧着や成型,造粒,接着または混練のいずれかの処理、あるいはこれらの処理のいくつかの組合せによって、前記低品位炭に前記高流動度炭または高流動度材料を近接させて配合することを特徴とする請求項1又は2に記載のコークス製造用原料の作製方法。 In the production of the precursor blended coal, the high-flow coal or the high-fluidity material is added to the low-grade coal by any one of pressure bonding, molding, granulation, adhesion, and kneading, or some combination of these treatments. The method for producing a raw material for producing coke according to claim 1 or 2, wherein the ingredients are blended close to each other. 配合される前記低品位炭の酸素含有率に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の酸素含有率によって補正することを特徴とする請求項1〜3にいずれかに記載のコークス製造用原料の作製方法。   Fluctuation of the fluidity lowering gradient with respect to the oxygen content of the low-grade coal to be blended is obtained, and the fluidity-decreasing gradient according to the low-grade coal used is corrected by the oxygen content of the low-grade coal. The manufacturing method of the raw material for coke manufacture in any one of Claims 1-3. 配合される前記低品位炭の揮発分に対する前記流動度低下勾配の変動を求め、使用する低品位炭に係る前記流動度低下勾配を、該低品位炭の揮発分によって補正することを特徴とする請求項1〜4にいずれかに記載のコークス製造用原料の作製方法。   Fluctuation of the flow rate decrease gradient with respect to the volatile content of the low-grade coal to be blended is obtained, and the fluidity decrease gradient according to the low-grade coal used is corrected by the volatile content of the low-grade coal The manufacturing method of the raw material for coke manufacture in any one of Claims 1-4.
JP2012045648A 2012-03-01 2012-03-01 Coke production raw material production method and coke production raw material produced by the production method Active JP5833474B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012045648A JP5833474B2 (en) 2012-03-01 2012-03-01 Coke production raw material production method and coke production raw material produced by the production method
PCT/JP2013/055681 WO2013129650A1 (en) 2012-03-01 2013-03-01 Process for producing raw material for coke production, and raw material for coke production produced by said process
TW102107267A TWI498418B (en) 2012-03-01 2013-03-01 A method for producing a raw material for producing coke and a raw material for coke production produced by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045648A JP5833474B2 (en) 2012-03-01 2012-03-01 Coke production raw material production method and coke production raw material produced by the production method

Publications (2)

Publication Number Publication Date
JP2013181100A JP2013181100A (en) 2013-09-12
JP5833474B2 true JP5833474B2 (en) 2015-12-16

Family

ID=49271999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045648A Active JP5833474B2 (en) 2012-03-01 2012-03-01 Coke production raw material production method and coke production raw material produced by the production method

Country Status (1)

Country Link
JP (1) JP5833474B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638386A (en) * 1979-09-06 1981-04-13 Sumitomo Metal Ind Ltd Method of adjusting mixing proportion of coals for coke production
JP3270602B2 (en) * 1993-12-09 2002-04-02 新日本製鐵株式会社 Manufacturing method of coke for blast furnace
JP2001133379A (en) * 1999-11-02 2001-05-18 Mitsubishi Chemicals Corp Method for estimating maximum fluidity of coal blend added with caking additive
JP4677660B2 (en) * 2000-10-04 2011-04-27 Jfeスチール株式会社 Coking coal blending method for high strength and highly reactive coke production
JP4876629B2 (en) * 2006-02-28 2012-02-15 Jfeスチール株式会社 Method for producing metallurgical coke

Also Published As

Publication number Publication date
JP2013181100A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
KR101860255B1 (en) Coal mixture, method for manufacturing coal mixture, and method for manufacturing coke
JP6265015B2 (en) Coke manufacturing method
JP6379934B2 (en) Coke strength estimation method
JP6874502B2 (en) Coke strength estimation method
WO2014007184A1 (en) Coke and method for producing same
JP5833474B2 (en) Coke production raw material production method and coke production raw material produced by the production method
JP5820668B2 (en) Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method
TWI608092B (en) Coal evaluation method and coke production method
JP5833473B2 (en) Coke production raw material production method and coke production raw material produced by the production method
WO2013129650A1 (en) Process for producing raw material for coke production, and raw material for coke production produced by said process
JP5686052B2 (en) Coke production method
JP6075354B2 (en) Coke production method
JP6107374B2 (en) Coke production method
JP2015174934A (en) Method of producing coke for plast furnace
JP6007958B2 (en) Coke production method
KR20140049760A (en) Method for manufacturing coke
KR20180008771A (en) Ferro-coke production method
JP6464912B2 (en) Coke production method
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP5942971B2 (en) Coke production method
KR101430841B1 (en) Process for producing high-strength coke
EP3255122B1 (en) Ferrocoke manufacturing method
JP6760410B2 (en) How to make coke
TW202212548A (en) Preparation method for coal or binding material, and manufacturing method for coke
JP2010043197A (en) Method for preparing high strength coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350