JP4309780B2 - Method for estimating strength after hot coke reaction and method for producing coke - Google Patents
Method for estimating strength after hot coke reaction and method for producing coke Download PDFInfo
- Publication number
- JP4309780B2 JP4309780B2 JP2004044327A JP2004044327A JP4309780B2 JP 4309780 B2 JP4309780 B2 JP 4309780B2 JP 2004044327 A JP2004044327 A JP 2004044327A JP 2004044327 A JP2004044327 A JP 2004044327A JP 4309780 B2 JP4309780 B2 JP 4309780B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- coal
- cri
- reaction
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000571 coke Substances 0.000 title claims description 113
- 238000006243 chemical reaction Methods 0.000 title claims description 60
- 238000000034 method Methods 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000003245 coal Substances 0.000 claims description 91
- 239000011335 coal coke Substances 0.000 claims description 57
- 238000013329 compounding Methods 0.000 claims description 2
- 238000011049 filling Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000011800 void material Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、室炉式コークス炉で製造するコークス熱間反応後強度の推定方法及びコークスの製造方法に関するものである。 The present invention relates to a method for estimating the strength after hot reaction of coke produced in a chamber type coke oven and a method for producing coke.
高炉装入原料として製造されるコークスは、乾留後のコークス強度が高いのみならず、高炉内での反応後においても高いコークス強度を有していることが要求される。高炉内での反応後に粉化が少ないことが必要だからである。 The coke produced as a blast furnace charge is required not only to have high coke strength after dry distillation, but also to have high coke strength after reaction in the blast furnace. This is because less powdering is required after the reaction in the blast furnace.
高炉内での反応後のコークス強度を評価する指標として、コークスの熱間反応後強度(以下「CSR」という。)が用いられる。CSRは、20±1mmの大きさに調整されたコークス200gを、ガス組成:二酸化炭素(100%)、反応温度1100℃、反応時間2時間の条件で反応させた後、I型ドラムで600回転させた後、反応後質量に対する9.56mm篩上質量の百分率で定義される。
As an index for evaluating the coke strength after reaction in the blast furnace, the strength after hot reaction of coke (hereinafter referred to as “CSR”) is used. For CSR, 200 g of coke adjusted to a size of 20 ± 1 mm was reacted under the conditions of gas composition: carbon dioxide (100%), reaction temperature 1100 ° C.,
コークス製造時の石炭の配合が変更になると、乾留したコークスのCSRの値も変動する。CSRが変動して反応後強度が低くなる場合があると、高炉内において粉化が増大し、好ましくない。従って、石炭の配合変更時には予めCSRを予測し、目標とするCSRにできるだけ近いCSRを実現することのできる配合を選択することが必要である。そのため、従来よりコークス熱間反応後強度を推定する種々の方法が提案されている。 When the coal composition at the time of coke production is changed, the CSR value of dry-distilled coke also changes. When the CSR fluctuates and the post-reaction strength decreases, powdering increases in the blast furnace, which is not preferable. Therefore, it is necessary to predict the CSR in advance at the time of changing the blending of coal and select a blend that can realize a CSR as close as possible to the target CSR. Therefore, various methods for estimating the strength after hot coke reaction have been proposed.
特許文献1においては、コークス製造に当たり配合炭の性状として、平均反射率、平均反射率のばらつき、ギーゼラー流動度、及び灰分中の鉄成分又は塩基性成分の触媒効果指標を用いてコークスの熱間反応後強度を推定する方法が記載されている。
In
特許文献2においては、単味炭のコークスCSRと単味炭のコークス歩留りとの積を加重平均して算出したHCSRと、配合炭の流動性を示す指標と、各原料炭の流動性の重なりを示す指標と、配合コークスのアルカリ成分量を示す指標とを定め、これら指標を用いる統計的手法により求めた推定式によって配合コークスのCSRを推定する方法が開示されている。
In
なお、特許文献3にはコークスの表面破壊強度を推定する方法が開示されている。
前記特許文献1に記載の方法では、コークスCSRの推定精度が十分ではないという問題があった。また、特許文献2に記載の方法についても、石炭配合構成およびコークス炉の操業条件により、CSRには加成性が成り立たないため、推定精度が十分ではないという問題点があった。
The method described in
本発明は、コークス熱間反応後強度を精度良く推定する方法を提供すると共に、目標とするコークス熱間反応後強度を精度良く達成することのできるコークスの製造方法を提供することを目的とする。 The object of the present invention is to provide a method for accurately estimating the strength after the coke hot reaction, and to provide a method for producing coke that can achieve the target strength after the hot coke reaction with high accuracy. .
即ち、本発明の要旨とするところは以下の通りである。
(1)配合炭コークスの熱間反応後強度(以下「CSR」という。)の推定方法であって、配合炭コークスの反応率(以下「CRI」という。)を単味炭コークスのCRIの加重平均値及び単味炭コークスの全膨張率(以下「TD」という。)の加重平均値に基づいて下記(2)式により定め、該求めた配合炭コークスのCRIと配合炭コークス表面破壊強度(以下「DI150 6」という。)に基づいて下記(1)式により配合炭コークスのCSRを推定することを特徴とするコークス熱間反応後強度の推定方法。
配合炭コークスCSR=a×配合炭コークスDI 150 6 −b×配合炭コークス推定CRI+c (1)
配合炭コークス推定CRI=d×(単味炭コークスCRIの加重平均値)−e×(単味炭TDの加重平均値)+f (2)
ここで、a、b、c、d、e、fは定数である。
(2)上記(1)に記載のコークス熱間反応後強度の推定方法を用いてコークス熱間反応後強度を推定し、該推定したコークス熱間反応後強度が予め定めた目標コークス熱間反応後強度となるように、配合炭を構成する各単味炭の配合比を調整することを特徴とするコークスの製造方法。
That is, the gist of the present invention is as follows.
(1) A method for estimating the strength after hot reaction (hereinafter referred to as “CSR”) of blended coal coke, wherein the reaction rate of blended coal coke (hereinafter referred to as “CRI”) is weighted by CRI of plain coal coke. Based on the average value and the weighted average value of the total expansion rate (hereinafter referred to as “TD”) of the solid coal coke, the following formula (2) is used to determine the CRI of the blended coal coke and the surface fracture strength of the blended coal coke ( (Hereinafter referred to as “DI 150 6 ”). The method of estimating the strength after coke hot reaction, wherein the CSR of the blended coal coke is estimated by the following equation (1) .
Blended coal coke CSR = a x Blended coal coke DI 150 6 -b x Blended coal coke estimation CRI + c (1)
Blended coal coke estimation CRI = d × (weighted average value of simple coal coke CRI) −e × (weighted average value of simple coal TD) + f (2)
Here, a, b, c, d, e, and f are constants.
(2) above (1) to use the method of estimating the coke hot strength after reaction according to estimate the coke hot strength after reaction, the estimated coke hot strength after reaction has a predetermined target coke hot reaction A method for producing coke, characterized in that the blending ratio of the respective simple coals constituting the blended coal is adjusted so as to obtain post-strength.
本発明は、単味炭コークスのCRIの加重平均によって配合炭コークスのCRIを求め、求めた配合炭コークスのCRIと配合炭コークス表面破壊強度(DI150 6)に基づいて配合炭コークスのCSRを推定することにより、精度良くコークスの熱間反応後強度を推定することが可能になる。 In the present invention, the CRI of the blended coal coke is obtained by the weighted average of the CRI of the plain coal coke, and the CSR of the blended coal coke is calculated based on the CRI of the blended coal coke and the surface crack strength (DI 150 6 ) of the blended coal coke. By estimating, it is possible to accurately estimate the strength of the coke after the hot reaction.
前述のとおり、コークスのCSRには加成性が成り立たないので、配合炭を構成する各単味炭のCSRが既知であっても、単味炭のCSRを加重平均したのでは配合炭のCSRを精度良く求めることができない。 As mentioned above, since the additivity does not hold in the CSR of coke, even if the CSR of each simple coal constituting the blended coal is known, if the weighted average of the CSR of the simple coal is weighted, the CSR of the blended coal Cannot be obtained with high accuracy.
一方、コークスの反応率(CRI)については、加成性が成立し、配合炭を構成する各単味炭のCRIを加重平均することにより、配合炭のCRIを精度良く推定することが可能である。図1には、横軸に単味炭コークスのCRIの加重平均値、縦軸に配合炭コークスの実績CRIをとってデータをプロットした結果を示す。図から明らかなように、単味炭コークスのCRI加重平均値から精度良く配合炭コークスのCRIが推定できることがわかる。ここでCRIとは、20±1mmの大きさに調整されたコークス200gを、ガス組成:二酸化炭素(100%)、反応温度1100℃、反応時間2時間の条件で反応させた後に反応後試料の質量を測定し、(反応前質量−反応後質量)/反応前質量×100 で表される、反応による質量減少率を示す指数である。
On the other hand, with respect to the reaction rate (CRI) of coke, additivity is established, and it is possible to accurately estimate the CRI of the blended coal by weighted averaging of the CRI of each simple coal constituting the blended coal. is there. FIG. 1 shows the results of plotting data with the horizontal axis representing the weighted average value of CRI of plain coal coke and the vertical axis representing the actual CRI of blended coal coke. As can be seen from the figure, the CRI of the blended coal coke can be accurately estimated from the CRI weighted average value of the plain coal coke. Here, CRI means that 200 g of coke adjusted to a size of 20 ± 1 mm is reacted under the conditions of gas composition: carbon dioxide (100%), reaction temperature 1100 ° C.,
CRIの測定においては、まず各単味炭を試験乾留炉で乾留し、上記方法でCRIを測定する。試験乾留炉での乾留方法としては特に指定はなく、通常の方法で乾留を行えばよい。例えば、コークスサーキュラー第30巻第4号(1981)、239〜245ページに記載の方法を用いることができる。 In the measurement of CRI, each simple coal is first carbonized in a test carbonization furnace, and the CRI is measured by the above method. There is no particular designation as a carbonization method in the test carbonization furnace, and the carbonization may be performed by an ordinary method. For example, the method described in Coke Circular Vol. 30 No. 4 (1981), pages 239 to 245 can be used.
次に、コークスのCSRとコークスのCRIとの関係について調べてみると、両者の間には強い相関が見られると共に、両者の関係はコークスの表面破壊強度の影響を受けていることが明らかになった。即ち、コークスのCSRは、コークスのCRIとコークスの表面破壊強度とから精度良く推定することが可能である。 Next, when examining the relationship between coke CSR and coke CRI, it is clear that there is a strong correlation between the two and that the relationship is influenced by the surface fracture strength of the coke. became. That is, the CSR of coke can be accurately estimated from the CRI of coke and the surface fracture strength of coke.
ここでコークスの破壊強度とは、所定の機械的衝撃をコークスに与えたときに粉コークスにならず塊コークスとして残る程度を表す指数である。回転強度指数は円筒形の容器内でコークスの落下試験を自動的に繰返して行って得られる指数で、落下強度指数と本質的に同種の指数である。コークス強度試験において生成する粉コークスを表面破壊により生成するものと体積破壊により生成するものとに分離してそれぞれを推定し、その和からコークス強度を推定する方法が知られている。 Here, the breaking strength of coke is an index representing the degree to which coke does not become powder coke but remains as coke coke when given a predetermined mechanical impact. The rotational strength index is an index obtained by automatically repeating a coke drop test in a cylindrical container, and is essentially the same index as the drop strength index. There is known a method for estimating the coke strength from the sum of the powder coke produced in the coke strength test, which is separated into those produced by surface fracture and those produced by volume fracture.
コークスの表面破壊強度は、例えばIIS K 2151のドラム試験法によるDI150 6により表される。ここでDI150 6は、ドラム試験機で150回転の衝撃を与えた後の、6mm以上の塊の質量割合を示す。コークスの表面破壊は、衝撃によるコークス表面の脆性破壊により起っている。脆性破壊強度は、一般に材料の物性と欠陥とにより支配されている。欠陥については、一般に材料中の亀裂が問題になり、欠陥への応力集中係数は、亀裂先端の曲率半径と亀裂寸法により決定される。曲率半径が小さく、寸法の大きい亀裂ほど応力集中係数が大きく、破壊強度を低下させる。コークスの構造について詳細に調べた結果、コークス中には、体積破壊の原因になる巨視的な亀裂は存在するが、表面破壊の原因になるような亀裂は通常は存在せず、コークスの表面破壊の原因になる欠陥は、非接着粒界と連結気孔であることが明らかになっている。 The surface fracture strength of coke is expressed, for example, by DI 150 6 according to the drum test method of IIS K 2151. Here, DI 150 6 indicates a mass ratio of a lump of 6 mm or more after an impact of 150 rotations is given by a drum tester. The coke surface fracture is caused by brittle fracture of the coke surface due to impact. Brittle fracture strength is generally governed by material properties and defects. As for defects, cracks in the material generally become a problem, and the stress concentration factor on the defects is determined by the radius of curvature of the crack tip and the crack size. A crack with a smaller radius of curvature and a larger dimension has a higher stress concentration factor and lowers the fracture strength. As a result of a detailed examination of the structure of coke, there are macroscopic cracks in the coke that cause volume fracture, but there are usually no cracks that cause surface fracture. It has been clarified that the defects causing the defects are non-adhesive grain boundaries and connected pores.
コークスのCRIを横軸に取り、コークスのCSRを縦軸とし、コークスの表面破壊強度で層別してデータをプロットすると、図2に示すデータを得ることができる。図2の凡例において、例えば「DI<85」と表示されているものは、84≦DI150 6<85の意味である。この図から明らかなように、同一のコークス表面破壊強度であればコークスのCSRはCRIと良好な相関を有しており、一方コークスの表面破壊強度が高くなるとCSRは値が高い側にシフトしていることがわかる。このようにCSRがCRIと表面破壊強度とで定まる理由については以下のように考えられる。CRIは一定反応時間における反応率を示す指数であり、CRIが高いコークスは、脆弱な構造となっている。そのため、CRIが高いほど、I型ドラムで衝撃を加えた場合の粉化率が高くなり、CSRは低くなる。また、同一反応率(同一CRI)の場合には、反応させる前のもともとのコークスの表面破壊強度が高いほど、耐衝撃粉化性が大きくなるのである。 If the CRI of coke is taken on the horizontal axis, the CSR of coke is taken on the vertical axis, and the data is plotted according to the surface fracture strength of the coke, the data shown in FIG. 2 can be obtained. In the legend of FIG. 2, for example, what is displayed as “DI <85” means that 84 ≦ DI 150 6 <85. As is clear from this figure, the coke CSR has a good correlation with the CRI if the coke surface fracture strength is the same, whereas the CSR shifts to a higher value as the coke surface fracture strength increases. You can see that The reason why the CSR is determined by the CRI and the surface fracture strength can be considered as follows. CRI is an index indicating a reaction rate in a certain reaction time, and coke having a high CRI has a fragile structure. Therefore, the higher the CRI, the higher the pulverization rate when an impact is applied with the I-type drum, and the lower the CSR. In the case of the same reaction rate (same CRI), the higher the surface fracture strength of the original coke before the reaction, the higher the impact dust resistance.
コークスの表面破壊強度DI150 6を推定する手段としては、例えば特許文献3に記載の方法を採用することができる。即ち、下記(1)式で定義される石炭軟化時の空隙充填度を求め、さらに石炭軟化時の空隙充填度とコークスの表面破壊強度との関係を求め、次に使用する石炭の石炭軟化時の比容積とコークス炉装入時の石炭の嵩密度からコークスの表面破壊強度を推定する。
石炭軟化時の空隙充填度(−)=石炭軟化時の比容積(cm3/g)×コークス炉装入時の石炭の嵩密度 (g/cm3) (1)
ここで、石炭軟化時の比容積は、例えばJIS M 8801のディラトメーターにより測定される膨脹率b(%)から下記(2)式により算出できる。
石炭軟化時の比容積(cm3/g)
=最大膨脹時の石炭体積(cm3)/ディラトメーターへの石炭装入量(g)
=0.96π(1+b/100) /ディラトメーターへの石炭装入量(g) (2)
As a means for estimating the surface fracture strength DI 150 6 of coke, for example, the method described in
Void filling degree during coal softening (-) = specific volume during coal softening (cm 3 / g) × coal bulk density of the coke RoSo Nyutoki (g / cm 3) (1)
Here, the specific volume at the time of coal softening can be calculated by, for example, the following equation (2) from the expansion rate b (%) measured by a dilatometer of JIS M8801.
Specific volume at the time of coal softening (cm 3 / g)
= Coal volume at maximum expansion (cm 3 ) / Coal charge to dilatometer (g)
= 0.96π (1 + b / 100) / Coal charge to dilatometer (g) (2)
コークスの表面破壊強度DI150 6と石炭軟化時の空隙充填度の関係を予め求めておけば、この関係を用いて、石炭軟化時の空隙充填度からコークスの表面破壊強度DI150 6を推定することができる。 It is previously obtained relation surface fracture strength DI 0.99 6 and void filling degree during coal softening coke, by using this relationship to estimate the surface fracture strength DI 0.99 6 of the coke from the void filling degree during coal softening be able to.
すなわち、先ず各種石炭の軟化時の比容積を測定し、それらの石炭を単味で、あるいは配合して、乾留しコークスを製造する。その際、石炭装入時の嵩密度を測定しておく。次に、製造されたコークスの表面破壊強度、例えばIIS K2151のドラム試験法によるDI150 6を測定する。さらに、石炭軟化時の比容積と石炭装入時の嵩密度から算出される石炭軟化時の空隙充填度とコークスの表面破壊強度DI150 6の関係を求める。なお、石炭軟化時の比容積は、単味炭の場合は実測値を用い、配合炭の場合は各石炭の実測値の加重平均値を用いればよい。表面破壊強度を推定するには、使用する石炭の軟化時の比容積を測定し、さらに乾留する際の石炭装入時の嵩密度を石炭水分や粒度などから予測し、これらの値から石炭軟化時の空隙充填度を算出し、空隙充填度の値から、予め求めておいた石炭軟化時の空隙充填度とコークスの表面破壊強度の関係により、コークスの表面破壊強度を推定する。なお、石炭軟化時の比容積は、単味炭の場合は実測値を用い、配合炭の場合は各石炭の実測値の加重平均値を用いればよい。 That is, first, the specific volumes of various coals during softening are measured, and the coals are dry or distilled to produce coke. In that case, the bulk density at the time of coal charging is measured. Next, the surface fracture strength of the produced coke, for example, DI 150 6 according to the drum test method of IIS K2151, is measured. Furthermore, the relationship between the void filling degree at the time of coal softening calculated from the specific volume at the time of coal softening and the bulk density at the time of coal charging and the surface fracture strength DI 150 6 of coke is obtained. In addition, the specific volume at the time of coal softening should just use a measured value in the case of plain coal, and may use the weighted average value of the measured value of each coal in the case of blended coal. To estimate the surface fracture strength, measure the specific volume of the coal used during softening, predict the bulk density at the time of coal charging during dry distillation from the coal moisture and particle size, etc., and use these values to soften the coal. The degree of void filling at the time is calculated, and the surface fracture strength of the coke is estimated from the value of the degree of void filling based on the relationship between the degree of void filling during coal softening and the surface fracture strength of the coke obtained in advance. In addition, the specific volume at the time of coal softening should just use a measured value in the case of plain coal, and may use the weighted average value of the measured value of each coal in the case of blended coal.
本発明においてコークスのCSRを推定する具体的な方法としては、CSR、CRI、DI150 6の3者の関係を統計的手法で明らかにし、例えばCRI、DI150 6の一次関数としてCSRを推定する式を立てることができる。 In the present invention, as a specific method for estimating the coke CSR, the relationship between the three of CSR, CRI, and DI 150 6 is clarified by a statistical method. For example, the CSR is estimated as a linear function of CRI and DI 150 6. You can make a formula.
次に、配合炭コークスのCRIを、単味炭コークスのCRIの加重平均値から推定する際におけるより好ましい方法について説明する。 Next, a more preferable method in estimating the CRI of blended coal coke from the weighted average value of CRI of plain coal coke will be described.
配合炭コークスのCRIと単味炭コークスのCRIの加重平均値との関係について詳細に調査したところ、単味炭の全膨張率(TD)の加重平均値が低くなったときは、配合炭コークスのCRIが単味炭コークスのCRIの加重平均値よりも大きな値を示すことが明らかになった。図3には、横軸にTDの加重平均値、縦軸に配合炭コークスのCRIと単味炭コークスのCRIの加重平均値との差分(ΔCRI)をとり、データをプロットしている。この図からも上記事実が明らかである。 When the relationship between the CRI of blended coal coke and the weighted average value of CRI of plain coal coke was investigated in detail, when the weighted average value of total expansion rate (TD) of simple coal coke decreased, the blended coal coke It became clear that the CRI of the present invention shows a value larger than the weighted average value of the CRI of the plain coal coke. In FIG. 3, the horizontal axis represents the weighted average value of TD, and the vertical axis represents the difference (ΔCRI) between the CRI of blended coal coke and the CRI of plain coal coke, and the data is plotted. The above facts are clear from this figure.
ここで石炭の全膨張率TDとは、JIS M 8801のディラトメーターにより測定される全膨張率であり、収縮率と膨張率の和として表される。 Here, the total expansion rate TD of coal is a total expansion rate measured by a dilatometer of JIS M 8801, and is expressed as the sum of the shrinkage rate and the expansion rate.
石炭の全膨張率が低いときに配合炭のCRIが単味炭CRIの加重平均値よりも大きくなる理由については以下のように考えることができる。即ち、全膨張率が低い場合は石炭粒子表面全体が接着していない。このため、気孔と気孔の連結部分(即ち粒子間接着部)をガスが拡散しやすくなり、結果として配合炭のCRIが単味炭CRIの加重平均値よりも高くなるのである。 The reason why the CRI of the blended coal becomes larger than the weighted average value of the plain coal CRI when the total expansion rate of the coal is low can be considered as follows. That is, when the total expansion rate is low, the entire coal particle surface is not adhered. For this reason, the gas easily diffuses in the pore-to-pore connecting portions (that is, the interparticle adhesion portions), and as a result, the CRI of the blended coal becomes higher than the weighted average value of the simple coal CRI.
本発明において配合炭のCRIを求める具体的な方法としては、配合炭のCRI、単味炭CRIの加重平均値、TDの3者の関係を統計的手法で明らかにし、例えば単味炭CRIの加重平均値、TDの一次関数として配合炭のCRIを推定する式を立てることができる。 In the present invention, as a specific method for obtaining the CRI of the blended coal, the relationship between the CRI of the blended coal, the weighted average value of the plain coal CRI, and the TD is clarified by a statistical method. An equation for estimating the CRI of the blended coal can be established as a linear function of the weighted average value and TD.
本発明のコークスの製造方法においては、上記本発明のコークス熱間反応後強度の推定方法を用いてコークス熱間反応後強度を推定し、該推定したコークス熱間反応後強度が予め定めた目標コークス熱間反応後強度となるように、配合炭を構成する各単味炭の配合比を調整することとすると好ましい。本発明のコークス熱間反応後強度の推定方法を用いれば熱間反応後強度を精度良く推定することができるので、実績コークス熱間反応後強度が目標コークス熱間反応後強度と精度良く一致するように、配合炭を構成する各単味炭の配合比を調整することが可能になるからである。 In the method for producing coke of the present invention, the post-coke hot reaction strength is estimated using the method for estimating the post-coke hot reaction strength of the present invention, and the estimated post-coke hot reaction strength is a predetermined target. It is preferable to adjust the blending ratio of each simple coal constituting the blended coal so that the strength after the coke hot reaction is obtained. Since the strength after hot reaction can be accurately estimated by using the method for estimating the strength after hot coke reaction according to the present invention, the strength after the actual coke hot reaction matches the strength after the target coke hot reaction with high accuracy. As described above, it is possible to adjust the blending ratio of each simple coal constituting the blended coal.
これにより、従来と同じコストでCSRの高いコークスを製造することが可能になった。あるいは高炉で要求される下限ぎりぎりのCSRを狙ったコークスを製造することが可能になり、コークス製造コストを低減することが可能になった。 This makes it possible to produce coke with a high CSR at the same cost as before. Or it became possible to manufacture the coke which aimed at CSR of the minimum required by a blast furnace, and it became possible to reduce coke manufacturing cost.
コークス炉に配合する各単味炭および配合炭について、CSR、CRI、TD、DI150 6の測定を行った。石炭を、水分3%に調整した後、装入密度0.85t/m3で試験コークス炉(炉幅420mm、炉長600mm、炉高400mm)に装入し、炉温1250℃で18時間乾留した。 CSR, CRI, TD, and DI 150 6 were measured for each simple coal and blended coal blended in the coke oven. After adjusting the coal to 3% moisture, the coal was charged into a test coke oven (furnace width 420 mm, furnace length 600 mm, furnace height 400 mm) at a charging density of 0.85 t / m 3 and carbonized at a furnace temperature of 1250 ° C. for 18 hours. did.
CRIの測定においては、乾留したコークスを20±1mmの大きさに整粒した後、200gを、ガス組成:二酸化炭素(100%)、反応温度1100℃、反応時間2時間の条件で反応させた後に反応後試料の質量を測定し、CRI=(反応前質量−反応後質量)/反応前質量×100 により求めた。
In the CRI measurement, the coke obtained by dry distillation was sized to 20 ± 1 mm, and then 200 g was reacted under the conditions of gas composition: carbon dioxide (100%), reaction temperature 1100 ° C., and
TDの測定においては、JIS M 8801のディラトメーターにより測定した収縮率と膨張率の和として全膨張率を測定した。 In the measurement of TD, the total expansion rate was measured as the sum of the shrinkage rate and the expansion rate measured with a dilatometer of JIS M8801.
CSRは、試験乾留後に20±1mmの大きさに調整されたコークス200gを、ガス組成:二酸化炭素(100%)、反応温度1100℃、反応時間2時間の条件で反応させた後、I型ドラムで600回転させた後、反応後質量に対する9.56mm篩上質量の百分率で表した。 For CSR, 200 g of coke adjusted to a size of 20 ± 1 mm after test dry distillation was reacted under the conditions of gas composition: carbon dioxide (100%), reaction temperature of 1100 ° C., reaction time of 2 hours, and then I-type drum Then, it was expressed as a percentage of the mass on the 9.56 mm sieve with respect to the mass after reaction.
コークスの表面破壊強度は、JIS K 2151のドラム試験法によるDI150 6により測定した。 The surface fracture strength of coke was measured by DI 150 6 according to the drum test method of JIS K 2151.
コークスの反応率(CRI)、コークスの表面破壊強度(DI150 6)とコークスの熱間反応後強度(CSR)との関係は図2に示すとおりであり、この図に基づき、回帰式を下記(3)式のように定めた。
CSR=a×DI150 6−b×CRI+c (3)
ここで、a、b、cは定数である。
The relationship between coke reaction rate (CRI), coke surface fracture strength (DI 150 6 ) and coke hot reaction strength (CSR) is as shown in FIG. 2. Based on this figure, the regression equation is shown below. (3) It was determined as shown in the equation.
CSR = a × DI 150 6 −b × CRI + c (3)
Here, a, b, and c are constants.
次に、コークスの表面破壊強度(DI150 6)の推定方法については、単味炭の最大比容積の加重平均値とコークス炉装入時の嵩密度により算出される石炭軟化時の空隙充填度から、図4を用いて推定した。図4は装入炭量300Kgの乾留試験炉による各種単味炭およびそれらの配合炭についての炉温1200℃での乾留実験から作成したものである。コークスの表面破壊強度は、JIS K 2151のドラム試験法によるDI150 6により測定した。石炭の比容積は、JIS M 8801に規定されている石炭の膨脹性測定装置を使用して石炭を1mm以下に粉砕して粉体のまま嵩密度0.8g/cm3に充填して測定した。 Next, regarding the method of estimating the surface fracture strength of coke (DI 150 6 ), the degree of void filling during softening of coal calculated from the weighted average value of the maximum specific volume of plain coal and the bulk density when charged in the coke oven From that, it estimated using FIG. FIG. 4 is prepared from dry distillation experiments at a furnace temperature of 1200 ° C. with respect to various simple coals and their blended coals in a dry distillation test furnace having a charging coal amount of 300 kg. The surface fracture strength of coke was measured by DI 150 6 according to the drum test method of JIS K 2151. The specific volume of the coal was measured by pulverizing the coal to 1 mm or less using a coal expansion measuring apparatus defined in JIS M 8801 and filling the powder in a bulk density of 0.8 g / cm 3 . .
配合炭コークスのCRI、単味炭コークスのCRIの加重平均値、配合炭の全膨張率(TD)の関係は図3に示すとおりであり、この図に基づき、配合炭コークスのCRIを推定するための回帰式を下記(4)式のように定めた。この図で、縦軸のΔCRIは、配合炭コークスのCRI実測値と単味炭コークスCRI加重平均値の差を示す。
推定CRI=d×(単味炭コークスCRIの加重平均値)−e×(単味炭TDの加重平均値)+f (4)
ここで、d、e、fは定数である。
The relationship between the CRI of blended coal coke, the weighted average value of CRI of plain coal coke, and the total expansion rate (TD) of blended coal is as shown in FIG. 3. Based on this figure, the CRI of blended coal coke is estimated. The regression equation for this was defined as the following equation (4). In this figure, ΔCRI on the vertical axis represents the difference between the CRI actual measurement value of the blended coal coke and the plain coal coke CRI weighted average value.
Estimated CRI = d × (weighted average value of simple coal coke CRI) −e × (weighted average value of simple coal TD) + f (4)
Here, d, e, and f are constants.
以上のような準備のもと、まず単味炭コークスのCRI、単味炭TDから(4)式によって配合炭のCRIを推定し、また上記の方法で配合炭コークスの表面破壊強度(DI150 6)を推定した。次いで、これらの値を用いて(3)式によって配合炭のCSRを推定した。 Based on the above preparation, first, the CRI of the blended coal is estimated from the CRI of the plain coal coke and the plain coal TD by the equation (4), and the surface fracture strength (DI 150 ) of the blended coal coke is calculated by the above method. 6 ) estimated. Next, using these values, the CSR of the blended coal was estimated by equation (3).
以上のようにして推定した配合炭のCSRと、配合炭CSR実測値とを対比したところ、図5が得られた。即ち、本発明のコークス熱間反応後強度の推定方法を用いることにより、配合炭コークスの熱間反応後強度を極めて精度良く推定することができた。 When the CSR of the blended coal estimated as described above was compared with the actual value of the blended coal CSR, FIG. 5 was obtained. That is, by using the method for estimating the strength after coke hot reaction of the present invention, the strength after hot reaction of the blended coal coke could be estimated with extremely high accuracy.
A製鉄所のコークス工場におけるコークス熱間反応後強度の推移を図6に示す。期間Aは本発明を実施する前、期間Bは本発明実施後である。また、期間A(5日目)、期間B(15日目)で使用した配合炭の各単味炭のVM,全膨張率TD(%)、単味炭コークスのCRI(−)、配合比を表1に示す。 Fig. 6 shows the change in strength after the hot coke reaction at the coke plant at A Steel Works. Period A is before implementation of the present invention, and period B is after implementation of the present invention. In addition, the VM, the total expansion coefficient TD (%), the CRI (-) of the single coal coke, the compounding ratio of the blended coal used in the period A (5th day) and the period B (15th day) Is shown in Table 1.
ここで、配合1は5日目の配合、配合2は15日目の配合である。単味炭コークスのCRI加重平均値および全膨張率の加重平均値は、配合1ではそれぞれ32.1と44%、配合2では32.6と61%であった。
Here,
図6から明らかなように、期間Aにおいては、本発明法に基づいたコークス熱間反応後強度の推定および各単味炭の配合比の調整は実施していないため、コークス熱間反応後強度は大きくばらつき、目標値である60を下回る場合もあることがわかる。一方、本発明法によるコークス熱間反応後強度の推定および各単味炭の配合比の調整を実施した期間Bでは、目標値である60以上を安定して維持することができた。 As apparent from FIG. 6, during period A, the estimation of post-coke hot reaction strength and the adjustment of the blend ratio of each simple coal based on the method of the present invention were not performed. It can be seen that there is a large variation and there are cases where the target value is less than 60. On the other hand, in the period B in which the estimation of the strength after the hot coke reaction according to the method of the present invention and the adjustment of the blending ratio of each simple coal were performed, the target value of 60 or more could be stably maintained.
Claims (2)
配合炭コークスCSR=a×配合炭コークスDI 150 6 −b×配合炭コークス推定CRI+c (1)
配合炭コークス推定CRI=d×(単味炭コークスCRIの加重平均値)−e×(単味炭TDの加重平均値)+f (2)
ここで、a、b、c、d、e、fは定数である。 This is a method for estimating the strength after hot reaction (hereinafter referred to as “CSR”) of the blended coal coke, wherein the reaction rate of the blended coal coke (hereinafter referred to as “CRI”) is expressed as the weighted average value of the CRI of the plain coal coke and Based on the weighted average value of the total expansion rate of plain coal coke (hereinafter referred to as “TD”), the following formula (2) is used to determine the CRI of the blended coal coke and the surface fracture strength of the blended coal coke (hereinafter referred to as “DI”). 150 6 ")) and estimating the CSR of the blended coal coke by the following equation (1) :
Blended coal coke CSR = a x Blended coal coke DI 150 6 -b x Blended coal coke estimation CRI + c (1)
Blended coal coke estimation CRI = d × (weighted average value of simple coal coke CRI) −e × (weighted average value of simple coal TD) + f (2)
Here, a, b, c, d, e, and f are constants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004044327A JP4309780B2 (en) | 2004-02-20 | 2004-02-20 | Method for estimating strength after hot coke reaction and method for producing coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004044327A JP4309780B2 (en) | 2004-02-20 | 2004-02-20 | Method for estimating strength after hot coke reaction and method for producing coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005232350A JP2005232350A (en) | 2005-09-02 |
JP4309780B2 true JP4309780B2 (en) | 2009-08-05 |
Family
ID=35015629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004044327A Expired - Fee Related JP4309780B2 (en) | 2004-02-20 | 2004-02-20 | Method for estimating strength after hot coke reaction and method for producing coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4309780B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1888778B (en) * | 2005-06-30 | 2010-06-16 | 泰州乐金电子冷机有限公司 | Pickled vegetable refrigerator inner wall reinforcing structure |
CN108519301A (en) * | 2018-03-12 | 2018-09-11 | 沈阳环境科学研究院 | It is a kind of to utilize thermogravimetric analyzer evaluation coal and the reactive method of biomass char |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101225370B1 (en) | 2009-08-27 | 2013-01-22 | 현대제철 주식회사 | Method for predicting of cokes reactivity index |
KR101205026B1 (en) | 2009-08-27 | 2012-11-26 | 현대제철 주식회사 | Method for predicting of coke strength after reaction |
KR101121813B1 (en) * | 2010-05-28 | 2012-03-21 | 현대제철 주식회사 | Apparatus and method for forecasting CSRcokes strength after reaction |
JP5772277B2 (en) * | 2011-06-21 | 2015-09-02 | 新日鐵住金株式会社 | Coke hot reaction strength estimation method |
CN103487305B (en) * | 2013-10-10 | 2015-12-02 | 辽宁同辉科技发展有限公司 | The equipment of a kind of coke reactivity and post-reaction strength test samples and preparation method |
JP7180544B2 (en) * | 2019-06-06 | 2022-11-30 | 日本製鉄株式会社 | Method for estimating post-hot reaction strength of coke and method for producing coke |
CN111809008B (en) * | 2020-06-30 | 2022-03-29 | 武汉钢铁有限公司 | Blast furnace coke thermal property grading control method based on different coal injection ratios |
EP4332199A4 (en) | 2021-06-28 | 2024-10-02 | Jfe Steel Corp | Method for generating post-reaction coke strength inference model, method for inferring post-reaction strength of coke, and method for producing coke |
WO2023079837A1 (en) | 2021-11-02 | 2023-05-11 | Jfeスチール株式会社 | Method for estimating post-reaction strength of coke and method for producing coke |
JP7485199B2 (en) | 2021-12-03 | 2024-05-16 | Jfeスチール株式会社 | Method for creating model for estimating post-reaction strength of coke, method for estimating post-reaction strength of coke, and method for manufacturing coke |
-
2004
- 2004-02-20 JP JP2004044327A patent/JP4309780B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1888778B (en) * | 2005-06-30 | 2010-06-16 | 泰州乐金电子冷机有限公司 | Pickled vegetable refrigerator inner wall reinforcing structure |
CN108519301A (en) * | 2018-03-12 | 2018-09-11 | 沈阳环境科学研究院 | It is a kind of to utilize thermogravimetric analyzer evaluation coal and the reactive method of biomass char |
Also Published As
Publication number | Publication date |
---|---|
JP2005232350A (en) | 2005-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101300941B1 (en) | Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending | |
JP4309780B2 (en) | Method for estimating strength after hot coke reaction and method for producing coke | |
KR101860255B1 (en) | Coal mixture, method for manufacturing coal mixture, and method for manufacturing coke | |
JP2020200360A (en) | Method for estimating coke strength after hot reaction and method for manufacturing coke | |
JP6379934B2 (en) | Coke strength estimation method | |
TWI608092B (en) | Coal evaluation method and coke production method | |
KR101649672B1 (en) | Method for sample quality prediction and Method for forecasting CSR(Coke Strength Reaction) | |
JP5772277B2 (en) | Coke hot reaction strength estimation method | |
EP2821774A1 (en) | Method for preparing coal for use in coke manufacturing | |
JP2010209310A (en) | Method for measuring specific volume of blended coal, estimation method of coke surface fracture strength and coal blending method | |
JP2018048297A (en) | Estimation method of coke strength | |
JP4887883B2 (en) | Coke strength estimation method | |
JP3971563B2 (en) | Method for estimating surface fracture strength of coke | |
JP5304049B2 (en) | Method for producing metallurgical coke | |
KR101879554B1 (en) | Metallurgical coke and method for producing the same | |
JP4299680B2 (en) | Coke strength estimation method | |
JP6075354B2 (en) | Coke production method | |
JP2017171718A (en) | Intensity estimation method of coke and manufacturing method of coke | |
JP2001172643A (en) | Method for estimating strength of coke | |
JP2000063846A (en) | Estimation of coke's strength | |
AU2021326589B2 (en) | Method for preparing coal or caking additive and method for producing coke | |
JP5780011B2 (en) | Coke surface fracture strength estimation method and coke production method using the same | |
JP5716271B2 (en) | Method for producing metallurgical coke | |
JPH09263764A (en) | Method for estimating coke strength | |
WO2024219074A1 (en) | Method for estimating blended coal coke strength after reaction, method for producing blended coal coke, method for operating coke oven, and method for controlling single coal blending ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090508 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4309780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |