JP3892666B2 - Coal quality evaluation method - Google Patents

Coal quality evaluation method Download PDF

Info

Publication number
JP3892666B2
JP3892666B2 JP2000392188A JP2000392188A JP3892666B2 JP 3892666 B2 JP3892666 B2 JP 3892666B2 JP 2000392188 A JP2000392188 A JP 2000392188A JP 2000392188 A JP2000392188 A JP 2000392188A JP 3892666 B2 JP3892666 B2 JP 3892666B2
Authority
JP
Japan
Prior art keywords
coal
quality evaluation
evaluation method
coke drum
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392188A
Other languages
Japanese (ja)
Other versions
JP2002195966A (en
Inventor
藤 公 児 斎
藤 健 次 加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000392188A priority Critical patent/JP3892666B2/en
Publication of JP2002195966A publication Critical patent/JP2002195966A/en
Application granted granted Critical
Publication of JP3892666B2 publication Critical patent/JP3892666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、室炉式コークス炉で乾留して冶金用コークスを製造する際の石炭品質評価方法に関する。
【0002】
【従来の技術】
従来の高炉用コークス製造に使用する原料炭には、粘結性が強い石炭(以下、粘結炭と記す)を多量に必要としていた。
【0003】
近年、高価な粘結炭の代わりに安価な非微粘結炭の利用が図られている。例えばコークスの生産性を大幅に向上させるとともに原料炭の多様化を図る方法として、原料炭を粘結炭と非微粘結炭とを別々に250−350℃まで予熱した後、サイクロン粗粉炭と微粉炭を分級する。その後、非微粘結炭の微粉炭を該当する非微粘結炭の軟化開始温度以上から最高流動温度以下まで急速加熱した後、前記非微粘結炭の微粉を熱間成形した後、粘結炭及び前記非微粘結炭の粗粉炭と混合してコークス炉へ装入し乾留する方法を、特開平8−209150号公報で提案した。このプロセスは非微粘結炭の使用割合が50%になり、非微粘結炭の多量使用にも適応できるプロセスである。このような非微粘結炭を多量に使用する技術においては、それに適した新しい石炭品質評価手段が必要となる。
【0004】
コークスの製造に最も重要な石炭の性質は、乾留時に石炭が溶融するときの粘結性であるが、この原料炭の粘結性を評価するための代表的な試験方法として、(1)プラストメーター法、(2)ボタン法、(3)ロガ法、(4)NMR法などが挙げられる。
【0005】
(1)プラストメーター法
プラストメーター法の代表例であるギーセラープラストメーター法は、以下ののような手順で行われる。まず、撹拌棒をセットしたレトルト中に石炭試料を装填し、その後金属浴中で規定の昇温速度で加熱する。この際撹拌棒に一定のトルクを与えておくと、石炭の軟化とともに撹拌棒が回転する。この回転挙動により軟化開始温度、最高流動度及び固化温度を測定する試験方法である。この試験方法では、非微粘結炭を対象とした場合、それらが元来軟化溶融時の粘結性が低いため、溶融しにくく、結果として撹拌棒の回転数が小さくなり検出精度が低下しやすいという問題点がある。
【0006】
(2)ボタン法
ボタン法はるつぼ膨張指数とも呼ばれ、250ミクロン以下の石炭試料を所定のるつぼに入れて、加熱し生成した残査であるコークスボタンを標準輪郭と比較して、石炭の粘結性を簡易評価するものである。この手法はコークスドラム強度を支配する粘結性と膨張率を同時に評価できる特徴があるが、定量性に乏しく、特に非微粘結炭は膨張率が低いために、適用が困難である。
【0007】
(3)ロガ法
この方法は、石炭を既定条件下で、標準無煙炭と一緒に850℃の炉で15分乾留した場合に、標準無煙炭と溶融接着できる能力を加熱残留物の強さで表した指数である。この方法は、粘結性の高い石炭に対して用いた場合には過剰流動が起こり、検出精度が低くなるという問題点があり、広範囲の炭種に対して必ずしも有効とは言えなかった。
【0008】
(4)NMR法
特開平9−328685号公報には、石炭に重水素置換された溶媒を膨潤させたのち、水素核の核磁気共鳴吸収スペクトルを測定し、石炭中の全水素の存在量を定量し、その中の水素結合に関与している水素の存在量比を算出することで、その量比とコークスドラム強度の関係から得られるコークス化特性によって石炭の品質を評価することを特徴とする石炭品質評価方法が開示されている。また特開平10−019814号公報では、石炭を重水素置換された溶媒に膨潤させたのち、水素核の核磁気共鳴吸収スペクトルを測定し、石炭中の横緩和時間の相対的に長い成分と短い成分の量を求め、その量比とコークスドラム強度の関係から、装入石炭の乾留後のコークスドラム強度を推定することを特徴とする石炭品質評価方法、及び石炭を重水素置換されたピリジン等の溶媒に膨潤させたのち、水素核の核磁気共鳴吸収スペクトルのエコー信号を測定し、その信号に対して適当な磁場勾配を与えることで得られるマイクロイメージング像で石炭中に存在する横緩和時間の相対的に長い成分の分布状態等を可視化、溶融し易い成分存在量や分布を評価し、コークスドラム強度との関係から装入石炭の乾留後のコークスドラム強度を推定することを特徴とする石炭品質評価方法が開示されている。これらの方法に代表されるNMR法は非常に有用な情報を与えるが、重水素溶媒での24時間以上の蒸気膨潤等の前処理が必要であり、簡便性に欠けていた。また溶媒が石炭に浸透した結果、その分子構造に微妙な影響を与えていた。更に石炭を構成する横緩和時間の比較的長い成分のみの情報しか与えず、横緩和時間の比較的短い成分に関する情報は得られなかった。また、測定に要する時間が長く、水素のみに限定された情報であるという問題点があった。
【0009】
特開平11−326248号公報には、石炭を重水素置換された溶媒で膨潤することなしに水素核の核磁気共鳴吸収スペクトルを測定し、石炭中の横緩和時間の相対的に長い成分と短い成分の量を求め、その量比とコークスドラム強度の関係から、装入石炭の乾留後のコークスドラム強度を推定することを特徴とする石炭品質評価方法があるが、多重パルスを使用する必要があり、測定装置に高い性能が要求され、且つ習熟した測定者が必要である。
【0010】
また、これらの提案されている手法は、すべて単一石炭によるもので、事前処理した石炭や配合した石炭、また別の材料を添加した石炭等には活用できないという問題点があった。
【0011】
【発明が解決しようとする課題】
粘結性は試料の昇温速度と密接な関係にあることが明らかにされているが、従来の上記の試験方法では試料を一定速度で加熱あるいは急速加熱しており、乾留中に昇温速度が変化する実炉とは条件が異なるため、正確に評価できないばかりか、加熱条件が粘結性の発現そのものに影響を及ぼす事も考えられる。
【0012】
また、粘結性がどの程度発現するかは、石炭組織成分中のビグリニットやエグジニットのような活性成分の存在割合に依存することが知られている。そこで、石炭組織成分を定量することで粘結性の評価が可能になるが、石炭組織成分の判別は偏光顕微鏡観察によって得られるため、その定量精度には問題がある。
【0013】
このため、粘結炭から非微粘結炭までの広い範囲の炭種に対応ができ、配合された石炭や化学処理された石炭等の区別なく、且つ定量的に評価でき、測定装置性能に依存しない石炭品質評価法の開発が必要とされている。
【0014】
即ち、本発明の目的は、粘結炭から非微粘結炭までの広い範囲の炭種に対応ができ、配合された石炭や化学処理された石炭等の区別なく、且つ定量的に評価できる測定装置性能に依存しない新しい石炭品質評価法を開発することである。
【0015】
【課題を解決するための手段】
本発明は、上記目的を達成するものである。したがって、本発明による石炭品質評価方法は、昇温させながら石炭が軟化溶融状態の水素核の核磁気共鳴イメージングを高温測定して、石炭の軟化溶融温度での石炭粒内における易動性水素成分の存在量と軟化溶融温度での横緩和時間の逆数から多変量解析法で算出した係数を求めて、該係数とコークスドラム強度との関係から石炭の乾留後のコークスドラム強度を推定すること、を特徴とするものである。
【0017】
そして、本発明は、好ましい態様として下記態様を含むものである。
前記石炭が事前加熱処理した単一石炭である上記石炭品質評価法またはコークス評価法。
前記石炭が事前にタールや化学試薬を添加した単一石炭である上記石炭品質評価法またはコークス評価法。
前記石炭が2種以上の石炭を配合した石炭試料群である上記石炭品質評価法またはコークス評価法。
前記石炭が2種以上石炭と高分子系材料を配合した石炭試料群である上記石炭品質評価法またはコークス評価法。
【0018】
【発明の実施の形態】
以下に、本発明の具体的な内容について説明する。
図1は炭化室内における石炭乾留過程を示す図である。1は燃焼室、2は珪石レンガ壁、3はコークス層、4は軟化溶融層、5は石炭層を各々示す。石炭は燃焼室から珪石レンガ壁を通じて加熱され、軟化溶融層を形成してその後再固化してコークスとなる。
【0019】
本発明者らは、図1に示すような石炭乾留過程を前提として、石炭の新たな品質評価方法の可能性を検討した。
例えば、表1に示す性状の石炭について、前処理をせずに、水素核のNMRイメージングを軟化溶融温度で測定する。ここで軟化溶融温度とは375℃から500℃の範囲である。
【0020】
【表1】

Figure 0003892666
測定のためには、試料を核磁気共鳴装置専用の試料管に挿入するだけで良く、試料管に入るサイズである数ミリメートル以下であれば、特に試料の大きさや形状には依存しない。
【0021】
測定の手法としては、水素90度のパルス幅は8μsec、エコー時間は50μsec〜3msec、繰り返し時間は5msec〜1secとして、積算回数は512回であった。データのサイズはX方向で512ポイント、Y方向で512ポイントで、Z方向は1〜512ポイントと設定する。その際に試料を3℃/min.で昇温させながら、X、Y、Zの3軸にそれぞれ、89gauss/cm、96gauss/cm、107gauss/cmの磁場勾配を短時間で与えるような方法で測定を行い、石炭の水素核NMRイメージング画像を得る。更に昇温させながら、同じ測定をすることで、石炭が軟化溶融状態のNMRイメージ画像を得る。得られた画像で、適当な横緩和時間での分布と易動性水素成分の存在量を算出する。ここで易動性水素成分の存在量は、軟化溶融温度域で、横緩和時間が100マイクロ秒以上である成分の量を意味する。ここで多重パルスや横緩和時間に関しては、特開平11−326248号公報中にその内容を記載している。またここでの事前処理は、石炭を予熱・加熱したり、溶媒等での処理をしたりすることを意味する。
【0022】
本発明者らが表1に示すようなコークス強度とはJIS2151に示されているコークスドラム強度(DI150 15)を表す。コークスの製造法は、特開平09−241649号公報に記載されている方法と同じである。
【0023】
本発明者らが石炭化度の異なる9種類の石炭について、本手法によって軟化溶融時の易動性水素成分の存在量と横緩和時間を算出して、易動性水素成分の存在量を横軸に、横緩和時間の逆数を縦軸にプロットしたものを図2に示す。同一炭種に関して、従来の石炭評価マップである、石炭化度を横軸に、ギーセラープラストメーターでの結果を縦軸にした、図3に示す指標と比較して、明確な差部化ができており、石炭性状を正確に反映した指標であることがわかる。
【0024】
新たに発明したマップに活用された易動性水素成分の存在量と横緩和時間の逆数から多変量解析法によって、係数を考案した。そしてその値とコークスドラム強度との関係について、5種類の石炭に関して調査した結果、両者の間には明確な関係があることを見いだした。つまり図4に示すように、石炭化度の異なる石炭、また図5は表1に示す石炭Bの加熱温度条件を変えて急速加熱処理した石炭で、また図6は石炭Bにタールをそれぞれ1、2、3、4、5%添加した石炭で、更に図7は石炭Bに、10000℃/分の速度で400℃まで急速加熱処理した石炭Bをそれぞれ10、20、30、40、50%ずつ配合した石炭群で、図8は石炭Bに高分子廃材をそれぞれ1、2、3、4、5%ずつ添加配合した石炭群での結果で、石炭の水素核NMRイメージング画像を、昇温させながら石炭が軟化溶融状態のNMRイメージ画像を得る。ここで高分子廃材とは廃高分子や廃タイヤ等を意味する。得られた画像で、適当な横緩和時間での分布と存在量を算出する。得られた画像で、適当な横緩和時間での分布と易動性水素成分の存在量を算出し、それを元に多変量解析法によって係数化した値とコークスドラム強度の関係を示したものである。図4、5、6、7、8からわかるように、これらの値と、それらの石炭をコークス化してJIS法にて測定したコークスドラム強度との間には、明確な関係がある。この値が小さくなればなるほど、コークスドラム強度は弱くなる。元来石炭粘結性の発現には、石炭分子での運動性が低下し、液体状態に近くなり、それが石炭粒内に拡がることが必要であり、石炭粒子内に存在する横緩和時間の長く分子運動の高い成分(易動性水素成分)が多いことは、粘結に関与する成分の上昇を意味する。その結果、石炭粒子内の粘結発現量が増加することで、コークスドラム強度が増加することに対応している。この関係を活用して、石炭が軟化溶融する温度で石炭粒内における易動性水素成分の存在量と横緩和時間の逆数から多変量解析法で算出した係数を求めて、それらの値とコークスドラム強度との関係から石炭の乾留後のコークスドラム強度を推定でき、石炭の品質評価に利用することが可能となる。
【0025】
具体的には、コークスドラム強度が既知である石炭を、石炭が軟化溶融状態のNMRイメージ画像を得る。得られた画像で、適当な横緩和時間での分布と易動性水素成分の存在量を算出する。石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から多変量解析法で算出した係数をあらかじめ求め、コークスドラム強度とそれらの値の検量線(例えば図4)を作成しておき、本法で水素核のNMRスペクトルを測定し、評価しようとする石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から算出した係数を求めて、あらかじめ作成した検量線から、その和の値に対応するコークスドラム強度を得ることで、石炭品質を評価できる。さらに、評価しようとする急速加熱処理を行った石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から多変量解析法で算出した係数を求めて、上記と同じようにあらかじめ求めた検量線(例えば図5)から、コークス化後のコークスドラム強度を推定し、急速加熱を行わない原炭と比較を行うことで、急速加熱による石炭品質改善効果を評価できる。また、化学溶剤やタール添加処理を行った石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から多変量解析法で算出した係数を求めて、上記と同じようにあらかじめ求めた検量線(例えば図6)から、コークス化後のコークスドラム強度を推定し、処理をしていない原炭と比較を行うことで、化学溶剤やタール添加による石炭品質改善効果を評価できる。更に2種以上の石炭を配合した石炭試料群の水素核の核磁気共鳴イメージングを高温測定して、石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から多変量解析法で算出した係数を求めて、上記と同じようにあらかじめ求めた検量線(例えば図7)から、それらの値とコークスドラム強度を推定し、配合されていない石炭の乾留後のコークスドラム強度を比較することで、石炭の配合効果を評価できる。また数種の石炭や高分子系材料を配合した石炭試料群の水素核の核磁気共鳴イメージングを高温測定して、石炭が軟化溶融する温度での横緩和時間とその石炭粒内における易動性水素成分の存在量から多変量解析法で算出した係数を求めて、上記と同じようにあらかじめ求めた検量線(例えば図8)から、それらの値とコークスドラム強度を推定し、なにも添加されていない石炭の乾留後のコークスドラム強度を比較することで、石炭への高分子廃材等の添加効果を評価できる。
【0026】
本手法は石炭を事前に溶媒等で前処理していないので、溶媒の影響を排除し、また分子レベルでの運動性を評価することで従来粒子間に存在する相互作用を取り除いて高い定量性が得られる。またシングルポイントサンプリング法を使用していることで、石炭中に多く存在するラジカルやマセラルの影響を除去した定量性の高い評価が可能である。
【0027】
【実施例】
次に、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
実施例1
表1に示すような性状の石炭に対して、3水準に急速加熱処理を行い、前記石炭を装入密度0.8t/m、1100℃一定の加熱温度で20時間乾留しコークスを製造した。
【0028】
測定手法は多重パルス法とシングルポイントサンプリング法を使用する。主な測定条件は、水素90度のパルス幅は8μsec、エコー時間は50μsec〜3msec、繰り返し時間は5msec〜1secとして、積算回数は512回であった。データのサイズはX方向で512ポイント、Y方向で512ポイントであった。Z方向は1〜512ポイントであった。その際に試料を3℃/min.で昇温させながら、X、Y、Zの3軸にそれぞれ、89gauss/cm、96gauss/cm、107gauss/cmの磁場勾配を短時間で与えて、フーリエ変換後、石炭の水素核NMRイメージング画像を得る。石炭が軟化溶融状態を示す350〜500℃でのNMRイメージ画像から、100μsec〜5msecの適当な横緩和時間での分布と易動性水素成分の存在量を図9から算出する。得られた値を係数とする。
【0029】
3水準で急速加熱処理した石炭を本発明による上記の方法で測定し、石炭の水素核NMRイメージング画像を、昇温させながら石炭が軟化溶融状態のNMRイメージ画像を得る。得られた画像で、適当な横緩和時間での分布と存在量を算出する。多変量解析法で得られた値を係数結果と図6から推定したコークス強度及び実際に測定したコークス強度を表2に示す。本発明により求めたコークスドラム強度と実際に測定したコークスドラム強度は良い一致を示しており、急速加熱処理が石炭に及ぼす影響を石炭を乾留することなく評価でき、従来法では検知できなかった非微粘結炭の品質向上効果を評価できた。
【0030】
【表2】
Figure 0003892666
【0031】
【発明の効果】
以上のように本発明は幅広い種類の石炭に対して、石炭をコークス化せずに精度高く品質を評価でき、石炭評価精度の向上、コークス製造コストの削減につながる方法であり、発明の技術的経済的な効果は非常に大きい。
【図面の簡単な説明】
【図1】炭化室内における石炭乾留過程を示す図
【図2】易動性水素成分の存在量を横軸に、横緩和時間の逆数を縦軸にプロットした本発明のマップ
【図3】石炭化度を横軸に、ギーセラープラストメーターでの結果を縦軸にした従来指標
【図4】石炭化度の異なる石炭における石炭の軟化溶融状態のNMRイメージ画像から得られた係数とコークスドラム強度の関係を表す図
【図5】同一炭種における急速加熱処理効果における石炭の軟化溶融状態のNMRイメージ画像から得られた係数とコークスドラム強度の関係を表す図
【図6】石炭Bに、タールをそれぞれ1、2、3、4、5%ずつ添加した石炭の軟化溶融状態のNMRイメージ画像から得られた係数とコークスドラム強度の関係を表す図
【図7】石炭Bに、400℃で急速加熱処理した石炭Bをそれぞれ10、20、30、40、50%ずつ配合した石炭群石炭の軟化溶融状態のNMRイメージ画像から得られた係数とコークスドラム強度の関係を表す図
【図8】石炭Bに、石炭Bに高分子廃材をそれぞれ1、2、3、4、5%ずつ添加配合した石炭群石炭の軟化溶融状態のNMRイメージ画像から得られた係数とコークスドラム強度の関係を表す図
【図9】石炭軟化溶融状態でのNMRイメージング画像(横緩和時間1.5msの分布;白く見える部分)を表した図であって、粒子構造を示す写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating coal quality when producing coke for metallurgy by dry distillation in a chamber furnace type coke oven.
[0002]
[Prior art]
Coal coal used in conventional coke production for blast furnaces requires a large amount of highly caking coal (hereinafter referred to as caking coal).
[0003]
In recent years, use of inexpensive non-caking coal instead of expensive caking coal has been attempted. For example, as a method of greatly improving coke productivity and diversifying coking coal, coking coal and non-coking coal are separately preheated to 250-350 ° C., and then cyclone coarse coal and Classify pulverized coal. Then, after rapidly heating the pulverized coal of the non-slightly caking coal from the softening start temperature of the non-slightly caking coal to the maximum flow temperature or less, Japanese Patent Laid-Open No. 8-209150 has proposed a method of mixing with coal powder and the coarse coal of the non-slightly caking coal, charging into a coke oven, and dry distillation. In this process, the usage rate of non-slightly caking coal becomes 50%, and it is a process that can be applied to a large amount of non-scaking coal. In such a technique using a large amount of non-coking coal, a new coal quality evaluation means suitable for it is required.
[0004]
The most important property of coal for the production of coke is caking property when coal melts during dry distillation. As a representative test method for evaluating the caking property of this raw coal, (1) plast Meter method, (2) button method, (3) Loga method, (4) NMR method and the like.
[0005]
(1) Plastometer method The Gieseler plastometer method, which is a typical example of the plastometer method, is performed in the following procedure. First, a coal sample is charged into a retort in which a stirring bar is set, and then heated in a metal bath at a specified temperature increase rate. At this time, if a constant torque is applied to the stirring rod, the stirring rod rotates as the coal softens. This is a test method for measuring the softening start temperature, maximum fluidity and solidification temperature by this rotational behavior. In this test method, when non-slightly caking coal is targeted, it is difficult to melt because of its inherently low caking property during softening and melting, resulting in a decrease in the number of revolutions of the stirring rod and a decrease in detection accuracy. There is a problem that it is easy.
[0006]
(2) Button method The button method is also called a crucible expansion index. A coal sample of 250 microns or less is placed in a predetermined crucible, and the coke button, which is the residue generated by heating, is compared with the standard contour, and the viscosity of the coal This is a simple evaluation of cohesion. Although this method has a feature that can simultaneously evaluate the caking property and the expansion rate that govern the strength of the coke drum, it has poor quantitativeness, and in particular, non-slightly caking coal has a low expansion rate and is difficult to apply.
[0007]
(3) Loga method In this method, when coal was carbonized for 15 minutes in a furnace at 850 ° C. with standard anthracite under the prescribed conditions, the ability to melt bond with standard anthracite was expressed by the strength of the heated residue. It is an index. When this method is used for coal with high caking properties, there is a problem that excessive flow occurs and detection accuracy is lowered, and it cannot be said that it is necessarily effective for a wide range of coal types.
[0008]
(4) NMR method In Japanese Patent Application Laid-Open No. 9-328685, after swelling a solvent deuterated into coal, the nuclear magnetic resonance absorption spectrum of a hydrogen nucleus is measured, and the abundance of total hydrogen in the coal is measured. It is characterized by evaluating the quality of coal by coking characteristics obtained from the relationship between the quantity ratio and coke drum strength by quantifying and calculating the abundance ratio of hydrogen involved in hydrogen bonds therein. A coal quality evaluation method is disclosed. In Japanese Patent Application Laid-Open No. 10-019814, after the coal is swollen in a deuterium-substituted solvent, the nuclear magnetic resonance absorption spectrum of the hydrogen nucleus is measured, and the component having a relatively long transverse relaxation time in the coal is short. Obtaining the amount of components, and estimating the coke drum strength after dry distillation of the charged coal from the relationship between the quantity ratio and the coke drum strength, pyridine with deuterium substituted coal, etc. The transverse relaxation time present in the coal in a micro-imaging image obtained by measuring the echo signal of the nuclear magnetic resonance absorption spectrum of the hydrogen nucleus and applying an appropriate magnetic field gradient to the signal after swelling in a solvent of It is possible to visualize the distribution status of relatively long components, evaluate the abundance and distribution of components that are easily melted, and estimate the coke drum strength after dry distillation of the charged coal from the relationship with the coke drum strength. Coal quality evaluation method is disclosed which is characterized in that. Although NMR methods represented by these methods give very useful information, pretreatment such as vapor swelling for 24 hours or more with a deuterium solvent is necessary and lacks convenience. Moreover, as a result of the solvent permeating coal, it had a subtle effect on its molecular structure. Furthermore, only the information on the component having a relatively long transverse relaxation time constituting the coal was given, and information on the component having a relatively short transverse relaxation time could not be obtained. In addition, there is a problem that the time required for the measurement is long and the information is limited to only hydrogen.
[0009]
In JP-A-11-326248, a nuclear magnetic resonance absorption spectrum of a hydrogen nucleus is measured without swelling coal with a deuterium-substituted solvent, and a component having a relatively long transverse relaxation time in the coal is short. There is a coal quality evaluation method characterized by determining the amount of components and estimating the coke drum strength after dry distillation of the charged coal from the relationship between the quantity ratio and the coke drum strength, but it is necessary to use multiple pulses In addition, high performance is required for the measuring apparatus, and a skilled measurer is required.
[0010]
In addition, these proposed methods are all based on a single coal, and cannot be used for pretreated coal, blended coal, or coal with another material added.
[0011]
[Problems to be solved by the invention]
It has been clarified that the caking property is closely related to the rate of temperature rise of the sample. However, in the conventional test method described above, the sample is heated at a constant rate or rapidly heated, and the rate of temperature rise during dry distillation. Since the conditions differ from the actual furnace in which the temperature changes, it is not only possible to accurately evaluate, but it is also possible that the heating conditions affect the expression of caking.
[0012]
In addition, it is known that how much caking property is expressed depends on the existing ratio of active ingredients such as biglinit and egnitite in coal tissue components. Therefore, it is possible to evaluate the caking property by quantifying the coal structure component. However, since the determination of the coal structure component can be obtained by observation with a polarizing microscope, there is a problem in the quantification accuracy.
[0013]
For this reason, it can cope with a wide range of coal types from caking coal to non-caking caking coal, can be evaluated quantitatively without distinction of blended coal or chemically treated coal, etc. There is a need to develop an independent coal quality assessment method.
[0014]
That is, the object of the present invention can be applied to a wide range of coal types from caking coal to non-caking caking coal, and can be quantitatively evaluated without distinction between blended coal and chemically treated coal. It is to develop a new coal quality evaluation method that does not depend on measuring device performance.
[0015]
[Means for Solving the Problems]
The present invention achieves the above object. Therefore, the coal quality evaluation method according to the present invention is a high-temperature measurement of nuclear magnetic resonance imaging of hydrogen nuclei in which the coal is softened and melted while raising the temperature, and a mobile hydrogen component in the coal grain at the softening and melting temperature of coal. Obtaining the coefficient calculated by the multivariate analysis method from the reciprocal of the transverse relaxation time at the softening and melting temperature, and estimating the coke drum strength after the carbonization of coal from the relationship between the coefficient and the coke drum strength , It is characterized by.
[0017]
And this invention includes the following aspect as a preferable aspect.
The coal quality evaluation method or the coke evaluation method, wherein the coal is a single coal that has been preheated.
The above coal quality evaluation method or coke evaluation method, wherein the coal is a single coal to which tar or a chemical reagent is added in advance.
The coal quality evaluation method or coke evaluation method, wherein the coal is a coal sample group in which two or more types of coal are blended.
The coal quality evaluation method or coke evaluation method, wherein the coal is a coal sample group in which two or more types of coal and a polymer material are blended.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The specific contents of the present invention will be described below.
FIG. 1 is a diagram showing a coal carbonization process in a carbonization chamber. 1 is a combustion chamber, 2 is a quartz brick wall, 3 is a coke layer, 4 is a softened and molten layer, and 5 is a coal layer. Coal is heated through the silica brick wall from the combustion chamber, forms a softened and molten layer, and then re-solidifies into coke.
[0019]
The present inventors examined the possibility of the new quality evaluation method of coal on the assumption of the coal carbonization process as shown in FIG.
For example, the NMR imaging of hydrogen nuclei is measured at the softening and melting temperature without pretreatment of the coal having the properties shown in Table 1. Here, the softening and melting temperature is in the range of 375 ° C to 500 ° C.
[0020]
[Table 1]
Figure 0003892666
For the measurement, it is only necessary to insert the sample into a sample tube dedicated to the nuclear magnetic resonance apparatus, and it does not depend on the size or shape of the sample as long as it is several millimeters or less, which is the size entering the sample tube.
[0021]
As a measurement method, the pulse width of 90 degrees hydrogen was 8 μsec, the echo time was 50 μsec to 3 msec, the repetition time was 5 msec to 1 sec, and the number of integrations was 512 times. The data size is set to 512 points in the X direction, 512 points in the Y direction, and 1 to 512 points in the Z direction. At that time, the sample was 3 ° C./min. Measured by a method that gives a magnetic field gradient of 89 gauss / cm, 96 gauss / cm, and 107 gauss / cm in a short time to the three axes of X, Y, and Z, respectively, while raising the temperature of the hydrogen nuclear NMR imaging of coal Get an image. Further, by performing the same measurement while raising the temperature, an NMR image image in which the coal is softened and melted is obtained. From the obtained image, the distribution at an appropriate lateral relaxation time and the abundance of the mobile hydrogen component are calculated. Here, the abundance of the mobile hydrogen component means the amount of the component whose transverse relaxation time is 100 microseconds or more in the softening and melting temperature range. Here, the contents of the multiplex pulse and the lateral relaxation time are described in JP-A-11-326248. The pretreatment here means preheating / heating coal or treating with a solvent or the like.
[0022]
The coke strength as shown in Table 1 by the present inventors represents the coke drum strength (DI 150 15 ) shown in JIS 2151. The method for producing coke is the same as the method described in Japanese Patent Application Laid-Open No. 09-241649.
[0023]
The present inventors calculated the abundance of mobile hydrogen components and lateral relaxation time during softening and melting for 9 types of coal with different degrees of coalification, and calculated the abundance of mobile hydrogen components. FIG. 2 shows a plot of the reciprocal of the transverse relaxation time on the axis and the vertical axis. Compared with the index shown in Fig. 3, which is the conventional coal evaluation map, the degree of coalification is plotted on the horizontal axis and the result of the Giselaer plastometer is plotted on the vertical axis for the same coal type. It can be seen that the index accurately reflects the properties of coal.
[0024]
The coefficient was devised by the multivariate analysis method from the abundance of the mobile hydrogen component utilized in the newly invented map and the reciprocal of the transverse relaxation time. As a result of investigating five types of coal regarding the relationship between the value and the coke drum strength, it was found that there is a clear relationship between the two. That is, as shown in FIG. 4, coals having different degrees of coalification, FIG. 5 is a coal that is rapidly heated by changing the heating temperature condition of coal B shown in Table 1, and FIG. Fig. 7 shows the coal added with 2, 3, 4, 5%, and Fig. 7 shows 10, 20, 30, 40, 50% of coal B rapidly heated to 400 ° C at a rate of 10,000 ° C / min. Fig. 8 shows the results of the coal group in which polymer waste material is added to coal B in increments of 1, 2, 3, 4 and 5%, respectively. An NMR image of the softened and melted state of the coal is obtained. Here, the polymer waste material means waste polymer, waste tire or the like. From the obtained image, the distribution and abundance at an appropriate lateral relaxation time are calculated. The obtained image shows the relationship between the coke drum strength and the value obtained by calculating the distribution at an appropriate lateral relaxation time and the abundance of the mobile hydrogen component, and then using the multivariate analysis method based on that. It is. As can be seen from FIGS. 4, 5, 6, 7, and 8, there is a clear relationship between these values and the coke drum strength measured by the JIS method after coking the coal. The smaller this value, the weaker the coke drum strength. In order to develop coal caking properties, it is necessary to reduce the mobility in the coal molecules to become close to the liquid state and to spread within the coal grains, and to reduce the lateral relaxation time existing in the coal particles. A long and high molecular motion component (a mobile hydrogen component) means an increase in the component involved in caking. As a result, the coke drum strength is increased by increasing the amount of caking in the coal particles. Using this relationship, the coefficient calculated by the multivariate analysis method was obtained from the reciprocal of the abundance of mobile hydrogen components in the coal grain and the transverse relaxation time at the temperature at which the coal softens and melts, and those values and coke are obtained. The coke drum strength after dry distillation of coal can be estimated from the relationship with the drum strength, and can be used for quality evaluation of coal.
[0025]
Specifically, an NMR image of coal with a known coke drum strength is softened and melted. From the obtained image, the distribution at an appropriate lateral relaxation time and the abundance of the mobile hydrogen component are calculated. The coefficient calculated by the multivariate analysis method is obtained in advance from the transverse relaxation time at the temperature at which the coal softens and melts and the abundance of mobile hydrogen components in the coal grains, and the coke drum strength and the calibration curve of these values (for example, Fig. 4) is prepared, the NMR spectrum of the hydrogen nucleus is measured by this method, the transverse relaxation time at the temperature at which the coal to be evaluated is softened and melted, and the abundance of mobile hydrogen components in the coal grain Coal quality can be evaluated by obtaining the coke drum strength corresponding to the sum value from the calibration curve prepared in advance. Furthermore, seeking the coefficient calculated by the multivariate analysis method from the lateral relaxation time at the temperature at which the coal subjected to rapid heat treatment to be evaluated softens and melts and the amount of mobile hydrogen components in the coal grain, The coke drum strength after coking is estimated from a calibration curve obtained in advance in the same manner as described above (for example, FIG. 5), and compared with raw coal not subjected to rapid heating, the coal quality improvement effect due to rapid heating can be improved. Can be evaluated. Further, the coefficient calculated by the multivariate analysis method from the lateral relaxation time at the temperature at which the coal subjected to the chemical solvent and tar addition treatment is softened and melted and the abundance of the mobile hydrogen component in the coal grain is obtained. In the same way as above, the coke drum strength after coking is estimated from the calibration curve obtained in advance (for example, Fig. 6), and compared with raw coal that has not been processed, thereby improving coal quality by adding chemical solvents and tar. The effect can be evaluated. In addition, the nuclear magnetic resonance imaging of hydrogen nuclei in a coal sample group containing two or more types of coal was measured at high temperature, the transverse relaxation time at the temperature at which the coal softens and melts, and the presence of mobile hydrogen components in the coal grains. The coefficient calculated by the multivariate analysis method is obtained from the quantity, and the value and coke drum strength are estimated from the calibration curve obtained in advance in the same manner as described above (for example, FIG. 7). By comparing the strength of the coke drum, the blending effect of coal can be evaluated. In addition, we measured the nuclear magnetic resonance imaging of hydrogen nuclei in coal samples containing several types of coal and polymer materials at high temperature, and found that the transverse relaxation time at the temperature at which the coal softens and melts and its mobility in the coal grains. The coefficient calculated by the multivariate analysis method is obtained from the abundance of the hydrogen component, and the value and coke drum strength are estimated from the calibration curve obtained in advance in the same manner as described above (for example, FIG. 8). By comparing the strength of coke drum after carbonization of uncoalted coal, the effect of adding polymer waste to coal can be evaluated.
[0026]
Since this method does not pre-treat coal with a solvent or the like in advance, it eliminates the influence of the solvent, and evaluates the mobility at the molecular level to eliminate the interaction between conventional particles and achieve high quantitative performance. Is obtained. In addition, by using the single point sampling method, it is possible to evaluate with high quantitativeness by removing the influence of radicals and macerals that are abundant in coal.
[0027]
【Example】
EXAMPLES Next, although an Example demonstrates this invention, this invention is not limited to this.
Example 1
Coal having a property as shown in Table 1 was subjected to rapid heat treatment at three levels, and the coal was subjected to carbonization at a charging temperature of 0.8 t / m 3 and a constant heating temperature of 1100 ° C. for 20 hours to produce coke. .
[0028]
The measurement method uses multiple pulse method and single point sampling method. The main measurement conditions were such that the pulse width of 90 ° hydrogen was 8 μsec, the echo time was 50 μsec to 3 msec, the repetition time was 5 msec to 1 sec, and the number of integrations was 512 times. The data size was 512 points in the X direction and 512 points in the Y direction. The Z direction was 1 to 512 points. At that time, the sample was 3 ° C./min. While increasing the temperature at 3 °, magnetic field gradients of 89 gauss / cm, 96 gauss / cm, and 107 gauss / cm are given to the three axes of X, Y, and Z in a short time, respectively, and after Fourier transform, a hydrogen nuclear NMR imaging image of coal is obtained. obtain. From the NMR image image at 350 to 500 ° C. in which the coal is softened and melted, the distribution and the abundance of the mobile hydrogen component in an appropriate transverse relaxation time of 100 μsec to 5 msec are calculated from FIG. The obtained value is used as a coefficient.
[0029]
Coal that has been rapidly heat-treated at three levels is measured by the above-described method according to the present invention, and an NMR image image of the coal in a softened and melted state is obtained while raising the temperature of the hydrogen nuclear NMR imaging image of the coal. From the obtained image, the distribution and abundance at an appropriate lateral relaxation time are calculated. Table 2 shows the coefficient values obtained from the multivariate analysis method, the coke strength estimated from FIG. 6, and the actually measured coke strength. The coke drum strength obtained according to the present invention and the actually measured coke drum strength show a good agreement, and the effect of rapid heat treatment on coal can be evaluated without dry distillation of coal, which could not be detected by conventional methods. The quality improvement effect of fine caking coal was evaluated.
[0030]
[Table 2]
Figure 0003892666
[0031]
【The invention's effect】
As described above, the present invention is a method that can accurately evaluate the quality of a wide variety of coals without coking the coal, leading to improved coal evaluation accuracy and reduced coke production costs. The economic effect is very large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a coal carbonization process in a carbonization chamber. FIG. 2 is a map of the present invention in which the abundance of mobile hydrogen components is plotted on the horizontal axis and the reciprocal of the transverse relaxation time is plotted on the vertical axis. Conventional index with the horizontal axis representing the degree of conversion and the vertical axis representing the result of the Gisela plastometer. [Fig. 4] Coefficient and coke drum strength obtained from the NMR image of the softened and melted state of coal in coal with different degrees of coalification. FIG. 5 is a diagram showing the relationship between the coefficient obtained from the NMR image of the softened and melted state of the coal and the coke drum strength in the effect of rapid heat treatment in the same coal type. FIG. Fig. 7 shows the relationship between the coefficient obtained from the NMR image of the softened and melted state of coal with 1, 2, 3, 4 and 5% added, respectively, and the strength of the coke drum. Heat treatment Fig. 8 is a graph showing the relationship between the coefficient obtained from the NMR image of the softened and melted state of coal group coal containing 10%, 20%, 30%, 40%, and 50% of the coal B and the strength of the coke drum. Figure showing the relationship between coke drum strength and coefficient obtained from NMR image of softened and melted state of coal group coal containing polymer waste material added to coal B by 1, 2, 3, 4 and 5% respectively. 9 is a diagram showing an NMR imaging image (distribution of transverse relaxation time of 1.5 ms; a portion that appears white) in a softened and melted state of coal, showing a particle structure.

Claims (5)

昇温させながら石炭が軟化溶融状態の水素核の核磁気共鳴イメージングを高温測定して、石炭の軟化溶融温度での石炭粒内における易動性水素成分の存在量と軟化溶融温度での横緩和時間の逆数から多変量解析法で算出した係数を求めて、該係数とコークスドラム強度との関係から石炭の乾留後のコークスドラム強度を推定することを特徴とする、石炭品質評価方法。High temperature measurement of nuclear magnetic resonance imaging of hydrogen nuclei with softened and melted coal while raising temperature, abundance of mobile hydrogen components in coal grains at softening and melting temperature of coal and lateral relaxation at softening and melting temperature A coal quality evaluation method characterized by obtaining a coefficient calculated by a multivariate analysis method from a reciprocal of time and estimating a coke drum strength after dry distillation of coal from a relationship between the coefficient and the coke drum strength . 前記石炭が事前加熱処理した単一石炭である請求項1に記載石炭品質評価方法。The coal quality evaluation method according to claim 1, wherein the coal is a single coal that has been preheated. 前記石炭が事前にタールや化学試薬を添加した単一石炭である請求項1に記載の石炭品質評価方法。The coal quality evaluation method according to claim 1, wherein the coal is a single coal to which tar or a chemical reagent is added in advance. 前記石炭が2種以上の石炭を配合した石炭試料群である請求項1に記載の石炭品質評価方法。The coal quality evaluation method according to claim 1, wherein the coal is a coal sample group in which two or more kinds of coal are blended. 前記石炭が2種以上石炭と高分子系材料を配合した石炭試料群である請求項1に記載の石炭品質評価方法。The coal quality evaluation method according to claim 1, wherein the coal is a coal sample group in which two or more kinds of coal and a polymer material are blended.
JP2000392188A 2000-12-25 2000-12-25 Coal quality evaluation method Expired - Fee Related JP3892666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392188A JP3892666B2 (en) 2000-12-25 2000-12-25 Coal quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392188A JP3892666B2 (en) 2000-12-25 2000-12-25 Coal quality evaluation method

Publications (2)

Publication Number Publication Date
JP2002195966A JP2002195966A (en) 2002-07-10
JP3892666B2 true JP3892666B2 (en) 2007-03-14

Family

ID=18858216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392188A Expired - Fee Related JP3892666B2 (en) 2000-12-25 2000-12-25 Coal quality evaluation method

Country Status (1)

Country Link
JP (1) JP3892666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053141A (en) * 2010-12-09 2011-05-11 中国矿业大学 Device and method for testing influence of externally added water on desorption characteristic of gas-containing coal body
CN103952166A (en) * 2014-05-09 2014-07-30 武汉钢铁(集团)公司 Coal quality sorting and coal distributing method based on cokeability of coking coal

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395536C (en) * 2006-12-01 2008-06-18 太原理工大学 Method for research carbocoal constriction performance in pyrogenation processing of coal
KR101300941B1 (en) * 2009-03-10 2013-08-27 신닛테츠스미킨 카부시키카이샤 Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
CN104330542B (en) * 2014-11-10 2016-04-20 武汉钢铁(集团)公司 Height based on charred coal organization structure goes bad the coal property evaluation of coking coal and application method
CN106501481B (en) * 2015-09-08 2018-11-23 上海梅山钢铁股份有限公司 A kind of evaluation method of rich coal coal quality
CN106228011B (en) * 2016-07-22 2019-01-01 武汉钢铁有限公司 The evaluation method of coke quality steady
KR102147292B1 (en) * 2018-07-12 2020-08-24 주식회사 포스코 Apparatus and method for cokes quality monitoring
WO2020195863A1 (en) * 2019-03-28 2020-10-01 Jfeスチール株式会社 Method for producing coal mixture and method for producing coke
CN111999334B (en) * 2020-03-20 2021-12-28 中国科学院过程工程研究所 Chocolate melting temperature detection method
CN113029995B (en) * 2021-03-10 2022-09-27 太原理工大学 Linear frequency modulation coal rock radiation detection device and method
CN113238022B (en) * 2021-05-07 2023-05-02 重庆钢铁股份有限公司 Evaluation method for cost performance of coking coal
CN114088710A (en) * 2021-11-19 2022-02-25 黑龙江建龙化工有限公司 Process method for judging source of metallurgical coke non-molten material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053141A (en) * 2010-12-09 2011-05-11 中国矿业大学 Device and method for testing influence of externally added water on desorption characteristic of gas-containing coal body
CN102053141B (en) * 2010-12-09 2013-07-17 中国矿业大学 Method for testing desorption characteristic of externally added water on gas-containing coal body
CN103952166A (en) * 2014-05-09 2014-07-30 武汉钢铁(集团)公司 Coal quality sorting and coal distributing method based on cokeability of coking coal

Also Published As

Publication number Publication date
JP2002195966A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP3892666B2 (en) Coal quality evaluation method
Wang et al. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction
TWI490325B (en) Method for blending coal and mixing of carbon and coke
JP2001324460A (en) Quality evaluation method for coal
Ovalles et al. Predicting coke morphology in Delayed Coking from feed characteristics
JP4132710B2 (en) Blast furnace coke strength estimation method
Schawe Comments on isothermal crystallization kinetics of polymers: Polypropylene at high supercooling
WO2002077123A1 (en) Method for producing coke for blast furnace having high strength
JP2000321226A (en) Method for evaluating quality of coal
CN117007592A (en) Coking coal coking characteristic prediction method
JPH1019814A (en) Method for evaluating quality of coal
JP2000088778A (en) Evaluation method for quality of coal
JP7067226B2 (en) How to evaluate coke strength
JPH09241649A (en) Appraisal of coal quality
Buø et al. Reactivity and petrography of cokes for ferrosilicon and silicon production
JP6879020B2 (en) How to estimate coke shrinkage
JPH09328685A (en) Quality evaluation of coal
JP3914641B2 (en) Coke strength estimation method
RU2675567C1 (en) Coal assessment method and the coke production method
JPH11349957A (en) Estimation of coke strength
CA1164247A (en) Coker feedstock analysis method
Romovacek The Influence of solid Particles in Pitch on the Preparation and baking of the Carbon Blocks
JP2003064379A (en) Method for coke production
JPH09279150A (en) Rapid heating of blended coal
Lewis et al. Quantitative determination of anisotropic domain size in mesophase pitch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R151 Written notification of patent or utility model registration

Ref document number: 3892666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees