JPH09279150A - Rapid heating of blended coal - Google Patents
Rapid heating of blended coalInfo
- Publication number
- JPH09279150A JPH09279150A JP9083196A JP9083196A JPH09279150A JP H09279150 A JPH09279150 A JP H09279150A JP 9083196 A JP9083196 A JP 9083196A JP 9083196 A JP9083196 A JP 9083196A JP H09279150 A JPH09279150 A JP H09279150A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- rapid heating
- heating
- blended coal
- blended
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Coke Industry (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非微粘結炭を含む
配合石炭を急速加熱して改質した後に室炉式コークス炉
で乾留して冶金用コークスを製造する配合石炭の急速加
熱方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rapid heating method for blended coal, which comprises rapidly heating and reforming blended coal containing non-caking coal and then carbonizing it in a chamber furnace type coke oven to produce metallurgical coke. Regarding
【0002】[0002]
【従来の技術】従来の高炉用コークス製造に使用する原
料炭には粘結性が強い石炭(以下、粘結炭と記す)を多
量に必要としていた。2. Description of the Related Art A large amount of coal having a strong caking property (hereinafter referred to as caking coal) has been required as a raw material coal used for conventional coke production for a blast furnace.
【0003】近年、高価な粘結炭の代わりに安価な非微
粘結炭の利用が図られている。例えば、コークスの生産
性を大幅に向上させるとともに原料炭の多様化を図る方
法が考えられている。本発明者らは、非微粘結炭を25
0〜350℃まで加熱した後、非微粘結炭の微粉炭部分
を該非微粘結炭の軟化開始温度以上から最高流動温度以
下まで急速加熱した後、前記非微粘結炭の微粉を熱間成
形し、粘結炭及び前記非微粘結炭の粗粉炭部分と混合し
てコークス炉へ装入して乾留する方法を特願平07−0
15959号で提案した。このプロセスは非微粘結炭の
使用割合が50%まで増加させることができ、非微粘結
炭の多量使用にも適用できるプロセスである。このよう
な配合石炭の急速加熱において、急速加熱温度が最適温
度より低い場合には石炭が充分に改質されず粘結性が向
上しない、また目的温度より高い場合には、炭化室に装
入される前に粘結性が出現し、炭化室内でのコークス化
に悪影響を及ぼす。また、石炭の種類あるいは配合炭の
配合割合により粘結性向上効果が得られる最適な急速加
熱温度が異なっており、炭種毎のあるいは配合炭の配合
割合による急速加熱条件の最適化が必要である。In recent years, inexpensive non-fine coking coal has been used instead of expensive coking coal. For example, a method of significantly improving coke productivity and diversifying coking coal has been considered. The present inventors have added 25
After heating to 0 to 350 ° C., the pulverized coal portion of the non-caking coal is rapidly heated from the softening start temperature of the non-caking coal to the maximum flow temperature or less, and then the non-caking coal fine powder is heated. Japanese Patent Application No. 07-0. A method of performing hot forming, mixing with coking coal and the coarse coal portion of the non-fine coking coal, charging the mixture into a coke oven, and carrying out dry distillation.
Proposed in No. 15959. This process can increase the usage rate of non-caking coal to 50%, and is a process that can be applied to a large amount of non-caking coal. In such rapid heating of blended coal, when the rapid heating temperature is lower than the optimum temperature, the coal is not sufficiently reformed and the caking property is not improved, and when it is higher than the target temperature, it is charged into the carbonization chamber. Caking appears before being treated, which adversely affects coking in the carbonization chamber. In addition, the optimum rapid heating temperature at which the effect of improving caking is obtained differs depending on the type of coal or the blending ratio of the coal blend, and it is necessary to optimize the rapid heating conditions for each coal type or the blending ratio of the blend coal. is there.
【0004】石炭の急速加熱条件の最適化は、急速加熱
による改質を行った石炭に対して粘結性の評価を行う
か、あるいは改質した石炭を乾留してコークス強度を評
価する必要がある。In order to optimize the rapid heating conditions of coal, it is necessary to evaluate the caking property of the coal modified by rapid heating or to evaluate the coke strength by carbonizing the modified coal. is there.
【0005】石炭の粘結性を評価するための代表的な試
験方法としては従来より、プラストメータ法、ボタン
法、などが用いられてきた。As a typical test method for evaluating the caking property of coal, the plastometer method, the button method, etc. have been conventionally used.
【0006】プラストメータ法の代表例であるギーセラ
ープラストメータ法は以下のような手順で行われる。ま
ず、攪拌棒をセットしたレトルト中に石炭試料を装填
し、その後、金属浴中で規定の昇温速度で加熱する。こ
の際攪拌棒に一定のトルクを与えておくと、石炭の軟化
とともに攪拌棒が回転する。この回転挙動により軟化開
始温度、最高流動度および再固化温度を測定する試験方
法である。The Gieseler plastometer method, which is a typical example of the plastometer method, is performed in the following procedure. First, a coal sample is loaded into a retort in which a stirring rod is set, and then heated in a metal bath at a prescribed heating rate. At this time, if a constant torque is applied to the stirring rod, the stirring rod rotates as the coal softens. It is a test method for measuring the softening start temperature, the maximum fluidity and the resolidification temperature by this rotation behavior.
【0007】ボタン法は、るつぼ膨張指数とも呼ばれ、
250μm以下の石炭試料を所定のるつぼに入れ、加熱
し生成した加熱残渣であるコークスボタンを標準輪郭と
比較して、石炭の粘結性を簡易評価するものである。こ
の手法はコークス強度を支配する粘結性と膨張率を同時
に評価できる特徴がある。The button method is also called a crucible expansion index,
A coal sample having a size of 250 μm or less is put in a predetermined crucible, and a coke button, which is a heating residue generated by heating, is compared with a standard contour to easily evaluate the caking property of coal. This method has the characteristic that the cohesiveness that governs the coke strength and the expansion rate can be evaluated simultaneously.
【0008】また、コークス強度により最適加熱条件を
評価する場合には、様々な加熱条件で事前処理した石炭
について同一の乾留条件でコークスを製造しコークス強
度を求め、加熱条件の評価を行う。When the optimum heating conditions are evaluated by the coke strength, the coke is produced under the same carbonization conditions for coal pretreated under various heating conditions, the coke strength is obtained, and the heating conditions are evaluated.
【0009】[0009]
【発明が解決しようとする課題】従来より使用されてい
る石炭品質評価法のうち、ギーセラプラストメータ法で
は非微粘結炭を対象とした場合、回転数が小さくなり検
出精度が低下する。また事前処理を行った粘結炭につい
ては過剰流動のため測定ができなくなる場合が生じる。
ボタン法は定量性に乏しく、特に膨張率の低い非微粘結
炭には適用できない。従ってこれらの手法を加熱条件の
評価に用いることはできない。Among the coal quality evaluation methods that have been conventionally used, the non-slightly caking coal in the Giesela plastometer method has a low rotation speed and a low detection accuracy when it is targeted for non-caking coal. In addition, the caking coal that has been pretreated may not be able to be measured due to excessive flow.
The button method has poor quantitative properties and cannot be applied to non-slightly caking coal with a low expansion coefficient. Therefore, these methods cannot be used for evaluation of heating conditions.
【0010】また改質した石炭を乾留してコークス強度
より急速加熱条件を評価する場合、加熱条件毎に、同一
条件で乾留してコークス強度を比較する必要があり、測
定には労力と時間を必要とする。Further, in the case of dry-distilling the reformed coal and evaluating the rapid heating condition from the coke strength, it is necessary to dry-distill under the same condition and compare the coke strength for each heating condition. I need.
【0011】本発明は、簡便な手法で石炭の急速加熱に
よる改質効果を評価でき、最適な急速加熱条件が容易に
求められる方法を提供することを目的とする。It is an object of the present invention to provide a method capable of evaluating the reforming effect of rapid heating of coal by a simple method and easily obtaining optimum rapid heating conditions.
【0012】[0012]
【課題を解決するための手段】本発明は上記の課題を解
決するために、 (1)非微粘結炭を含む配合石炭を急速加熱して改質す
る際に、急速加熱前後の配合石炭の電子スピン共鳴スペ
クトルを測定し、急速加熱前に対する急速加熱後の配合
炭の電子スピン共鳴スペクトルのスピン濃度の相対値が
所定値以上となるように急速加熱の昇温速度及びまたは
加熱温度を設定して急速加熱することを特徴とする配合
石炭の急速加熱方法である。Means for Solving the Problems In order to solve the above problems, the present invention is as follows: (1) When coal-containing coal containing non-caking coal is rapidly heated and reformed, coal-containing coal before and after rapid heating The electron spin resonance spectrum of is measured, and the heating rate and / or heating temperature for rapid heating are set so that the relative value of the spin concentration in the electron spin resonance spectrum of the blended coal after rapid heating is greater than or equal to the specified value. It is a rapid heating method for blended coal, which is characterized by rapidly heating.
【0013】(2)所定値を1.2とすることを特徴と
する(1)項記載の配合石炭の急速加熱方法である。(2) The rapid heating method for blended coal according to the item (1), wherein the predetermined value is 1.2.
【0014】[0014]
【発明の実施の形態】以下、その具体的内容について説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific contents will be described below.
【0015】図1は本発明に関する石炭急速加熱装置を
示す図である。1は石炭ホッパ、2は熱風発生機、3は
気流加熱塔、4はサイクロン、5は加熱炭ホッパ、6は
石炭急速加熱装置を用いて改質した石炭を装入するコー
クス炉をそれぞれ示す。FIG. 1 is a diagram showing a coal rapid heating apparatus according to the present invention. 1 is a coal hopper, 2 is a hot air generator, 3 is an air flow heating tower, 4 is a cyclone, 5 is a heated coal hopper, and 6 is a coke oven for charging coal reformed using a rapid coal heating device.
【0016】本発明者らが各温度まで急速加熱した非微
粘結炭を含む配合石炭についてESR(電子スピン共
鳴)スペクトルを測定し、スピン濃度について調査した
結果、急速加熱する事で配合石炭のスピン濃度が変化す
ることが分かり、スピン濃度で配合石炭の急速加熱によ
る改質効果の評価ができることが分かった。そこで、急
速加熱前に対する急速加熱後のスピン濃度の相対値とコ
ークス強度との関係についてさらに詳細に調査した結
果、コークス強度が向上している急速加熱条件では、前
記スピン濃度の相対値も一定の値以上となることが明ら
かとなり、スピン濃度の相対値を基にして急速加熱温度
または昇温速度等の急速加熱条件を最適化できることを
見い出し、本発明に至った。The inventors of the present invention measured the ESR (electron spin resonance) spectrum of blended coal containing non-fine coking coal rapidly heated to each temperature and investigated the spin concentration. As a result, rapid heating of blended coal It was found that the spin concentration changed, and it was found that the spin concentration can be used to evaluate the reforming effect of rapid heating of blended coal. Therefore, as a result of further detailed investigation on the relationship between the relative value of the spin concentration after the rapid heating and the coke strength before the rapid heating, the relative value of the spin concentration is also constant under the rapid heating condition in which the coke strength is improved. It became clear that the value was equal to or more than the value, and it was found that the rapid heating conditions such as the rapid heating temperature or the heating rate can be optimized based on the relative value of the spin concentration, and the present invention was completed.
【0017】本発明におけるスピン濃度とは、ESR測
定装置から得られる図2の様なマイクロ波の吸収曲線の
一次微分形の強度の平均値「(A+B)/2」とピーク
からピーク間の幅「H」との積である「H×(A+B)
/2」を意味する。スピン濃度は石炭中のフリーラジカ
ルの濃度と相関があり、フリーラジカルの濃度は低分子
成分の熱分解現象や、分解した低分子成分を溶媒として
更に高分子成分を溶解する現象等、石炭が粘結性を発現
する要因と関係がある。The spin concentration in the present invention means the average value "(A + B) / 2" of the intensity of the first derivative of the microwave absorption curve as shown in FIG. 2 obtained from the ESR measuring device and the width between peaks. “H × (A + B)”, which is the product of “H”
/ 2 ". The spin concentration correlates with the concentration of free radicals in coal. It is related to the factors that develop connectivity.
【0018】本発明者らが表1に示すような種々の配合
石炭についてガス温度とガス流量をそれぞれ変えた急速
加熱条件で配合石炭の改質を行い、急速加熱前後の石炭
についてESRスペクトルを測定し、急速加熱前に対す
る急速加熱後のスピン濃度の相対値を求め、さらに急速
加熱後の配合石炭を乾留してコークス強度(JIS21
51に示されているドラム強度(DI150 15 ))との関
係を調査した結果、図3に示すようにスピン濃度の相対
値が1.2以上となれば、乾留後のコークス強度が80
を超えることが分かった。これらスピン濃度の測定に必
要な時間は1試料あたりわずかに数分であり、測定手順
も非常に簡便である。 この様にスピン濃度の相対値が
一定の値以上となるか否かを判定することで、容易に急
速加熱条件を評価でき、最適な加熱条件を求めることが
できる。The inventors of the present invention reformed the blended coal of various blended coals shown in Table 1 under rapid heating conditions in which the gas temperature and the gas flow rate were changed, and measured the ESR spectra of the coals before and after rapid heating. Then, the relative value of the spin concentration after the rapid heating is calculated with respect to that before the rapid heating, and the blended coal after the rapid heating is further carbonized to obtain the coke strength (JIS 21
As a result of investigating the relationship with the drum strength (DI 150 15 ) shown in 51, as shown in FIG. 3, if the relative value of the spin concentration was 1.2 or more, the coke strength after carbonization was 80.
It turned out to exceed. The time required for measuring these spin concentrations is only a few minutes per sample, and the measurement procedure is very simple. In this way, by determining whether or not the relative value of the spin concentration exceeds a certain value, the rapid heating condition can be easily evaluated, and the optimum heating condition can be obtained.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【実施例】以下に実施例により本発明の効果を説明す
る。EXAMPLES The effects of the present invention will be described below with reference to examples.
【0021】(実施例1)表2に示す非微粘結炭を含む
配合炭の最適な急速加熱条件を決定するために、表3に
示すような5水準の急速加熱条件で石炭の改質を行い、
急速加熱前後のスピン濃度の測定を行い、急速加熱前に
対する急速加熱後のスピン濃度の相対値を求めた。スピ
ン濃度を測定するためのESR測定には、日本電子製電
子スピン共鳴装置JES FE3Xを用いた。中心磁場
3370 GAUSS 、磁場掃引幅±50 GAUSS、磁場変調幅 0.6
8 GAUSS の測定条件でESRスペクトルを測定し、スピ
ン濃度を求めた。(Example 1) In order to determine the optimum rapid heating conditions for blended coal containing non-slightly caking coal shown in Table 2, reforming of coal under 5 levels of rapid heating conditions as shown in Table 3 And then
The spin concentration before and after the rapid heating was measured, and the relative value of the spin concentration after the rapid heating was calculated relative to that before the rapid heating. An electron spin resonance device JES FE3X manufactured by JEOL Ltd. was used for ESR measurement for measuring the spin concentration. Central magnetic field
3370 GAUSS, magnetic field sweep width ± 50 GAUSS, magnetic field modulation width 0.6
The ESR spectrum was measured under the measurement conditions of 8 GAUSS to determine the spin concentration.
【0022】その結果、表3に示すようにB,C,Dの
3水準はスピン濃度の相対値は1.2以上で、A,Eの
2水準はスピン濃度の相対値が1.2未満であり、図3
のスピン濃度の相対値とコークス強度の関係より、B,
C,Dの急速加熱条件は適しているが、A,Eの急速加
熱条件は適していないと判定できる。As a result, as shown in Table 3, the three levels of B, C and D have a relative spin concentration of 1.2 or more, and the two levels of A and E have a relative spin concentration of less than 1.2. And FIG.
From the relationship between the relative value of the spin concentration and the coke strength of B,
It can be judged that the rapid heating conditions of C and D are suitable, but the rapid heating conditions of A and E are not suitable.
【0023】A〜Eの5水準の条件で急速加熱した後
に、同一の乾留条件でコークス化してコークス強度を測
定した結果、表3に示すようにB,C.Dの3水準は高
いコークス強度を示し、A,Eの2水準は低いコークス
強度を示した。これらの結果からスピン濃度の相対値を
基準にして配合炭の急速加熱条件を最適化できることが
確認できた。After rapid heating under the conditions of 5 levels A to E, coking was conducted under the same dry distillation conditions to measure the coke strength. As shown in Table 3, B, C. Three levels of D showed high coke strength, and two levels of A and E showed low coke strength. From these results, it was confirmed that the rapid heating condition of the blended coal can be optimized based on the relative value of the spin concentration.
【0024】以上のように従来では急速加熱条件を最適
化するためには、急速加熱条件の水準毎に急速加熱した
配合炭をコークス炉で乾留しコークス強度を求めること
で行っていたが、本発明により簡便、迅速にかつ精度良
く、急速加熱条件を最適化することができた。As described above, in the past, in order to optimize the rapid heating conditions, the blended coal rapidly heated for each level of the rapid heating conditions was carbonized in a coke oven to obtain the coke strength. The invention has made it possible to optimize the rapid heating conditions simply, quickly and accurately.
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【発明の効果】以上のように本発明は急速加熱処理を行
った配合石炭についてその急速加熱条件を簡便にかつ精
度良く評価でき、コークス製造コストの削減につながる
方法に関するものであり、発明の技術的経済的な効果は
非常に大きい。INDUSTRIAL APPLICABILITY As described above, the present invention relates to a method for easily and accurately evaluating the rapid heating conditions of blended coal that has been subjected to rapid heating treatment, which leads to a reduction in coke production cost. The economic and economic effects are very large.
【図1】石炭急速加熱装置を示す図。FIG. 1 is a diagram showing a coal rapid heating device.
【図2】ESR測定装置より得られるESRスペクトル
を模式的に表す図。FIG. 2 is a diagram schematically showing an ESR spectrum obtained by an ESR measuring device.
【図3】スピン濃度とコークス強度との関係を示す図。FIG. 3 is a diagram showing a relationship between spin concentration and coke strength.
1:石炭ホッパ 2:熱風発生機 3:気流加熱塔 4:サイクロン 5:加熱炭ホッパ 6:石炭急速加熱装置 1: Coal hopper 2: Hot air generator 3: Air flow heating tower 4: Cyclone 5: Heating coal hopper 6: Coal rapid heating device
Claims (2)
て改質する際に、急速加熱前後の配合石炭の電子スピン
共鳴スペクトルを測定し、急速加熱前に対する急速加熱
後の配合炭の電子スピン共鳴スペクトルのスピン濃度の
相対値が所定値以上となるように急速加熱の昇温速度及
びまたは加熱温度を設定して急速加熱することを特徴と
する配合石炭の急速加熱方法。1. When the coal blend containing non-slightly caking coal is rapidly heated and reformed, the electron spin resonance spectra of the coal blend before and after the rapid heating are measured, and the coal blend after the rapid heating before and after the rapid heating. A rapid heating method for blended coal, characterized in that a rapid heating rate is set and / or a heating temperature is set so that the relative value of the spin concentration of the electron spin resonance spectrum is equal to or higher than a predetermined value.
請求項1記載の配合石炭の急速加熱方法。2. The rapid heating method for blended coal according to claim 1, wherein the predetermined value is 1.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9083196A JPH09279150A (en) | 1996-04-12 | 1996-04-12 | Rapid heating of blended coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9083196A JPH09279150A (en) | 1996-04-12 | 1996-04-12 | Rapid heating of blended coal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09279150A true JPH09279150A (en) | 1997-10-28 |
Family
ID=14009542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9083196A Withdrawn JPH09279150A (en) | 1996-04-12 | 1996-04-12 | Rapid heating of blended coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09279150A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001790A (en) * | 2011-06-16 | 2013-01-07 | Nippon Steel & Sumitomo Metal Corp | Method of determining carbonization condition of charcoal material fuel for sintering |
CN103472083A (en) * | 2013-09-17 | 2013-12-25 | 上海大学 | Method for detecting influence of electron beam irradiation on free radical concentration of coal by virtue of electron paramagnetic resonance |
JP2016164546A (en) * | 2015-02-27 | 2016-09-08 | Jfeスチール株式会社 | Method of evaluating coal and method of producing coke |
JP2021143985A (en) * | 2020-03-13 | 2021-09-24 | 日本製鉄株式会社 | Oxidation characteristic evaluation method, oxidation characteristic evaluation system, and program |
-
1996
- 1996-04-12 JP JP9083196A patent/JPH09279150A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001790A (en) * | 2011-06-16 | 2013-01-07 | Nippon Steel & Sumitomo Metal Corp | Method of determining carbonization condition of charcoal material fuel for sintering |
CN103472083A (en) * | 2013-09-17 | 2013-12-25 | 上海大学 | Method for detecting influence of electron beam irradiation on free radical concentration of coal by virtue of electron paramagnetic resonance |
CN103472083B (en) * | 2013-09-17 | 2016-01-20 | 上海大学 | A kind of method utilizing electron paramagnetic resonance detected electrons bundle irradiation to affect coal number of free radical |
JP2016164546A (en) * | 2015-02-27 | 2016-09-08 | Jfeスチール株式会社 | Method of evaluating coal and method of producing coke |
JP2021143985A (en) * | 2020-03-13 | 2021-09-24 | 日本製鉄株式会社 | Oxidation characteristic evaluation method, oxidation characteristic evaluation system, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2832822A1 (en) | Coal blending method for coke production, production method for coke | |
CN113508169B (en) | Method for evaluating coal, method for producing mixed coal, and method for producing coke | |
RU2675567C1 (en) | Coal assessment method and the coke production method | |
JP3892666B2 (en) | Coal quality evaluation method | |
JPH09279150A (en) | Rapid heating of blended coal | |
JP5949706B2 (en) | Coke production method, coke, modified coal, modified coal blend and coal or blended coal reforming method | |
JP2000063846A (en) | Estimation of coke's strength | |
JP6274165B2 (en) | Coal evaluation method and coke production method | |
JP2001324460A (en) | Quality evaluation method for coal | |
JPS5845995B2 (en) | Manufacturing method of artificial caking coal | |
JP6227482B2 (en) | Method for producing blast furnace coke and blast furnace coke | |
JPH09241649A (en) | Appraisal of coal quality | |
JP2002294250A (en) | Method for estimating strength of blast furnace coke | |
JP3614919B2 (en) | Blast furnace coke manufacturing method | |
CA3162218C (en) | Method for producing coal blend and method for producing coke | |
JP3668532B2 (en) | Coke production method for blast furnace | |
JPH08231962A (en) | Production of metallurgical coke | |
JPH1019814A (en) | Method for evaluating quality of coal | |
JP2000321226A (en) | Method for evaluating quality of coal | |
JPS60174951A (en) | Estimation of coke strength | |
US20220389326A1 (en) | Method of estimating surface tension of coal and method of producing coke | |
JP2000356610A (en) | Evaluating method of meltability of coal and strength of coke, and manufacture of coke | |
JP2003336076A (en) | Method for estimating variation of coke strength and method for manufacturing coke for blast furnace using the same | |
JPH09272871A (en) | Production of high-strength coke | |
JP2001123179A (en) | Method for producing coke for metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030701 |