JP2013001790A - Method of determining carbonization condition of charcoal material fuel for sintering - Google Patents

Method of determining carbonization condition of charcoal material fuel for sintering Download PDF

Info

Publication number
JP2013001790A
JP2013001790A JP2011133952A JP2011133952A JP2013001790A JP 2013001790 A JP2013001790 A JP 2013001790A JP 2011133952 A JP2011133952 A JP 2011133952A JP 2011133952 A JP2011133952 A JP 2011133952A JP 2013001790 A JP2013001790 A JP 2013001790A
Authority
JP
Japan
Prior art keywords
coal
dry distillation
nox
conditions
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133952A
Other languages
Japanese (ja)
Other versions
JP5673377B2 (en
Inventor
Yasuhiro Fujibe
康弘 藤部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011133952A priority Critical patent/JP5673377B2/en
Publication of JP2013001790A publication Critical patent/JP2013001790A/en
Application granted granted Critical
Publication of JP5673377B2 publication Critical patent/JP5673377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimize the carbonization condition of a coal carbonized object enabling the reduction of NOx generated in the manufacturing process of a sintered ore for a blast furnace material.SOLUTION: This method of determining the optimal carbonization condition of the fuel charcoal material for sintering manufactured by carbonization of coal includes the processes (a) to (c). In the process (a), each of m and n is assumed to be a positive integer of 30 or less (except m=n=1) regarding the temperature condition of the carbonization, (a1) m carbonization finish temperatures are selected in the range of 600-1,000°C, (a2) n carbonization temperature increasing rates are selected in the range of 6-30°C/min, and (a3) the coal is carbonized in the condition of m×n combinations of the carbonization finish temperature and carbonization temperature increasing rate, and m×n kinds of coal carbonized objects are produced. In the process (b), the m×n kinds of coal carbonized objects are actually burned and the amount of the generated NOx is measured. In the process (c), the coal carbonized object for which the amount of the generated NOx per unit mass of the coal is smallest is specified from the m×n kinds of coal carbonized objects, and the carbonization condition where the amount of the generated NOx is smallest is determined.

Description

本発明は、石炭乾留物を燃料とする高炉原料用焼結鉱の製造過程において、発生するNOxを低減することが可能な石炭乾留物の乾留条件を、一般的な乾留装置で実現することが可能な範囲で、最適条件に決定する方法に関する。   The present invention realizes the dry distillation conditions of coal dry distillate that can reduce NOx generated in the process of producing sintered ore for blast furnace raw material using coal dry distillate as fuel, using a general dry distillation apparatus. The present invention relates to a method for determining optimum conditions within a possible range.

高炉用原料の鉄鉱石は、原料前処理としての粉鉱を主原料とし、副原料の石灰石、珪砂等と、熱源となる燃料を、一定の比率で混合し、バインダーとなる水を加え、回転ドラム等で、予め一定サイズ以上の粒径を持つ擬似粒子に造粒した後、焼結機上に敷き詰め、バーナーによる着火と下方空気吸引による連続燃焼によって焼き固めた焼結鉱とする、原料前処理方法が一般的に行われている(以下、この原料前処理方法を「焼結鉱製造」という。)。   Iron ore, the raw material for blast furnace, is mainly made of fine ore as raw material pretreatment, auxiliary materials such as limestone and silica sand, and heat source fuel are mixed in a certain ratio, and water as binder is added and rotated. After granulating into pseudo particles having a particle size of a certain size or more in advance with a drum, etc., laying on the sintering machine, and making it a sintered ore that has been baked and solidified by ignition by a burner and continuous combustion by lower air suction, before the raw material A treatment method is generally performed (hereinafter, this raw material pretreatment method is referred to as “sintered ore production”).

焼結鉱製造によって得られる焼結鉱に求められる性能のうち最も重要なものは、塊成化による粒径の拡大だけではなく、高炉への運搬時及び投入落下時に粉化しない強度である。強度を増すためには、より高温でおこなう焼結鉱製造が有効であることは、一般に知られている(非特許文献1、参照)。そのため、焼結鉱製造に最もよく使用する燃料は、通常、揮発分が少なく、発熱量が高い石炭乾留物である。   The most important performance required for sintered ore obtained by the production of sintered ore is not only the increase in particle size by agglomeration, but also the strength that does not cause pulverization during transportation to a blast furnace and when dropped. In order to increase the strength, it is generally known that the production of sintered ore performed at a higher temperature is effective (see Non-Patent Document 1). For this reason, the fuel most frequently used for sinter production is usually a coal distillate with low volatile content and high calorific value.

一方、焼結鉱製造時の燃料燃焼に伴い発生する窒素酸化物(以下「NOx」という。)の量は、一貫製鉄所における全発生NOx量の半分を占める(非特許文献2、参照)。NOxは、各種法律、条例により排出量が規制されていて、環境負荷低減の観点からも抑制が求められている。   On the other hand, the amount of nitrogen oxides (hereinafter referred to as “NOx”) generated along with fuel combustion during the production of sintered ore occupies half of the total amount of NOx generated in the integrated steelworks (see Non-Patent Document 2). NOx emissions are regulated by various laws and regulations, and suppression is required from the viewpoint of reducing environmental impact.

燃焼時のNOxの発生には二種類の発生起源があり、1500℃を超えるような、より高温の燃焼プロセスで、大気中の窒素を基に発生するNOx(以下「Thermal NOx」という。)と、1400℃以下の燃焼時に発生するNOxの大半を占める、燃料中の窒素を起源とするNOx(以下「Fuel NOx」という。)に大別される(非特許文献3、参照)。   There are two types of generation origin of NOx during combustion, and NOx generated based on nitrogen in the atmosphere in a higher temperature combustion process exceeding 1500 ° C. (hereinafter referred to as “Thermal NOx”). It is broadly classified into NOx originating from nitrogen in fuel (hereinafter referred to as “Fuel NOx”), which accounts for most of NOx generated during combustion at 1400 ° C. or lower (see Non-Patent Document 3).

製鉄業において問題となる焼結鉱製造プロセスには、高発熱量の固体燃料を用いているが、発生熱は、焼結原料の加熱に大半が利用されるので、全体のプロセスとしては、1200〜1400℃と同じ燃焼プロセスでも低温プロセスであり、Fuel NOxが、NOxの発生起因とされている(非特許文献4、参照)。   In the sintered ore manufacturing process, which is a problem in the steel industry, solid fuel with a high calorific value is used. However, since most of the generated heat is used for heating the sintering raw material, the overall process is 1200. Even the same combustion process as ˜1400 ° C. is a low-temperature process, and Fuel NOx is attributed to the generation of NOx (see Non-Patent Document 4).

焼結鉱製造時に発生するFuel NOxを低減するためには、燃焼改善も有効である(非特許文献1、参照)が、燃料そのものは、一般的に、高炉用コークスの流用であった。一方、焼結用の燃料としては、高炉用コークスに求められる強度は必須の条件ではなく、燃焼性、発熱性、さらに、低NOxであることが求められる。   Combustion improvement is also effective in reducing Fuel NOx generated during the production of sintered ore (see Non-Patent Document 1), but the fuel itself is generally diverted from blast furnace coke. On the other hand, as a fuel for sintering, the strength required for blast furnace coke is not an essential condition, and is required to be combustible, exothermic, and low NOx.

したがって、高炉用コークスとは異なる炭種や、乾留条件を選択することによって、より安価な石炭であっても、焼結製造に好適な燃料が得られる可能性がある。特に、発生NOx量を低減することが可能な焼結用燃料炭材は、含有窒素量を低減するか、NOx転換率を低減することの一方又は両方によって、発生NOx量の低減を実現できるが、いずれにおいても、乾留最適条件を求める手法は、これまでなかった。   Therefore, by selecting a coal type different from blast furnace coke and dry distillation conditions, there is a possibility that a fuel suitable for sintering production can be obtained even with cheaper coal. In particular, the fuel carbon material for sintering capable of reducing the amount of generated NOx can achieve a reduction in the amount of generated NOx by reducing the amount of nitrogen contained or reducing the NOx conversion rate. In either case, there has been no method for obtaining the optimum conditions for dry distillation.

近年、焼結用燃料炭材の製造方法が提案されているが、乾留条件の最適化は困難ある。アルカリ土類金属や、遷移金属を含有する特殊なコークスの製造において、触媒的作用により、燃焼時のNOxの発生を抑制する手法が提案されている(特許文献1、参照)。これは、コークス炉を用いた製造方法の提案であるが、乾留熱履歴は把握されておらず、乾留条件の最適化はできない。   In recent years, a method for producing a fuel carbon material for sintering has been proposed, but optimization of dry distillation conditions is difficult. In the production of special coke containing alkaline earth metal or transition metal, a method for suppressing the generation of NOx during combustion has been proposed by catalytic action (see Patent Document 1). This is a proposal for a production method using a coke oven, but the heat history of dry distillation is not known, and the dry distillation conditions cannot be optimized.

また、急速加熱や部分酸化を用いる特殊なガス、チャー化設備(石炭乾留物化設備)で1200℃以上の強熱によって燃料炭材中の窒素を熱分解し、含有窒素量を低減する手法が提案されている(特許文献2、参照)。この手法は、含有窒素濃度を低減する手法ではあるが、複数段の熱分解炉を用い、石炭の熱履歴の最適化には不向きである。   In addition, a special gas that uses rapid heating and partial oxidation, and a method to reduce the nitrogen content by pyrolyzing nitrogen in the fuel charcoal with a strong heat of 1200 ° C or higher in a charification facility (coal dry distillation facility) (See Patent Document 2). Although this technique is a technique for reducing the concentration of nitrogen contained, it uses a multi-stage pyrolysis furnace and is not suitable for optimizing the thermal history of coal.

上記のとおり、燃焼時のNOxの発生を抑制する焼結用燃料炭材の乾留条件を最適化する方法についての知見はないのが実情である。   As described above, the fact is that there is no knowledge about a method for optimizing the dry distillation conditions of the fuel carbon material for sintering that suppresses the generation of NOx during combustion.

特開2004−285098号公報JP 2004-285098 A 特開2009−298909号公報JP 2009-298909 A

稲角忠弘著、叢書「鉄鋼技術の流れ 第2シリーズ」、第1巻 焼結鉱(2000)Book by Tadahiro Inakaku, Series “Steel Technology Flow Series 2”, Volume 1 Sinter (2000) 鉄鋼便覧第4版、社団法人日本鉄鋼協会Steel Handbook 4th edition, Japan Iron and Steel Association 新井紀男監修、三浦隆利編、燃焼生成物の発生と抑制技術(1997)Supervision by Norio Arai, edited by Takatoshi Miura, Generation of combustion products and suppression technology (1997) 肥田正博、鉄と鋼、第68巻(1982)p400Masahiro Hida, Iron and Steel, Volume 68 (1982) p400

本発明は、焼結鉱製造に用いる石炭乾留物の燃料について、焼結燃焼時に発生するNOxの低減を可能とする石炭乾留物の乾留条件を、一般的な乾留装置で実現することが可能な範囲で最適化する方法を提供することを目的とする。   The present invention can realize the dry distillation conditions of coal dry distillation products that enable the reduction of NOx generated during sintering combustion with a general dry distillation apparatus for coal dry distillation fuels used for sinter production. An object is to provide a method for optimizing the range.

本発明者らは、焼結鉱製造に用いる低NOx炭材を製造する方法について、種々の検討を行った。その結果、燃料製造に用いる石炭として、低NOx化に有効な石炭を選定する、又は、石炭乾留条件を最適化することで、焼結鉱製造に使用した際に発生するNOx量を低減することが可能であることを見いだした。   The inventors of the present invention have conducted various studies on a method for producing a low NOx carbon material used for producing sintered ore. As a result, reducing the amount of NOx generated when used for sinter production by selecting coal that is effective for reducing NOx as the coal used for fuel production or by optimizing the coal dry distillation conditions Found that is possible.

本発明は、上記知見に基づいてなされたもので、その要旨は、次の(1)〜(4)の通りである。   This invention was made | formed based on the said knowledge, and the summary is as the following (1)-(4).

(1)石炭を乾留して製造する焼結用燃料炭材の最適な乾留条件を決定する方法であって、
(a)乾留の温度条件について、m及びnを30以下の正の整数(ただし、m=n=1は除く)として、(a1)乾留終了温度を、600〜1000℃の範囲でm通り選択し、(a2)乾留昇温速度を、6〜30℃/minの範囲でn通り選択し、(a3)m×n通りの乾留終了温度と乾留昇温速度の組合せの条件で石炭を乾留して、m×n通りの石炭乾留物を製造する工程、
(b)前記m×n通りの石炭乾留物を実際に燃焼させて、発生したNOx量を測定する工程、及び、
(c)前記m×n通りの石炭乾留物から、石炭の単位質量当りの発生NOx量が最も少ない石炭乾留物を特定し、発生するNOx量が最も少ない乾留条件を決定する工程、
からなることを特徴とする焼結用燃料炭材の乾留条件決定方法。
(1) A method for determining optimum carbonization conditions of a fuel carbon material for sintering produced by carbonizing coal,
(A) Regarding the temperature conditions of carbonization, m and n are positive integers of 30 or less (however, m = n = 1 is excluded), and (a1) m is selected as the carbonization end temperature in the range of 600 to 1000 ° C. (A2) n types of dry distillation heating rates are selected in the range of 6-30 ° C./min, and (a3) coal is carbonized under the conditions of a combination of m × n dry distillation end temperatures and dry distillation heating rates. A process of producing m × n types of coal dry distillate,
(B) a step of actually burning the m × n types of coal dry distillate and measuring the amount of NOx generated; and
(C) identifying the coal dry matter having the smallest amount of NOx generated per unit mass of coal from the m × n kinds of coal dry matter, and determining the carbonization conditions with the smallest amount of NOx generated;
A method for determining dry distillation conditions of a fuel carbon material for sintering, comprising:

(2)石炭を乾留して製造する焼結用燃料炭材の最適な乾留条件を決定する方法であって、
(a)乾留の温度条件について、m及びnを2以上の正の整数として、(a1)乾留終了温度を600〜1000℃の範囲でm通り選択し、(a2)乾留昇温速度を6〜30℃/minの範囲でn通り選択し、(a3)m×n通りの乾留終了温度と乾留昇温速度の組合せの条件で石炭を乾留して、m×n通りの石炭乾留物を製造する工程、
(b)前記m×n通りの石炭乾留物の元素分析を行い、m×n通りの石炭乾留物の含有窒素濃度を測定する工程、
(c)前記m×n通りの石炭乾留物を実際に燃焼させて、発生したNOx量を測定する工程、
(d)前記m×n通りの石炭乾留物について、前記発生したNOx量を、含有窒素量で除してNOx転換率を算出する工程、及び、
(e)前記m×n通りの石炭乾留物のNOx転換率から、NOx転換率が最も低い石炭乾留物を特定して、NOx転換率が最も低い乾留条件を決定する工程、
からなることを特徴とする焼結用燃料炭材の乾留条件決定方法。
(2) A method of determining optimum carbonization conditions for a fuel carbon material for sintering produced by carbonizing coal,
(A) About the temperature conditions of dry distillation, m and n are set to positive integers of 2 or more, (a1) m dry distillation end temperatures are selected in a range of 600 to 1000 ° C., and (a2) dry distillation heating rate is 6 to N types are selected in the range of 30 ° C./min, and (a3) m × n types of coal dry distillation products are produced by dry distillation of coal under conditions of a combination of m × n types of dry distillation end temperature and dry distillation heating rate. Process,
(B) A step of performing elemental analysis of the m × n types of coal dry product and measuring a nitrogen concentration of the m × n types of coal dry product,
(C) a step of actually burning the m × n types of coal distillate and measuring the amount of NOx generated;
(D) a step of calculating the NOx conversion rate by dividing the generated NOx amount by the nitrogen content with respect to the m × n types of coal dry distillation products; and
(E) determining the dry distillation conditions having the lowest NOx conversion rate by identifying the lowest dry NOx conversion rate from the NOx conversion rate of the m × n coal dry distillation products,
A method for determining dry distillation conditions of a fuel carbon material for sintering, comprising:

(3)前記m又はnが1であることを特徴とする前記(1)又は(2)に記載の焼結用燃料炭材の乾留条件決定方法。   (3) The method for determining dry distillation conditions of a fuel carbon material for sintering as described in (1) or (2) above, wherein m or n is 1.

(4)前記m×n通りの石炭乾留物を製造する工程において、石炭乾留物の製造に供する石炭の質量が0.01〜1gであることを特徴とする前記(1)〜(3)のいずれかに記載の焼結用燃料炭材の乾留条件決定方法。   (4) In the step of producing the m × n types of coal dry product, the mass of the coal used for the production of the coal dry product is 0.01 to 1 g, wherein (1) to (3) The carbonization conditions determination method of the fuel carbon material for sintering in any one.

本発明によれば、焼結鉱製造に用いる石炭乾留物の燃料について、焼結燃焼時に発生するNOxの低減を可能とする石炭乾留物の乾留条件を、一般的な乾留装置で実現することが可能な範囲で最適化することができる。   According to the present invention, it is possible to realize the dry distillation conditions of coal dry distillation products that enable reduction of NOx generated during sintering combustion with a general dry distillation apparatus for coal dry distillation fuels used for sinter production. It can be optimized to the extent possible.

以下に、本発明の焼結用炭材燃料の乾留条件決定方法の手順について説明する。なお、本発明の石炭の乾留方法や条件、その他実験、解析手法については、同様の結果が得られるのであれば、以下に記載する手法に制限されるものではない。   Below, the procedure of the carbonization conditions determination method of the carbon material fuel for sintering of this invention is demonstrated. In addition, about the dry distillation method and conditions of coal of this invention, other experiment, and an analysis method, if the same result is obtained, it will not restrict | limit to the method described below.

第一に、石炭乾留条件を最適化するため、石炭乾留物(以下「チャー」という。)を製造する。対象とする石炭の種類は限定されないが、より安価で調達が容易であることが望ましく、さらに、窒素含有量が少ないものがより望ましい。また、チャーの製造に用いる炉の種類、形態は、特に限定されない。   First, in order to optimize coal carbonization conditions, a coal carbonized product (hereinafter referred to as “char”) is produced. Although the kind of coal used as object is not limited, it is desirable that it is cheaper and easy to procure, and more preferable is one having a low nitrogen content. Moreover, the kind and form of the furnace used for manufacture of char are not specifically limited.

本発明者らは、乾留条件を最適化するため、熱履歴の把握、制御が可能な電気炉と石英炉心管を組み合わせた試験炉を用いて乾留を行った。この試験炉による実験は以下の通り、通気可能な炉心管内に石炭を配置した後、不活性ガスを通気して内部の大気をパージした後、電気炉内に挿入して加熱する。   In order to optimize the carbonization conditions, the present inventors performed carbonization using a test furnace in which an electric furnace capable of grasping and controlling the thermal history and a quartz core tube were combined. In the experiment using this test furnace, after placing coal in a ventilable furnace core tube, an inert gas is vented to purge the internal atmosphere, and then inserted into an electric furnace and heated.

電気炉による加熱は、手動制御も可能であるが、温度履歴を自動で制御することが望ましい。また、乾留条件を定めるための実施数は多いことが望ましいが、実際に、実験完了できる最大数は30以下である。   Although heating by an electric furnace can be manually controlled, it is desirable to automatically control the temperature history. Moreover, although it is desirable that the number of implementations for determining the dry distillation conditions is large, the maximum number that can actually be completed is 30 or less.

第二に、NOx転換率による最適化を行う場合に、前記手法で得られたチャー中の含有窒素濃度を解析する。一般的な元素分析(JISM8813 C、H、N)を行い、各乾留条件におけるチャーの含有窒素濃度を取得する。低NOx炭材の条件としては、含有窒素濃度がより低いほうが望ましく、より具体的には、一般的な焼結燃料となる高炉用コークスの窒素含有濃度である1.1%よりも低いことが望ましい。   Secondly, when the optimization based on the NOx conversion rate is performed, the nitrogen concentration in the char obtained by the above method is analyzed. General elemental analysis (JISM8813 C, H, N) is performed to obtain the nitrogen concentration of char under each dry distillation condition. As a condition of the low NOx carbon material, it is desirable that the nitrogen content is lower, and more specifically, it is lower than 1.1% which is the nitrogen content concentration of blast furnace coke as a general sintered fuel. desirable.

より望ましくは、高炉用コークスの焼結製造時のNOx転換率が40%程度であったことから、焼結燃焼時のNOx転換率の変化に左右されない0.5%以下の含有窒素濃度のチャーであれば、次項以降の検討は必ずしも必要ない。   More desirably, since the NOx conversion rate during sintering of blast furnace coke was about 40%, the char concentration of 0.5% or less contained was not affected by the change in NOx conversion rate during sintering combustion. If so, it is not always necessary to examine the following items.

第三に、上記手法によって製造、解析した複数のチャーの燃焼実験を行い、発生NOx量に関するデータを取得する。   Thirdly, a combustion experiment of a plurality of chars manufactured and analyzed by the above method is performed, and data relating to the amount of generated NOx is acquired.

ここで、燃焼実験の手法は問わないが、可能な限り、実際の燃焼場を再現した模擬実験を実施する。ここで、模擬実験には、少なくとも燃焼温度については同等程度とすることが必須である。焼結鉱製造模擬実験としては、キログラムオーダーの試料を用いる焼結鍋試験が一般的であるが、下方吸引による焼結燃焼現象を模擬していれば、より少量の試料での実験や、グラムオーダーのラボ実験も有効である。   Here, although the method of the combustion experiment is not limited, a simulation experiment that reproduces the actual combustion field is performed as much as possible. Here, in the simulation experiment, it is indispensable that at least the combustion temperature is equivalent. As a sinter ore production simulation experiment, a sinter pot test using a sample of kilogram order is common, but if a sinter combustion phenomenon by downward suction is simulated, an experiment with a smaller amount of sample or gram Custom laboratory experiments are also effective.

また、焼結反応が進行していることを、燃焼温度から推定するため、試料内の温度を温度計で測温することが望ましい。その他、燃焼時の共存物質や酸素濃度を模擬することが有効である。さらには、可能であれば、実機試験結果を用いることが望ましい。   Further, in order to estimate that the sintering reaction is proceeding from the combustion temperature, it is desirable to measure the temperature in the sample with a thermometer. In addition, it is effective to simulate coexisting substances and oxygen concentration during combustion. Furthermore, it is desirable to use actual machine test results if possible.

続いて、燃焼実験結果から、発生NOx量を定量化する必要があるが、最も有効な手法は、投入した固体燃料量に対し、発生したNOx総量を定量することである。定量手法については、その手法を問わないが、本発明者らは、一般的な赤外分光法によるガス連続測定によって、燃焼時に発生する代表的なNOxである、NO、NO2、N2Oを測定することが可能であり、かつ、有効であることを確認している。 Subsequently, it is necessary to quantify the amount of generated NOx from the results of the combustion experiment, but the most effective method is to quantify the total amount of NOx generated with respect to the amount of solid fuel input. The determination method does not matter, but the present inventors are NO, NO 2 , N 2 O, which are typical NOx generated during combustion by gas continuous measurement by general infrared spectroscopy. It is possible to measure and is confirmed to be effective.

定量には、濃度既知のNOxサンプルガスの赤外分光によって、NOxに相応するピークの強度と位置を確認し、その後、実際の燃焼実験時に発生するガスを赤外分光装置に連続的に導入しつつ測定する。実験終了後、ピーク強度から発生濃度を特定し、発生時間を乗ずることで、総発生量を測定することが可能である。なお、この時、赤外分光装置に流通させるガス量と、その圧力変動も同時に測定することで、測定精度がより向上する。   For quantitative determination, the intensity and position of the peak corresponding to NOx is confirmed by infrared spectroscopy of a NOx sample gas with a known concentration, and then the gas generated during the actual combustion experiment is continuously introduced into the infrared spectrometer. While measuring. After the experiment is completed, the total generation amount can be measured by specifying the generation concentration from the peak intensity and multiplying by the generation time. At this time, the measurement accuracy is further improved by simultaneously measuring the amount of gas flowing through the infrared spectroscopic device and its pressure fluctuation.

また、本発明者らは、一般的なガスクロマトグラフィー法による測定も、測定の連続性に劣るものの、感度の面では有効であることを確認している。   In addition, the present inventors have confirmed that measurement by a general gas chromatography method is also effective in terms of sensitivity, although the measurement continuity is inferior.

一方で、大規模実験や、実機試験では、上記手法で、発生総量を求めることは困難な場合が多いので、発生濃度の連続測定が可能な市販のNOxガス濃度分析装置によって測定を行い、平均NOx排出レベルを決定し、発生NOx量とすることも可能である。   On the other hand, in large-scale experiments and actual machine tests, it is often difficult to determine the total amount generated by the above method, so measurement is performed with a commercially available NOx gas concentration analyzer that can continuously measure the generated concentration, and the average It is also possible to determine the NOx emission level and use it as the amount of generated NOx.

最後に、上記実験の結果、焼結反応の可否と、発生NOx量を最も削減することが可能な焼結用燃料の選択から、乾留条件の最適化を行う。なお、焼結用燃料炭材の乾留条件の最適化において、発生NOxが低減する乾留条件を見いだすが、この際、発生NOx量を含有窒素量で除して得られるNOx転換率を求めて、乾留条件の最適化に用いることは、炭種によって異なる最適条件をより明確化する場合において有効である。   Finally, as a result of the above experiment, the carbonization conditions are optimized based on the possibility of sintering reaction and the selection of a sintering fuel that can reduce the amount of generated NOx most. In the optimization of the carbonization conditions of the fuel carbon material for sintering, the carbonization conditions where the generated NOx is reduced are found. At this time, the NOx conversion rate obtained by dividing the generated NOx amount by the nitrogen content is obtained, Use in the optimization of carbonization conditions is effective in clarifying the optimum conditions that differ depending on the coal type.

焼結反応の可否は燃焼時の最高温度から判断し、1200℃まで発熱できないものは、焼結燃料炭材に適さないと考える。本発明者らの検討から、乾留終了温度600℃未満のチャーは、いずれの石炭でも残留する揮発分が多く、燃焼時に1200℃まで発熱できなかったことから、本最適化手法では、600℃以上での最適化が有効である。   Whether the sintering reaction is possible or not is judged from the maximum temperature during combustion, and those that cannot generate heat up to 1200 ° C. are considered unsuitable for sintered fuel carbon materials. According to the study by the present inventors, char having a carbonization end temperature of less than 600 ° C. has a large amount of residual volatile matter in any coal and cannot generate heat up to 1200 ° C. during combustion. Optimization with is effective.

また、昇温速度が30℃/minを超える場合も、石炭内を一様に加熱することが困難で、熱履歴を制御することが困難であり、揮発分が残留する量が増加した。結果的に、燃焼時に1200℃まで発熱できず、焼結用燃料炭材とならなかったことから、乾留条件の最適化は困難であった。   Further, even when the rate of temperature rise exceeds 30 ° C./min, it is difficult to uniformly heat the inside of the coal, it is difficult to control the heat history, and the amount of remaining volatile matter is increased. As a result, since it was not possible to generate heat up to 1200 ° C. during combustion and the fuel carbon material for sintering was not obtained, it was difficult to optimize the dry distillation conditions.

さらに、乾留終了温度1000℃以上で、乾留雰囲気では、燃料炭材の窒素分の低下が止まり、燃焼時にNOx転換率が悪化して、一様に、発生NOx量が増加することを確認しており、最適化はできなかった。一方、乾留速度6℃/min未満では、含有窒素濃度の低下、揮発分のもののNOx転換率が悪化し、発生NOx量が増加することを確認しており、最適化はできなかった。   Furthermore, in the dry distillation atmosphere at a dry distillation end temperature of 1000 ° C. or higher, it was confirmed that the decrease in the nitrogen content of the fuel carbon material stopped, the NOx conversion rate deteriorated during combustion, and the generated NOx amount increased uniformly. And optimization was not possible. On the other hand, when the carbonization rate was less than 6 ° C./min, it was confirmed that the concentration of nitrogen contained decreased, the NOx conversion rate of volatile matter deteriorated, and the amount of generated NOx increased, and optimization was not possible.

なお、このチャーの製造を1g以下とすると、試料全体の温度履歴を容易に一定化することができるので、乾留温度条件を最適化する目的の点で望ましい。大規模な実験炉や、工業炉、コークス炉等実機を用いることも可能であるが、比較的規模の大きな10kg試験炉では、石炭の電熱の問題や、到達温度のばらつきの影響により、最適化に必ずしも有効ではなかった。   If the production of this char is 1 g or less, the temperature history of the entire sample can be easily fixed, which is desirable for the purpose of optimizing the dry distillation temperature conditions. Large-scale experimental furnaces, industrial furnaces, coke ovens, and other real machines can be used, but the 10 kg test furnace, which is relatively large, is optimized due to the problem of electric heating of coal and the effect of variations in the temperature reached. It was not always effective.

また、0.01g未満の製造量では、得られるチャーが、ごく少量となるので、燃焼によるNOx発生量を定量することが困難となり、乾留条件の最適化はできない可能性が高い。   In addition, if the production amount is less than 0.01 g, the amount of char obtained is very small, so it is difficult to quantify the amount of NOx generated by combustion, and it is highly possible that optimization of dry distillation conditions cannot be performed.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
単一銘柄の石炭Kについて、NOx発生量が最も少ない乾留条件を、昇温速度一定で、乾留終了温度を変更して検証した。200mgの石炭Kを、昇温速度をコークス炉模擬の6℃/minとし、乾留終了温度を、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、及び、1150℃として、それぞれの乾留条件の焼結用燃料を製造した。それぞれの焼結燃料100mgでの焼結模擬燃焼時の発生NOx量を表1に示す。
Example 1
For a single brand of coal K, the dry distillation conditions with the least amount of NOx generated were verified by changing the dry distillation end temperature at a constant heating rate. 200 mg of coal K is heated at a rate of 6 ° C./min, which simulates a coke oven, and the dry distillation end temperatures are 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1150 ° C. As a result, fuels for sintering under the respective dry distillation conditions were produced. Table 1 shows the amount of NOx generated during simulated sintering combustion with 100 mg of each sintered fuel.

Figure 2013001790
Figure 2013001790

なお、同条件の高炉用コークス(含有窒素濃度1.1%)焼結模擬燃焼実験では、NOx発生量は約440μgであった。検証の結果、乾留終了温度が900℃の焼結用燃料を用いた場合、発生NOx量が低位であった。したがって、石炭Kの6℃/minでの乾留昇温時の最適な乾留終了温度は900℃である。   In the simulating combustion experiment of blast furnace coke (containing nitrogen concentration of 1.1%) under the same conditions, the amount of NOx generated was about 440 μg. As a result of verification, when a sintering fuel having a carbonization end temperature of 900 ° C. was used, the amount of generated NOx was low. Therefore, the optimum dry distillation end temperature of coal K at the time of dry distillation heating at 6 ° C./min is 900 ° C.

(実施例2)
単一銘柄の石炭Lについて、最もNOx発生量の少ない乾留条件を、昇温速度一定で、乾留終了温度を変更して検証した。200mgの石炭Lを、昇温速度をコークス炉模擬の6℃/minとし、乾留終了温度を、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、及び、1150℃として、それぞれの乾留条件の焼結用燃料を製造した。それぞれの含有窒素濃度と、焼結燃料100mgでの焼結模擬燃焼時のNOx転換率と発生NOx量を表2に示す。
(Example 2)
For a single brand of coal L, the dry distillation conditions with the least amount of NOx generated were verified by changing the dry distillation end temperature at a constant heating rate. 200 mg of coal L was heated at a heating rate of 6 ° C./min simulated by a coke oven, and the end temperature of dry distillation was 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1150 ° C. As a result, fuels for sintering under the respective dry distillation conditions were produced. Table 2 shows the concentration of each nitrogen, the NOx conversion rate and the amount of generated NOx during the simulated sintering combustion with 100 mg of sintered fuel.

Figure 2013001790
Figure 2013001790

なお、同条件の高炉用コークス(含有窒素濃度1.1%)焼結模擬燃焼実験では、NOx発生量は約440μgであった。検証の結果、乾留終了温度が1000℃の焼結用燃料を後いた場合、含有窒素濃度が最も低く、発生NOx量も高炉用コークスに比べ低位であった。乾留終了温度が900℃の焼結用燃料の場合、含有窒素濃度が、1000℃の焼結用燃料の場合より、若干高いものの、燃焼時のNOx転換率が低く、最終的に発生したNOx量は、より低位であった。   In the simulating combustion experiment of blast furnace coke (containing nitrogen concentration of 1.1%) under the same conditions, the amount of NOx generated was about 440 μg. As a result of verification, when the fuel for sintering having a carbonization end temperature of 1000 ° C. was followed, the concentration of nitrogen contained was the lowest, and the amount of generated NOx was lower than that of coke for blast furnace. In the case of a sintering fuel having a carbonization end temperature of 900 ° C, the concentration of nitrogen contained is slightly higher than in the case of a sintering fuel having a temperature of 1000 ° C, but the NOx conversion rate during combustion is low, and the amount of NOx generated finally Was lower.

それ以外の乾留終了温度の条件では、NOx転換率がより低位になる焼結用燃料も存在したが、含有窒素濃度が高く、発生NOx量はむしろ増大した。したがって、石炭Lの6℃/minでの乾留昇温時の最適な乾留終了温度は900℃である。   There were also sintering fuels with a lower NOx conversion rate under other dry distillation end temperature conditions, but the concentration of nitrogen contained was high and the amount of generated NOx increased rather. Therefore, the optimum dry distillation end temperature of coal L at the time of dry distillation heating at 6 ° C./min is 900 ° C.

(実施例3)
単一銘柄の石炭Mについて、NOx発生量が最も少ない乾留条件を、昇温速度一定で、乾留終了温度を変更して検証した。200mgの石炭Kを、昇温速度をコークス炉模擬の6℃/minとし、乾留終了温度を500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、及び、1150℃として、それぞれの乾留条件の焼結用燃料を製造した。それぞれの含有窒素濃度と、焼結燃料100mgでの焼結模擬燃焼時のNOx転換率と発生NOx量を表3に示す。
(Example 3)
For a single brand of coal M, the dry distillation conditions with the least amount of NOx generated were verified by changing the dry distillation end temperature at a constant heating rate. 200 mg of coal K was heated at a heating rate of 6 ° C./min simulated by a coke oven, and the dry distillation end temperatures were 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1150 ° C. The fuels for sintering under the respective dry distillation conditions were produced. Table 3 shows the concentration of each nitrogen, the NOx conversion rate and the amount of generated NOx during the simulated sintering combustion with 100 mg of sintered fuel.

Figure 2013001790
Figure 2013001790

なお、同条件の高炉用コークス(含有窒素濃度1.1%)焼結模擬燃焼実験では、NOx発生量は約440μgであった。検証の結果、いずれのチャーでも、NOx発生量は、コークスの発生量よりも低位であったが、900℃の焼結用燃料の場合、最終的に発生したNOx量はより低位であった。したがって、石炭Mの6℃/minでの乾留昇温時の最適な終了温度は900℃である。   In the simulating combustion experiment of blast furnace coke (containing nitrogen concentration of 1.1%) under the same conditions, the amount of NOx generated was about 440 μg. As a result of the verification, in any char, the NOx generation amount was lower than the coke generation amount, but in the case of 900 ° C. sintering fuel, the NOx generation amount finally generated was lower. Therefore, the optimum end temperature of coal M at the time of dry distillation heating at 6 ° C./min is 900 ° C.

(実施例4)
単一銘柄の石炭Nについて、NOx発生量が最も少ない乾留条件を、昇温速度一定で、乾留終了温度を変更して検証した。昇温速度を、コークス炉模擬の6℃/minとし、乾留終了温度を、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、及び、1150℃として、それぞれの含有窒素濃度と、焼結燃料100mgでの焼結模擬燃焼時のNOx転換率と発生NOx量を表4に示す。
Example 4
For a single brand of coal N, the dry distillation conditions with the least amount of NOx generated were verified by changing the dry distillation end temperature at a constant heating rate. The temperature rising rate is 6 ° C./min which simulates a coke oven, and the end temperature of dry distillation is 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C. and 1150 ° C. Table 4 shows the nitrogen concentration, the NOx conversion rate and the amount of generated NOx during the simulated sintering combustion with 100 mg of sintered fuel.

Figure 2013001790
Figure 2013001790

なお、同条件の高炉用コークス(含有窒素濃度1.1%)焼結模擬燃焼実験では、NOx発生量は約440μgであった。検証の結果、乾留終了温度が1000℃の焼結用燃料の場合、含有窒素濃度が最も低く、発生NOx量も最も低位であった。   In the simulating combustion experiment of blast furnace coke (containing nitrogen concentration of 1.1%) under the same conditions, the amount of NOx generated was about 440 μg. As a result of the verification, in the case of a sintering fuel having a dry distillation end temperature of 1000 ° C., the concentration of nitrogen contained was the lowest and the amount of generated NOx was the lowest.

一方、それ以外の焼結用燃料では、含有窒素濃度が、乾留終了温度1000℃の焼結用燃料の場合より高く、燃焼時のNOx転換率が低いにもかかわらず、最終的に発生したNOx量は、より高位であった。したがって、石炭Nの6℃/minでの乾留昇温時の最適な終了温度は1000℃である。   On the other hand, in the other sintering fuels, the concentration of nitrogen contained is higher than that in the case of sintering fuel having a dry distillation end temperature of 1000 ° C., and the NOx finally generated despite the low NOx conversion rate during combustion. The amount was higher. Accordingly, the optimum end temperature of coal N at the time of dry distillation heating at 6 ° C./min is 1000 ° C.

(実施例5)
単一銘柄の石炭Mについて、NOx発生量が最も少ない乾留条件を、乾留終了温度を一定で、昇温速度を変更して検証した。乾留終了温度1000℃、昇温速度2℃/min、4℃/min、6℃/min、15℃/min、30℃/min、及び、40℃/minの乾留条件の焼結用燃料を製造した。それぞれの含有窒素濃度と、焼結燃料100mgでの焼結模擬燃焼時のNOx転換率と発生NOx量を表5に示す。
(Example 5)
For coal M of a single brand, the carbonization conditions with the least amount of NOx generated were verified by changing the temperature increase rate while keeping the temperature of carbonization end constant. Manufactures sintering fuels with dry distillation conditions of 1000 ° C., temperature increase rate of 2 ° C./min, 4 ° C./min, 6 ° C./min, 15 ° C./min, 30 ° C./min, and 40 ° C./min. did. Table 5 shows the concentration of each nitrogen, the NOx conversion rate and the amount of generated NOx during the simulated sintering combustion with 100 mg of sintered fuel.

Figure 2013001790
Figure 2013001790

なお、同条件の高炉用コークス(含有窒素濃度1.1%)焼結模擬燃焼実験では、NOx発生量は約440μgであった。検証の結果、30℃/minの昇温で製造した焼結用燃料が、含有窒素濃度、及び、NOx転換率がともに低く、発生NOx量が最も低位であった。一方、それ以外の焼結用燃料の場合、NOx転換率が高く、発生したNOx量はより高位であった。したがって、石炭Mの乾留終了温度1000℃での昇温速度は30℃/minが最適である。   In the simulating combustion experiment of blast furnace coke (containing nitrogen concentration of 1.1%) under the same conditions, the amount of NOx generated was about 440 μg. As a result of the verification, the sintering fuel produced at a temperature increase of 30 ° C./min had both the low nitrogen concentration and the low NOx conversion rate, and the lowest generated NOx amount. On the other hand, in the other sintering fuels, the NOx conversion rate was high, and the amount of NOx generated was higher. Therefore, 30 ° C./min is optimal for the rate of temperature increase at the coal distillation end temperature 1000 ° C.

(実施例6)
実施例で用いた石炭種について、昇温速度一定で、乾留終了温度を変更して、燃焼温度を検証した。200mgの各石炭について、昇温速度を、コークス炉模擬の6℃/minとし、乾留終了温度を500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、及び、1150℃として、それぞれの乾留条件の焼結用燃料を製造した。
(Example 6)
For the coal types used in the examples, the combustion temperature was verified by changing the dry distillation end temperature at a constant rate of temperature increase. For each 200 mg of coal, the rate of temperature rise was 6 ° C./min simulated by a coke oven, and the dry distillation end temperatures were 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1150 ° C. As a result, fuels for sintering under the respective dry distillation conditions were produced.

それぞれの焼結燃料100mgでの焼結模擬燃焼時の燃焼温度を、試料内に挿入した熱電対で測温した。測定結果を表7に示す。   The combustion temperature at the time of the simulated sintering combustion with each sintered fuel 100 mg was measured with a thermocouple inserted in the sample. Table 7 shows the measurement results.

いずれの石炭種においても、乾留終了温度500℃以下で生産したチャーを用いて燃焼を行ったが、残留揮発分が多く、燃焼時に、焼結鉱製造時に必要な1200℃以上の燃焼温度が得られなかった。結局、乾留終了温度500℃以下で生産したチャーは、焼結用燃焼炭材として用いることはできない。   In all types of coal, combustion was performed using char produced at a carbonization end temperature of 500 ° C. or less. However, the residual volatile matter was high, and a combustion temperature of 1200 ° C. or higher required for sinter production was obtained during combustion. I couldn't. Eventually, char produced at a carbonization end temperature of 500 ° C. or lower cannot be used as a burning combustion carbonaceous material.

Figure 2013001790
Figure 2013001790

(実施例7)
実施例で用いた石炭種について、昇温速度一定で、乾留終了温度を変更して、燃焼温度を検証した。200mgの各石炭について、昇温速度を、コークス炉模擬の6℃/minとし、乾留終了温度を、1000℃、1100℃、及び、1150℃として、それぞれの乾留条件の焼結用燃料を製造した。それぞれの含有窒素濃度と、焼結燃料100mgでの焼結模擬燃焼時のNOx転換率とNOx発生量を表7に示す。
(Example 7)
For the coal types used in the examples, the combustion temperature was verified by changing the dry distillation end temperature at a constant rate of temperature increase. About 200 mg of each coal, the temperature increase rate was set to 6 ° C./min simulated in a coke oven, and the dry distillation end temperatures were set to 1000 ° C., 1100 ° C., and 1150 ° C., and the fuels for sintering under the respective dry distillation conditions were produced. . Table 7 shows the concentration of each nitrogen, the NOx conversion rate and the amount of NOx generated during simulated combustion with 100 mg of sintered fuel.

Figure 2013001790
Figure 2013001790

いずれの石炭種においても、1100℃以上の乾留終了温度では、1000℃までと比べ、ほとんど含有窒素濃度が変化せず、燃焼時のNOx転換率のみ悪化し、発生NOx量は増加するので、実施例のような最適化はできなかった。   In any coal type, at the end of dry distillation of 1100 ° C or higher, the concentration of nitrogen contained hardly changes compared to up to 1000 ° C, only the NOx conversion rate during combustion deteriorates, and the amount of generated NOx increases. Optimization like the example could not be done.

(実施例8)
実施例に用いた石炭種について、乾留終了温度一定で、乾留昇温速度を変更して燃焼温度を検証した。200mgの各石炭について、乾留終了温度を1000℃として、昇温速度を6℃/min、15℃/min、30℃/min、及び、40℃/minとして、それぞれの乾留条件の焼結用燃料を製造した。
(Example 8)
For the coal types used in the examples, the combustion temperature was verified by changing the dry distillation heating rate at a constant dry distillation end temperature. For each 200 mg of coal, the fuel for sintering under the respective carbonization conditions at a carbonization end temperature of 1000 ° C. and a heating rate of 6 ° C./min, 15 ° C./min, 30 ° C./min, and 40 ° C./min. Manufactured.

それぞれの焼結燃料100mgでの焼結模擬燃焼時の燃焼温度を、試料内に挿入した熱電対で測温した。測定結果を表8に示す。   The combustion temperature at the time of the simulated sintering combustion with each sintered fuel 100 mg was measured with a thermocouple inserted in the sample. Table 8 shows the measurement results.

Figure 2013001790
Figure 2013001790

いずれの石炭種においても、乾留昇温速度を40℃/min以上で生産したチャーを用いて燃焼を行ったが、残留揮発分が多く、燃焼時に、焼結鉱製造時に必要な1200℃以上の燃焼温度が得られなかった。結局、いずれの炭種も、焼結用燃焼炭材として用いることはできない。   In all types of coal, combustion was performed using char produced at a dry distillation temperature increase rate of 40 ° C./min or more. However, the residual volatile matter was large, and at the time of combustion, 1200 ° C. or more required for sinter production. The combustion temperature could not be obtained. Eventually, none of the types of charcoal can be used as a combustion charcoal for sintering.

(実施例9)
実施例で用いた石炭種について、乾留終了温度一定で、乾留昇温速度を変更して燃焼温度を検証した。200mgの各石炭について、乾留終了温度を1000℃とし、昇温速度を2℃/min、4℃/min、及び、6℃/minで、それぞれの乾留条件の焼結用燃料を製造した。それぞれの焼結燃料100mgでの焼結模擬燃焼時のNOx転換率と、NOx発生量を表9に示す。
Example 9
For the coal types used in the examples, the combustion temperature was verified by changing the dry distillation temperature increase rate at a constant dry distillation end temperature. About 200 mg of each coal, the fuel for sintering under the respective carbonization conditions was produced at a dry distillation end temperature of 1000 ° C. and a heating rate of 2 ° C./min, 4 ° C./min, and 6 ° C./min. Table 9 shows the NOx conversion rate and the amount of NOx generated at the time of simulated sintering combustion with 100 mg of each sintered fuel.

Figure 2013001790
Figure 2013001790

いずれの石炭種においても、乾留昇温速度を6℃/min未満で生産したチャーで燃焼した場合、燃焼時のNOx転換率が悪化し、いずれの条件でも、発生NOx量が一方的に悪化したので、実施例のような最適化はできなかった。   In any coal type, when burned with char produced at a dry distillation heating rate of less than 6 ° C./min, the NOx conversion rate during combustion deteriorated, and the generated NOx amount unilaterally deteriorated under any conditions. Therefore, the optimization as in the example could not be performed.

(比較例1)
単一銘柄の石炭Mについて10kg試験炉を用いて、NOx発生量が最も少ない乾留条件を、昇温速度一定で、乾留終了温度を変更して検証した。昇温速度をコークス炉模擬の6℃/minとし、乾留終了温度が800℃、900℃、及び、1000℃のチャーを用いて焼結模擬燃焼実験を行った場合、乾留終了温度800℃のチャーに対し、900℃と1000℃のチャーは、発生NOx量の減少が確認されたが、900℃と1000℃のチャーに差異はみられず、乾留終了温度の最適化は困難であった。
(Comparative Example 1)
Using a 10 kg test furnace for a single brand of coal M, dry distillation conditions with the least amount of NOx generated were verified by changing the end temperature of the dry distillation at a constant rate of temperature increase. When the rate of temperature increase was set to 6 ° C / min, which simulates a coke oven, and a sintering simulated combustion experiment was performed using chars with dry distillation end temperatures of 800 ° C, 900 ° C, and 1000 ° C, a char with a dry distillation end temperature of 800 ° C was used. On the other hand, the decrease in the amount of generated NOx was confirmed for the 900 ° C. and 1000 ° C. chars, but there was no difference between the 900 ° C. and 1000 ° C. chars, and it was difficult to optimize the end temperature of the dry distillation.

前述したように、本発明によれば、焼結鉱製造に用いる石炭乾留物の燃料について、焼結燃焼時に発生するNOxの低減を可能とする石炭乾留物の乾留条件を、一般的な乾留装置で実現することが可能な範囲で最適化することができる。よって本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, a coal dry distillation condition that enables reduction of NOx generated at the time of sintering combustion is used for a coal dry distillation fuel that is used for sinter ore production. Can be optimized to the extent possible. Therefore, the present invention has high applicability in the steel industry.

Claims (4)

石炭を乾留して製造する焼結用燃料炭材の最適な乾留条件を決定する方法であって、
(a)乾留の温度条件について、m及びnを30以下の正の整数(ただし、m=n=1は除く)として、(a1)乾留終了温度を、600〜1000℃の範囲でm通り選択し、(a2)乾留昇温速度を、6〜30℃/minの範囲でn通り選択し、(a3)m×n通りの乾留終了温度と乾留昇温速度の組合せの条件で石炭を乾留して、m×n通りの石炭乾留物を製造する工程、
(b)前記m×n通りの石炭乾留物を実際に燃焼させて、発生したNOx量を測定する工程、及び、
(c)前記m×n通りの石炭乾留物から、石炭の単位質量当りの発生NOx量が最も少ない石炭乾留物を特定し、発生するNOx量が最も少ない乾留条件を決定する工程、
からなることを特徴とする焼結用燃料炭材の乾留条件決定方法。
A method for determining optimum carbonization conditions for a fuel carbon material for sintering produced by carbonizing carbon,
(A) Regarding the temperature conditions of carbonization, m and n are positive integers of 30 or less (however, m = n = 1 is excluded), and (a1) m is selected as the carbonization end temperature in the range of 600 to 1000 ° C. (A2) n types of dry distillation heating rates are selected in the range of 6-30 ° C./min, and (a3) coal is carbonized under the conditions of a combination of m × n dry distillation end temperatures and dry distillation heating rates. A process of producing m × n types of coal dry distillate,
(B) a step of actually burning the m × n types of coal dry distillate and measuring the amount of NOx generated; and
(C) identifying the coal dry matter having the smallest amount of NOx generated per unit mass of coal from the m × n kinds of coal dry matter, and determining the carbonization conditions with the smallest amount of NOx generated;
A method for determining dry distillation conditions of a fuel carbon material for sintering, comprising:
石炭を乾留して製造する焼結用燃料炭材の最適な乾留条件を決定する方法であって、
(a)乾留の温度条件について、m及びnを2以上の正の整数として、(a1)乾留終了温度を600〜1000℃の範囲でm通り選択し、(a2)乾留昇温速度を6〜30℃/minの範囲でn通り選択し、(a3)m×n通りの乾留終了温度と乾留昇温速度の組合せの条件で石炭を乾留して、m×n通りの石炭乾留物を製造する工程、
(b)前記m×n通りの石炭乾留物の元素分析を行い、m×n通りの石炭乾留物の含有窒素濃度を測定する工程、
(c)前記m×n通りの石炭乾留物を実際に燃焼させて、発生したNOx量を測定する工程、
(d)前記m×n通りの石炭乾留物について、前記発生したNOx量を、含有窒素量で除してNOx転換率を算出する工程、及び、
(e)前記m×n通りの石炭乾留物のNOx転換率から、NOx転換率が最も低い石炭乾留物を特定して、NOx転換率が最も低い乾留条件を決定する工程、
からなることを特徴とする焼結用燃料炭材の乾留条件決定方法。
A method for determining optimum carbonization conditions for a fuel carbon material for sintering produced by carbonizing carbon,
(A) About the temperature conditions of dry distillation, m and n are set to positive integers of 2 or more, (a1) m dry distillation end temperatures are selected in a range of 600 to 1000 ° C., and (a2) dry distillation heating rate is 6 to N types are selected in the range of 30 ° C./min, and (a3) m × n types of coal dry distillation products are produced by dry distillation of coal under conditions of a combination of m × n types of dry distillation end temperature and dry distillation heating rate. Process,
(B) A step of performing elemental analysis of the m × n types of coal dry product and measuring a nitrogen concentration of the m × n types of coal dry product,
(C) a step of actually burning the m × n types of coal distillate and measuring the amount of NOx generated;
(D) a step of calculating the NOx conversion rate by dividing the generated NOx amount by the nitrogen content with respect to the m × n types of coal dry distillation products; and
(E) determining the dry distillation conditions having the lowest NOx conversion rate by identifying the lowest dry NOx conversion rate from the NOx conversion rate of the m × n coal dry distillation products,
A method for determining dry distillation conditions of a fuel carbon material for sintering, comprising:
前記m又はnが1であることを特徴とする請求項1又は2に記載の焼結用燃料炭材の乾留条件決定方法。   3. The method for determining dry distillation conditions of a fuel carbon material for sintering according to claim 1 or 2, wherein m or n is 1. 前記m×n通りの石炭乾留物を製造する工程において、石炭乾留物の製造に供する石炭の質量が0.01〜1gであることを特徴とする請求項1〜3のいずれか1項に記載の焼結用燃料炭材の乾留条件決定方法。   The mass of coal used for manufacture of a coal dry distillation thing is 0.01-1g in the process of manufacturing said mxn kinds of coal dry distillation thing, The any one of Claims 1-3 characterized by the above-mentioned. Of carbonization conditions for fuel carbon materials for sintering.
JP2011133952A 2011-06-16 2011-06-16 Determination of carbonization conditions for sintering carbonaceous fuel Active JP5673377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133952A JP5673377B2 (en) 2011-06-16 2011-06-16 Determination of carbonization conditions for sintering carbonaceous fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133952A JP5673377B2 (en) 2011-06-16 2011-06-16 Determination of carbonization conditions for sintering carbonaceous fuel

Publications (2)

Publication Number Publication Date
JP2013001790A true JP2013001790A (en) 2013-01-07
JP5673377B2 JP5673377B2 (en) 2015-02-18

Family

ID=47670703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133952A Active JP5673377B2 (en) 2011-06-16 2011-06-16 Determination of carbonization conditions for sintering carbonaceous fuel

Country Status (1)

Country Link
JP (1) JP5673377B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128803A (en) * 1974-09-04 1976-03-11 Sumitomo Metal Ind Funkookusukara teichitsusokookusuoseizosuru hoho
JPH05105415A (en) * 1991-10-21 1993-04-27 Mitsui Mining Co Ltd Production of formed activated coke
JPH09279150A (en) * 1996-04-12 1997-10-28 Nippon Steel Corp Rapid heating of blended coal
JP2003313560A (en) * 2002-04-23 2003-11-06 Jfe Steel Kk Method for estimating dry distilled gas and/or liquid material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128803A (en) * 1974-09-04 1976-03-11 Sumitomo Metal Ind Funkookusukara teichitsusokookusuoseizosuru hoho
JPH05105415A (en) * 1991-10-21 1993-04-27 Mitsui Mining Co Ltd Production of formed activated coke
JPH09279150A (en) * 1996-04-12 1997-10-28 Nippon Steel Corp Rapid heating of blended coal
JP2003313560A (en) * 2002-04-23 2003-11-06 Jfe Steel Kk Method for estimating dry distilled gas and/or liquid material and method for producing the same

Also Published As

Publication number Publication date
JP5673377B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
Gan et al. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels
Carvalho et al. Effects of potassium and calcium on the early stages of combustion of single biomass particles
Selcuk et al. Combustion behaviour of Turkish lignite in O2/N2 and O2/CO2 mixtures by using TGA–FTIR
Zhao et al. Combustion characteristics of different parts of corn straw and NO formation in a fixed bed
Mousa et al. Iron ore sintering process with biomass utilization
Steer et al. Opportunities to improve the utilisation of granulated coals for blast furnace injection
CN104615895B (en) The measuring method of coal dust and blast furnace gas multi-fuel fired boiler air leak rate of air preheater
Kieush et al. Influence of biocoke on iron ore sintering performance and strength properties of sinter
JP2022033594A (en) Method for manufacturing sintered ore
Yu et al. New method of quantitative determination of the carbon source in blast furnace flue dust
JP2010209212A (en) Method for producing fuel charcoal material for sintering
JP5673377B2 (en) Determination of carbonization conditions for sintering carbonaceous fuel
Fan et al. Preparation technologies of straw char and its effect on pollutants emission reduction in iron ore sintering
JP5742495B2 (en) Sintering experiment equipment
KR101246502B1 (en) Measuring method of free-carbon content which is contained in mixed raw material
JP2011037964A (en) Manufacturing method for ferro-coke
CN107609207B (en) Method for calculating calorific value of pulverized coal in blast furnace
Zhang et al. Effects of coal ash on iron‐based oxygen carrier in chemical‐looping combustion using three different rank coals as fuel
Kijo-Kleczkowska Analysis of cyclic combustion of the coal-water suspension
JP5673441B2 (en) Solid fuel evaluation method
Rousset et al. Comparing four bio-reducers self-ignition propensity by applying heat-based methods derived from coal
Findorák et al. The study of saw-dust addition on iron-ore sintering performance
Reichel et al. Increasing the sustainability of the steel production in the electric arc furnace by substituting fossil coal with biochar
CN104619866B (en) The preparation method of pulverized coal injection into blast furna
Arnsfeld et al. Investigations of the reaction kinetics of torrefied biomass for metallurgical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350