JPH0817153B2 - Method for manufacturing silicon thin film crystal layer - Google Patents

Method for manufacturing silicon thin film crystal layer

Info

Publication number
JPH0817153B2
JPH0817153B2 JP60174053A JP17405385A JPH0817153B2 JP H0817153 B2 JPH0817153 B2 JP H0817153B2 JP 60174053 A JP60174053 A JP 60174053A JP 17405385 A JP17405385 A JP 17405385A JP H0817153 B2 JPH0817153 B2 JP H0817153B2
Authority
JP
Japan
Prior art keywords
electron beam
thin film
silicon thin
film
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60174053A
Other languages
Japanese (ja)
Other versions
JPS6235511A (en
Inventor
信 吉見
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP60174053A priority Critical patent/JPH0817153B2/en
Publication of JPS6235511A publication Critical patent/JPS6235511A/en
Publication of JPH0817153B2 publication Critical patent/JPH0817153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、絶縁膜上に単結晶層、特に半導体単結晶層
を成長させる半導体薄膜結晶層の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a semiconductor thin film crystal layer in which a single crystal layer, particularly a semiconductor single crystal layer, is grown on an insulating film.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

絶縁膜上に単結晶シリコン層を成長させる、所謂SOI
(絶縁膜上のシリコン層)技術は、3次元ICを実現する
上で最も重要な技術である。SOI技術の中でも、電子ビ
ームを用いたアニール技術は、大面積をアニールできる
点で極めて有望である。しかしながら、電子ビームアニ
ール技術では基板を真空中に配置する必要があり、この
ため、以下に述べるような問題を生じていた。
So-called SOI for growing a single crystal silicon layer on an insulating film
The (silicon layer on insulating film) technology is the most important technology for realizing a three-dimensional IC. Among the SOI technologies, the annealing technology using an electron beam is extremely promising because it can anneal a large area. However, the electron beam annealing technique requires the substrate to be placed in a vacuum, which causes the following problems.

第4図(a)(b)は従来の電子ビームアニール方法
を説明するための断面図である。この方法では、まず第
4図(a)に示す如く、Si基板41上に開孔部42aを有す
るSiO2膜42を形成し、この上に多結晶Si膜43を形成す
る。次いで、この多結晶Si膜43上に電子ビーム44を照射
し、該ビーム44を一方向に走査する。開孔部42aは、基
板41の単結晶領域からの結晶情報を多結晶Si膜43に伝搬
する、所謂種結晶領域となる。この種結晶領域の情報が
間断なく多結晶Si膜43に伝搬するには、電子ビーム44の
照射で溶融した溶融層が種結晶に近い方から順に固化し
ていく必要がある。例えば、第4図(a)において、A
→B→Cの順に固化していく必要がある。
4 (a) and 4 (b) are sectional views for explaining the conventional electron beam annealing method. In this method, first, as shown in FIG. 4A, a SiO 2 film 42 having an opening 42a is formed on a Si substrate 41, and a polycrystalline Si film 43 is formed thereon. Then, the polycrystalline Si film 43 is irradiated with an electron beam 44, and the beam 44 is scanned in one direction. The opening 42a serves as a so-called seed crystal region that propagates crystal information from the single crystal region of the substrate 41 to the polycrystalline Si film 43. In order for the information on the seed crystal region to propagate to the polycrystalline Si film 43 without interruption, it is necessary to solidify the molten layer melted by the irradiation of the electron beam 44 in order from the one closer to the seed crystal. For example, in FIG. 4 (a), A
It is necessary to solidify in the order of → B → C.

しかしながら、電子ビームアニール技術においては、
系が真空中に置かれるため、必ずしも上記A→B→Cの
順に固化するための温度分布が得られないと云う問題が
ある。即ち、第4図(a)に矢印45,46で示す如く、溶
融した多結晶Si膜43の熱は、絶縁膜42を伝わる熱伝導46
或いは多結晶Si膜43の表面からの熱放射45によって拡散
していくが、絶縁膜42の熱伝導率はそもそも低く、更に
熱放射45は前記熱伝導46による熱散逸より小さい。その
結果、多結晶Si膜43中で熱が溜って固化し難くなり、場
合によっては種結晶領域より遠くにあるにも拘らず、絶
縁膜下にある基板に形成した素子形状によっては熱伝導
の多少良い地点では速く固化が起こる。このため、第4
図(b)に示す如く、単結晶がとぎれ多結晶領域47が生
じると云う問題があった。
However, in the electron beam annealing technology,
Since the system is placed in a vacuum, there is a problem that the temperature distribution for solidifying in the order of A → B → C cannot always be obtained. That is, as shown by arrows 45 and 46 in FIG. 4A, the heat of the melted polycrystalline Si film 43 is transferred to the insulating film 42 by the heat conduction 46.
Alternatively, the heat radiation 45 from the surface of the polycrystalline Si film 43 causes diffusion, but the thermal conductivity of the insulating film 42 is low in the first place, and the heat radiation 45 is smaller than the heat dissipation by the heat conduction 46. As a result, heat is hard to be accumulated and hardened in the polycrystalline Si film 43, and depending on the shape of the element formed on the substrate under the insulating film, heat conduction may occur depending on the case, although it is far from the seed crystal region. Fast solidification occurs at some good points. Therefore, the fourth
As shown in FIG. 6B, there is a problem that the single crystal is broken to form a polycrystalline region 47.

〔発明の目的〕[Object of the Invention]

本発明は上記事情を考慮してなされたもので、その目
的とするところは、電子ビームアニールによる溶融領域
の種結晶に近い側から順に固化させることができ、安定
した単結晶化を行い得るシリコン単結晶層の製造方法を
提供することにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to make it possible to solidify sequentially from the side close to the seed crystal in the melting region by electron beam annealing, and to perform stable single crystallization. It is to provide a method for manufacturing a single crystal layer.

〔発明の概要〕[Outline of Invention]

本発明の骨子は、熱の吸収体を用い、この熱吸収体を
電子ビーム照射側の該照射領域の近傍に配置して、溶融
領域の種結晶に近い側から順に冷却することにある。
The essence of the present invention is to use a heat absorber, arrange the heat absorber near the irradiation region on the electron beam irradiation side, and cool the melted region in order from the side closer to the seed crystal.

即ち本発明は、単結晶シリコン基板上に種結晶領域と
なる開孔部を有するSiO2絶縁膜を形成し、該SiO2絶縁膜
上に非晶質若しくは多結晶のシリコン薄膜を堆積し、該
シリコン薄膜には電子ビームを照射し、該薄膜を前記種
結晶領域より順次溶融・再結晶化するシリコン薄膜結晶
層の製造方法において、前記電子ビームの進行方向に対
して前記電子ビーム照射領域の後方に前記シリコン薄膜
の熱の一部を吸収する熱吸収体を配置して、且つ該熱吸
収体を前記電子ビームの移動に随伴して移動せしめ、こ
れにより溶融した前記シリコン薄膜を前記種結晶領域に
近い順から順に冷却するようにしたものである。
That is, the present invention forms a SiO 2 insulating film having an opening portion to be a seed crystal region on a single crystal silicon substrate, deposits an amorphous or polycrystalline silicon thin film on the SiO 2 insulating film, In a method of manufacturing a silicon thin film crystal layer in which a silicon thin film is irradiated with an electron beam, and the thin film is sequentially melted and recrystallized from the seed crystal region, a silicon thin film rear side of the electron beam irradiation region with respect to a traveling direction of the electron beam A heat absorber that absorbs a part of the heat of the silicon thin film, and the heat absorber is moved together with the movement of the electron beam, whereby the molten silicon thin film is melted into the seed crystal region. The cooling is performed in order from the one closest to

〔発明の効果〕〔The invention's effect〕

本発明によれば熱吸収体を電子ビームのすぐ後るから
電子ビームに随伴して移動させることにより、溶融状態
にあるシリコン膜表面から効果的に熱を吸収し、シリコ
ン膜を種結晶領域に近い側が低くなる理想的な急峻な温
度分布が常に形成され、種結晶を核として確実に固化さ
せることができるのである。このため、単結晶がとぎれ
ることなく、安定した単結晶化を行わせることができ
る。
According to the present invention, the heat absorber is moved immediately after the electron beam so that the heat absorber is moved along with the electron beam, so that heat is effectively absorbed from the surface of the silicon film in a molten state, and the silicon film becomes a seed crystal region. An ideal steep temperature distribution in which the near side becomes lower is always formed, and the seed crystal can be reliably solidified with the seed crystal as the nucleus. Therefore, stable single crystallization can be performed without breaking the single crystal.

〔発明の実施例〕Example of Invention

以下、本発明の詳細を図示の実施例によって説明す
る。
Hereinafter, the details of the present invention will be described with reference to the illustrated embodiments.

第1図は本発明の一実施例方法に使用した電子ビーム
アニール装置を示す概略構成図である。図中11は電子銃
であり、この電子銃11から放射された電子ビームは磁気
レンズ12,13,14により集束されステージ15上に載置され
た試料16上に照射される。17は電子ビームをON−OFFす
るブランキング電極である。18は電子ビームの照射領域
近傍にその先端が設けられた熱吸収体でる。この熱吸収
体18は、例えば第2図に示す如く、内部に冷却水を流す
ステンレス管21を有したセラミックス体22なるものであ
り、その先端が前記ビーム照射点から約10[μm]離
れ、且つ基板表面から約5[μm]の高さに位置するも
のとなっている。
FIG. 1 is a schematic configuration diagram showing an electron beam annealing apparatus used in an embodiment method of the present invention. In the figure, 11 is an electron gun, and the electron beam emitted from the electron gun 11 is focused by the magnetic lenses 12, 13, and 14 and is irradiated onto the sample 16 placed on the stage 15. Reference numeral 17 is a blanking electrode that turns the electron beam on and off. Reference numeral 18 is a heat absorber whose tip is provided in the vicinity of the electron beam irradiation region. The heat absorber 18 is, for example, as shown in FIG. 2, a ceramic body 22 having a stainless tube 21 through which cooling water flows, the tip of which is about 10 [μm] away from the beam irradiation point, Moreover, it is located at a height of about 5 [μm] from the substrate surface.

なお、上記試料16は、単結晶Si基板31上に開孔部32a
を有するSiO2膜(絶縁膜)32を形成し、その上に多結晶
Si膜(半導体薄膜)33を堆積したものである。
The sample 16 has an opening 32a on the single crystal Si substrate 31.
Forming a SiO 2 film (insulating film) 32 having
A Si film (semiconductor thin film) 33 is deposited.

次に、上記装置を用いたSi薄膜結晶層の製造方法につ
いて説明する。
Next, a method of manufacturing a Si thin film crystal layer using the above apparatus will be described.

電子ビームの加速電圧を10[KV]、ビーム電流を1
[mA]とし、第3図(a)に示す如くビーム34が試料16
に対し矢印方向に相対的に走査されるよう、試料16を該
矢印と逆方向に移動する。この時の移動速度は、10[cm
/sec]とした。また、前記熱吸収体18の温度は、20
[℃]に保持するようにした。
Electron beam acceleration voltage 10 [KV], beam current 1
[MA], and the beam 34 is reflected on the sample 16 as shown in FIG.
The sample 16 is moved in the direction opposite to the arrow so that the sample 16 is scanned relative to the arrow. The moving speed at this time is 10 [cm
/ sec]. The temperature of the heat absorber 18 is 20
It was kept at [° C].

その結果、多結晶Si膜33の溶融流域は、熱吸収体18に
より種結晶(開孔部32a)に近い側から順に強制的に冷
却されることになる。つまり、第3図(b)に示す如
く、多結晶Si膜33の溶融領域は、常にA→B→Cの順に
固化される温度分布を持つことになる。このため、単結
晶がとぎれ多結晶領域が生じる等の不都合もなく、良質
の単結晶層を得ることができた。
As a result, the melt flow region of the polycrystalline Si film 33 is forcibly cooled by the heat absorber 18 sequentially from the side closer to the seed crystal (opening 32a). That is, as shown in FIG. 3 (b), the molten region of the polycrystalline Si film 33 always has a temperature distribution that is solidified in the order of A → B → C. Therefore, a good quality single crystal layer could be obtained without the inconvenience that the single crystal was interrupted and a polycrystalline region was generated.

このように本実施例方法によれば、熱吸収体18を用
い、この熱吸収体18を電子ビーム34の進行方向に対して
電子ビーム34の照射領域後方に配置して、且つ熱吸収体
18を電子ビーム34の移動に随伴して移動させることによ
り、ビームアニールによる多結晶Si膜33の溶融領域の種
結晶に近い側から順に固化させることができる。このた
め、安定した単結晶化を行い得、3次元ICの製造等に極
めて有効である。
Thus, according to the method of the present embodiment, the heat absorber 18 is used, the heat absorber 18 is arranged behind the irradiation region of the electron beam 34 with respect to the traveling direction of the electron beam 34, and
By moving 18 along with the movement of the electron beam 34, it is possible to solidify sequentially from the side closer to the seed crystal in the molten region of the polycrystalline Si film 33 by beam annealing. Therefore, stable single crystallization can be performed, which is extremely effective for manufacturing a three-dimensional IC.

なお、前記ビームアニールすべき半導体薄膜は多結晶
Siに限るものではなく、非晶質Si膜であってもよい。そ
の他、本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。
The semiconductor thin film to be beam annealed is polycrystalline.
The film is not limited to Si and may be an amorphous Si film. In addition, various modifications can be made without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例方法に使用した電子ビームア
ニール装置を示す概略構成図、第2図は上記装置に用い
た熱吸収体の具体的構造を示す断面図、第3図(a)
(b)は上記装置を用いたSi単結晶層の製造工程を示す
断面図、第4図(a)(b)は従来のビームアニール法
の問題点を説明するための断面図である。 11……電子銃、12,〜.14……電磁レンズ、15……試料ス
テージ、16……試料、17……ブランキング電極、18……
熱吸収体、21……ステンレス管、22……セラミックス
体、31……単結晶Si基板、32……SiO2膜(絶縁膜)、32
a……開孔部、33……多結晶Si膜(半導体薄膜)、34…
…電子ビーム。
FIG. 1 is a schematic configuration diagram showing an electron beam annealing apparatus used in an embodiment method of the present invention, FIG. 2 is a sectional view showing a specific structure of a heat absorber used in the apparatus, and FIG. 3 (a). )
FIG. 4B is a sectional view showing a manufacturing process of a Si single crystal layer using the above apparatus, and FIGS. 4A and 4B are sectional views for explaining problems of the conventional beam annealing method. 11 …… electron gun, 12, ~ .14 …… electromagnetic lens, 15 …… sample stage, 16 …… sample, 17 …… blanking electrode, 18 ……
Heat absorber, 21 …… Stainless steel tube, 22 …… Ceramics body, 31 …… Single crystal Si substrate, 32 …… SiO 2 film (insulating film), 32
a …… Opening part, 33 …… Polycrystalline Si film (semiconductor thin film), 34…
… Electron beam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単結晶シリコン基板上に種結晶領域となる
開孔部を有するSiO2絶縁膜を形成し、該SiO2絶縁膜上に
非晶質若しくは多結晶のシリコン薄膜を堆積した試料の
シリコン薄膜に電子ビームを照射し、該薄膜を前記種結
晶領域より順次溶融・再結晶化するシリコン薄膜結晶層
の製造方法において、電子銃から放射される電子ビーム
をレンズ系により集束してステージ上に照射し、該電子
ビームの進行方向に対して前記電子ビーム照射領域の後
方にはその内部に冷却水を流すステンレス管からなる熱
吸収体の先端部を配置した電子ビームアニール装置を用
い、上記ステージに上記試料を載置するとともに、該試
料上に電子ビームを照射しながら前記熱吸収体を前記電
子ビームの移動に随伴して移動せしめ、電子ビーム照射
により溶融した上記シリコン薄膜を上記熱吸収体により
上記種結晶領域に近い順から順次冷却するようにしたこ
とを特徴とするシリコン薄膜結晶層の製造方法。
1. A sample obtained by forming an SiO 2 insulating film having an opening portion serving as a seed crystal region on a single crystal silicon substrate, and depositing an amorphous or polycrystalline silicon thin film on the SiO 2 insulating film. In a method of manufacturing a silicon thin film crystal layer in which a silicon thin film is irradiated with an electron beam, and the thin film is sequentially melted and recrystallized from the seed crystal region, an electron beam emitted from an electron gun is focused by a lens system on a stage. And an electron beam annealing device in which a tip of a heat absorber made of a stainless steel tube through which cooling water flows is disposed behind the electron beam irradiation region with respect to the traveling direction of the electron beam. The sample is placed on a stage, the heat absorber is moved along with the movement of the electron beam while irradiating the sample with the electron beam, and the sample is melted by the electron beam irradiation. A method for producing a silicon thin film crystal layer, wherein the silicon thin film is cooled by the heat absorber in order from a position closer to the seed crystal region.
JP60174053A 1985-08-09 1985-08-09 Method for manufacturing silicon thin film crystal layer Expired - Lifetime JPH0817153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174053A JPH0817153B2 (en) 1985-08-09 1985-08-09 Method for manufacturing silicon thin film crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174053A JPH0817153B2 (en) 1985-08-09 1985-08-09 Method for manufacturing silicon thin film crystal layer

Publications (2)

Publication Number Publication Date
JPS6235511A JPS6235511A (en) 1987-02-16
JPH0817153B2 true JPH0817153B2 (en) 1996-02-21

Family

ID=15971793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174053A Expired - Lifetime JPH0817153B2 (en) 1985-08-09 1985-08-09 Method for manufacturing silicon thin film crystal layer

Country Status (1)

Country Link
JP (1) JPH0817153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283915A (en) * 1988-09-20 1990-03-26 Ricoh Co Ltd Manufacture of semiconductor single crystal thin film
CN116043325A (en) * 2023-03-24 2023-05-02 北京航空航天大学 Thin film deposition device and thin film deposition method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147425A (en) * 1983-02-10 1984-08-23 Seiko Instr & Electronics Ltd Formation of semiconductor crystal film

Also Published As

Publication number Publication date
JPS6235511A (en) 1987-02-16

Similar Documents

Publication Publication Date Title
JPH04338631A (en) Thin-film semiconductor device and manufacture thereof
JPH06177034A (en) Semiconductor single crystal growth method
US4564403A (en) Single-crystal semiconductor devices and method for making them
JP2004153232A (en) Method for manufacturing semiconductor element and semiconductor element manufactured by the method
JPH0817153B2 (en) Method for manufacturing silicon thin film crystal layer
JPH0419698B2 (en)
JP2797104B2 (en) Method for manufacturing semiconductor crystal layer
KR100594924B1 (en) Semiconductor devices and methods of manufacture thereof
JP2840081B2 (en) Semiconductor thin film manufacturing method
Biegelsen et al. Laser induced crystal growth of silicon islands on amorphous substrates
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPH0355975B2 (en)
JP2834801B2 (en) Semiconductor thin film manufacturing method
JPS6396908A (en) Device for laser-beam irradiation
JPH0136970B2 (en)
JPH0371767B2 (en)
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JP2569402B2 (en) Manufacturing method of semiconductor thin film crystal layer
JPH01131092A (en) Formation of semiconductor single crystal
JPS61251114A (en) Manufacture of single crystal silicon film
JPS59147424A (en) Formation of semiconductor crystal film
JPS6130024A (en) Formation of soi
JPH03173417A (en) Manufacture of semiconductor thin film
JP2656466B2 (en) Semiconductor substrate manufacturing method
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term