JPH0817059B2 - Low temperature sintered porcelain material - Google Patents

Low temperature sintered porcelain material

Info

Publication number
JPH0817059B2
JPH0817059B2 JP19003689A JP19003689A JPH0817059B2 JP H0817059 B2 JPH0817059 B2 JP H0817059B2 JP 19003689 A JP19003689 A JP 19003689A JP 19003689 A JP19003689 A JP 19003689A JP H0817059 B2 JPH0817059 B2 JP H0817059B2
Authority
JP
Japan
Prior art keywords
cuo
dielectric
mol
temperature sintered
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19003689A
Other languages
Japanese (ja)
Other versions
JPH0355710A (en
Inventor
博史 森井
健 安積
康信 米田
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19003689A priority Critical patent/JPH0817059B2/en
Publication of JPH0355710A publication Critical patent/JPH0355710A/en
Publication of JPH0817059B2 publication Critical patent/JPH0817059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は低温焼結磁器材料に関し、特に1000℃以下
の低温で焼成可能で、たとえば、低容量のEMIフィルタ
用の誘電体材料あるいは磁性体と誘電体とを一体焼結し
たLC複合チップEMIフィルタ用の誘電体材料として使用
するのに好適な低温焼結磁器材料に関する。
Description: TECHNICAL FIELD The present invention relates to a low-temperature sintered porcelain material, and in particular, it can be fired at a low temperature of 1000 ° C. or lower, and is, for example, a low-capacity dielectric material or magnetic material for an EMI filter. The present invention relates to a low-temperature sintered porcelain material suitable for use as a dielectric material for an LC composite chip EMI filter, which is obtained by integrally sintering a ceramic and a dielectric.

(従来技術) 従来、1000℃以下で焼成が可能である低温焼結磁器材
料としては、Pb系複合ペロブスカイト材料に代表される
が、Pb系材料は、誘電率εが1000以上と大きいうえに、
誘電率εの温度変化率も−25℃〜+85℃で±50%と大き
い。したがって、Pb系材料では、数10pFの低容量を取得
しにくい。
(Prior Art) Conventionally, as a low-temperature sintered porcelain material that can be fired at 1000 ° C. or lower, a Pb-based composite perovskite material is typified. The Pb-based material has a large dielectric constant ε of 1000 or more, and
The temperature change rate of the dielectric constant ε is also large at ± 25% at -25 ° C to + 85 ° C. Therefore, with a Pb-based material, it is difficult to obtain a low capacitance of several tens of pF.

さらに、低温焼結磁器材料としては、TC系材料(NP=
0)もある。TC系材料においては、ZrO2−Al2O3−SiO2
(ガラス成分)系材料が約1000℃で焼成可能であるが、
誘電率εが10前後と小さい。
Furthermore, TC-based materials (NP =
There is also 0). In TC-based material, ZrO 2 -Al 2 O 3 -SiO 2
(Glass component) type materials can be fired at about 1000 ° C,
The permittivity ε is small, around 10.

そこで、誘電率εが100前後の低温焼結磁器材料とし
て、特公昭62-57042号にTiO2−CuO−Mu系材料が、特開
昭60-106120号にTiO2−NiO−CuO−Mn系材料がそれぞれ
開示され、それらの材料が、LC複合チップ用の誘電体材
料として用いられている。
Therefore, as a low temperature sintered porcelain material having a dielectric constant ε of about 100, a TiO 2 —CuO—Mu based material is disclosed in Japanese Patent Publication No. 62-57042 and a TiO 2 —NiO—CuO—Mn based material is disclosed in JP-A-60-106120. Respective materials have been disclosed and used as dielectric materials for LC composite chips.

(発明が解決しようとする課題) 誘電体となる材料と磁性体となる材料とを貼り合わせ
一体焼結することによってLC複合チップが得られるが、
その誘電体としてBT系材料を用いれば、1200〜1300℃の
高い焼成温度が必要となる。ところが、電極材料のコス
トおよびエネルギ的コストなどの観点から、焼成温度は
低い方が望ましい。
(Problems to be Solved by the Invention) An LC composite chip can be obtained by laminating and sintering a material to be a dielectric material and a material to be a magnetic material.
If a BT material is used as the dielectric, a high firing temperature of 1200 to 1300 ° C is required. However, it is desirable that the firing temperature is low from the viewpoint of the cost of the electrode material and the energy cost.

そこで、誘電体としてPb系複合ペロブスカイト材料を
用い、磁性体としてNi−Zn−Cuフェライトを用いれば、
約1000℃で一体焼結させることによってLC複合チップが
得られるが、磁性体から誘電体へのFeなどの元素の拡散
によりコンデンサ部の諸特性が劣化し実用に供せないも
のとなる場合もある。
Therefore, if a Pb-based composite perovskite material is used as the dielectric and Ni-Zn-Cu ferrite is used as the magnetic material,
An LC composite chip can be obtained by integrally sintering at about 1000 ° C, but in some cases the characteristics of the capacitor part deteriorate due to diffusion of elements such as Fe from the magnetic substance to the dielectric substance, making it unusable for practical use. is there.

また、Pb系材料を用いてコンデンサ部の諸特性を満足
させても、その誘電率εが1000以上と大きいため、数10
pFの小容量を取得するのは困難である。そのPb系材料と
してPb(Ni1 3Nb2 )O3−PbTiO3−Pb(Zn1 2W1
)O3系材料が挙げられるが、誘電率εの温度変化が大
き過ぎて、それをEMIフィルタの材料として用いた場
合、挿入損失の周波数特性が変化し、カット・オフ周波
数がシフトしてしまう。これは、一般に、Pb系材料の誘
電率εの温度変化率が大きいからである。
Even if the Pb-based material is used to satisfy the various characteristics of the capacitor section, its permittivity ε is as large as 1000 or more, so
It is difficult to obtain a small volume of pF. As the Pb-based material, Pb (Ni 1 ] 3 Nb 2 ] 3 ) O 3 -PbTiO 3 -Pb (Zn 1 ] 2 W 1 ]
2 ) O 3 -based materials can be mentioned, but when the dielectric constant ε changes too much with temperature and is used as a material for EMI filters, the frequency characteristics of insertion loss change and the cut-off frequency shifts. I will end up. This is because the temperature change rate of the dielectric constant ε of Pb-based materials is generally large.

それゆえに、この発明の主たる目的は、1000℃以下で
焼結でき、しかも、17〜80の誘電率εを有し、かつ、誘
電率εの温度変化率の小さい、低温焼結磁器材料を提供
することである。
Therefore, a main object of the present invention is to provide a low-temperature sintered porcelain material which can be sintered at 1000 ° C. or lower, has a dielectric constant ε of 17 to 80, and has a small temperature change rate of the dielectric constant ε. It is to be.

(課題を解決するための手段) この発明は、ZrO2を44.0〜99.5モル%、TiO2を0〜4
4.775モル%、およびCuOを0.5〜15モル%含み、それら
の合計が100モル%となる、低温焼結磁器材料である。
(SUMMARY for a) the present invention, the ZrO 2 44.0 to 99.5 mol%, the TiO 2 0 to 4
It is a low-temperature sintered porcelain material containing 4.775 mol% and 0.5 to 15 mol% CuO, and the total of these amounts to 100 mol%.

(発明の効果) この発明によれば、1000℃以下で焼結でき、しかも、
17〜80の誘電率εを有し、かつ、誘電率εの温度変化率
の小さい、低温焼結磁器材料が得られる。
(Effect of the Invention) According to the present invention, it is possible to sinter at 1000 ° C. or lower, and
A low temperature sintered porcelain material having a dielectric constant ε of 17 to 80 and a small temperature change rate of the dielectric constant ε is obtained.

したがって、この発明にかかる低温焼結磁器材料は、
それをたとえばLC複合チップEMIフィルタの誘電体材料
として使用できるほか、それを単独の誘電体材料として
用いることもできる。
Therefore, the low temperature sintered porcelain material according to the present invention,
It can be used, for example, as the dielectric material of an LC composite chip EMI filter, or it can be used as the sole dielectric material.

また、この発明にかかる低温焼結磁器材料は、たとえ
ば低温焼結基板と一体焼成することも可能である。
Further, the low temperature sintered porcelain material according to the present invention can be integrally fired with the low temperature sintered substrate, for example.

この発明の上述の目的,その他の目的,特徴および利
点は、図面を参照して行う以下の実施例の詳細な説明か
ら一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

(実施例) まず、原料として、ZrO2,TiO2およびCuOを別表に示す
組成となるように秤量し調合し、それにイオン交換水お
よび酢酸ビニル系バインダを5重量%加え、直径5mmの
ジルコニアボールを玉石としてポットミルで24時間混
合,粉砕した。
(Example) First, as raw materials, ZrO 2 , TiO 2 and CuO were weighed and mixed so that the compositions shown in the attached table were added, and ion-exchanged water and a vinyl acetate binder were added in an amount of 5% by weight, and zirconia balls having a diameter of 5 mm were added. Was mixed with a pot mill for 24 hours and crushed.

そして、それを蒸発乾燥,整粒の工程を経て、2.5t/c
m2で乾式プレス成形を行って、直径10mm,厚さ0.8mmの成
形体ユニットを得た。
Then, it undergoes the steps of evaporative drying, sizing, and 2.5t / c
Dry press molding was performed at m 2 to obtain a molded body unit having a diameter of 10 mm and a thickness of 0.8 mm.

それから、その成形体ユニットを空気中,1000℃で2
時間焼成して、磁器を形成した。そして、その磁器の両
主面に電極を形成して、試料1〜37を得た。
Then, the molded body unit is subjected to 2 at 1000 ° C. in air.
It was fired for a time to form a porcelain. Then, electrodes were formed on both main surfaces of the porcelain to obtain samples 1 to 37.

それらの試料1〜37について、誘電体率ε,誘電体損
D.F(%)および比抵抗ρ(Ω・cm)などを測定した。
その測定結果を別表に示す。
Dielectric constant ε and dielectric loss of samples 1 to 37
DF (%) and specific resistance ρ (Ω · cm) were measured.
The measurement results are shown in a separate table.

この発明にかかる低温焼結磁器材料の組成範囲を限定
した理由は次の通りである。
The reason why the composition range of the low temperature sintered ceramic material according to the present invention is limited is as follows.

CuOの添加量が15モル%を超えると絶縁抵抗が著しく
低下する。また、CuOの添加量が0.5モル%未満では、極
めて焼結性が悪い。なお、CuOの添加量が0.5モル%で
は、必ずしも焼結性がよいとは言えないが、ZrO2および
CuOの微粉末化および混合度を強めるなど粉末特性を改
善することによって、焼結性の向上が図られているの
で、CuOの添加量が0.5モル%のものも、この発明の範囲
内とした。
If the added amount of CuO exceeds 15 mol%, the insulation resistance will be significantly reduced. If the amount of CuO added is less than 0.5 mol%, the sinterability is extremely poor. It should be noted that when the amount of CuO added is 0.5 mol%, the sinterability is not necessarily good, but ZrO 2 and
Since the sinterability is improved by improving the powder characteristics such as pulverizing CuO and strengthening the degree of mixing, CuO with an addition amount of 0.5 mol% is also within the scope of the present invention. .

ZrO2:TiO2のモル比が55:45である場合を基準にしたと
き、その基準を超えるようにTiO2が増加すると、CuOの
添加量に対する絶縁抵抗の低下が著しく、焼成温度およ
びCuOの添加量の管理幅が狭くなる傾向にある。それに
対して、この発明にかかる低温焼結磁器材料の範囲は、
ZrO2:TiO2のモル比が55:45〜100:0の範囲にあり、誘電
体特性が焼成温度およびCuOの添加量の影響に対して安
定な領域である。
Based on the case where the molar ratio of ZrO 2 : TiO 2 is 55:45, when TiO 2 is increased to exceed the standard, the insulation resistance is significantly reduced with respect to the amount of CuO added, and the firing temperature and CuO The control range of the added amount tends to be narrowed. On the other hand, the range of the low temperature sintered porcelain material according to the present invention is
The ZrO 2 : TiO 2 molar ratio is in the range of 55:45 to 100: 0, and the dielectric property is a stable region against the influence of the firing temperature and the amount of CuO added.

これらの関係の一例を、第1図ないし第4図に基づい
て説明する。
An example of these relationships will be described with reference to FIGS. 1 to 4.

第1図は、この発明の実施例としてZrO2:TiO2のモル
比を8:2とした場合のCuOの添加量(モル%)と誘電率ε
および誘電体損D.F(%)との関係を示すグラフであ
り、第2図はその場合のCuOの添加量(モル%)と比抵
抗ρの対数値Logρとの関係を示すグラフである。
FIG. 1 shows the amount of added CuO (mol%) and the dielectric constant ε when the molar ratio of ZrO 2 : TiO 2 is 8: 2 as an example of the present invention.
And FIG. 2 is a graph showing the relationship between the dielectric loss DF (%) and FIG. 2 is a graph showing the relationship between the added amount (mol%) of CuO and the logarithmic value Logρ of the specific resistance ρ in that case.

一方、第3図は、比較例としてZrO2:TiO2のモル比を
2:8とした場合のCuOの添加量(モル%)と誘電率εおよ
び誘電体損D.F(%)との関係を示すグラフであり、第
4図はその場合のCuOの添加量(モル%)と比抵抗ρの
対数値Logρとの関係を示すグラフである。
On the other hand, FIG. 3 shows the molar ratio of ZrO 2 : TiO 2 as a comparative example.
FIG. 4 is a graph showing the relationship between the added amount of CuO (mol%) and the dielectric constant ε and the dielectric loss DF (%) in the case of 2: 8. FIG. 4 shows the added amount of CuO (mol%) in that case. ) And the logarithmic value Logρ of the specific resistance ρ.

第1図ないし第4図に示すグラフから明らかなよう
に、ZrO2:TiO2のモル比を2:8とした比較例では、極めて
限られた範囲の組成でないと誘電体として使用すること
ができない。すなわち、誘電体特性として焼成温度およ
びCuOの添加量の依存が強いのである。それに対して、Z
rO2:TiO2のモル比を8:2とした実施例では、焼成温度お
よびCuOの添加量に対して広い範囲で誘電体として使用
することができる。
As is clear from the graphs shown in FIGS. 1 to 4, in the comparative example in which the molar ratio of ZrO 2 : TiO 2 is 2: 8, the composition can be used as a dielectric unless the composition is in an extremely limited range. Can not. That is, the dielectric properties strongly depend on the firing temperature and the amount of CuO added. On the other hand, Z
In the example in which the molar ratio of rO 2 : TiO 2 is 8: 2, it can be used as a dielectric in a wide range with respect to the firing temperature and the added amount of CuO.

また、第5図および第6図に誘電率の温度変化率を示
した。この場合、第5図には試料番号22のもの、第6図
には試料番号33のものを示した。第5図および第6図か
ら明らかなように、この発明にかかる低温焼結磁器材料
によれば、誘電率の温度変化率の小さいものが得られ
る。
The rate of change in dielectric constant with temperature is shown in FIGS. 5 and 6. In this case, FIG. 5 shows the sample number 22, and FIG. 6 shows the sample number 33. As is clear from FIGS. 5 and 6, according to the low temperature sintered porcelain material according to the present invention, a material having a small rate of change in dielectric constant with temperature can be obtained.

なお、この発明にかかる低温焼結磁器材料には、MnO
をMnO3に換算して5.0重量%以下添加してもよい。この
ようにMnOを添加すれば、比抵抗が増し、絶縁抵抗が改
善される。特に磁性体と一体焼結した場合、磁性体の成
分であるFeが誘電体中に拡散する傾向があり、誘電体の
絶縁抵抗が低下するが、MnOを添加することにより絶縁
抵抗の低下を抑えることができる。
The low temperature sintered porcelain material according to the present invention contains MnO
May be added to MnO 3 in an amount of 5.0% by weight or less. By adding MnO in this way, the specific resistance is increased and the insulation resistance is improved. In particular, when sintered together with a magnetic substance, Fe, which is a component of the magnetic substance, tends to diffuse into the dielectric substance, which lowers the insulation resistance of the dielectric substance, but adding MnO suppresses the reduction of the insulation resistance. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例としてZrO2:TiO2のモル比
を8:2とした場合におけるCuOの添加量(モル%)と誘電
率εおよび誘電体損D.F(%)との関係を示すグラフで
あり、第2図はその場合におけるCuOの添加量(モル
%)と比抵抗ρの対数値Logρとの関係を示すグラフで
ある。 第3図は比較例としてZrO2:TiO2のモル比を2:8とした場
合におけるCuOの添加量(モル%)と誘電率εおよび誘
電体損D.F(%)との関係を示すグラフであり、第4図
はその場合におけるCuOの添加量(モル%)と比抵抗ρ
の対数値Logρとの関係を示すグラフである。 第5図および第6図は、それぞれ、この発明の実施例に
かかる誘電率の温度変化率を示すグラフである。
FIG. 1 shows the relationship between the added amount (mol%) of CuO and the dielectric constant ε and the dielectric loss DF (%) when the molar ratio of ZrO 2 : TiO 2 is 8: 2 as one embodiment of the present invention. 2 is a graph showing the relationship between the added amount (mol%) of CuO and the logarithmic value Logρ of the specific resistance ρ in that case. FIG. 3 is a graph showing the relationship between the added amount (mol%) of CuO, the dielectric constant ε and the dielectric loss DF (%) when the molar ratio of ZrO 2 : TiO 2 is 2: 8 as a comparative example. Fig. 4 shows the addition amount (mol%) of CuO and the specific resistance ρ in that case.
7 is a graph showing a relationship with the logarithmic value Log ρ of 5 and 6 are graphs showing the temperature change rate of the dielectric constant according to the example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ZrO2を44.0〜99.5モル%、 TiO2を0〜44.775モル%、および CuOを0.5〜15モル%含み、 それらの合計が100モル%となる、低温焼結磁器材料。1. A low-temperature sintered porcelain material containing 44.0 to 99.5 mol% ZrO 2 , 0 to 44.775 mol% TiO 2 , and 0.5 to 15 mol% CuO, and their total amount is 100 mol%. 【請求項2】さらに、MnをMnCO3に換算して5.0重量%以
下含む、特許請求の範囲第1項記載の低温焼結磁器材
料。
2. The low temperature sintered porcelain material according to claim 1, which further contains 5.0% by weight or less of Mn in terms of MnCO 3 .
JP19003689A 1989-07-21 1989-07-21 Low temperature sintered porcelain material Expired - Fee Related JPH0817059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19003689A JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19003689A JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Publications (2)

Publication Number Publication Date
JPH0355710A JPH0355710A (en) 1991-03-11
JPH0817059B2 true JPH0817059B2 (en) 1996-02-21

Family

ID=16251294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19003689A Expired - Fee Related JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Country Status (1)

Country Link
JP (1) JPH0817059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012911C2 (en) * 1999-08-26 2001-02-27 Stichting Tech Wetenschapp Method for manufacturing a ceramic material with a low friction coefficient and assembly of ceramic material.

Also Published As

Publication number Publication date
JPH0355710A (en) 1991-03-11

Similar Documents

Publication Publication Date Title
JPH03276510A (en) Porcelain dielectric for temperature compensation
EP0257593B1 (en) Ceramic composition with improved electrical and mechanical properties
JP3305272B2 (en) Dielectric porcelain material
JPH0597508A (en) Dielectric porcelain composition for high-frequency
JPH0817059B2 (en) Low temperature sintered porcelain material
JPS6229008A (en) Dielectric ceramic composition
JP4066312B2 (en) Dielectric porcelain composition
JP3522559B2 (en) Dielectric porcelain material
US5111357A (en) Solid dielectric capacitor and method of manufacture
JP2531548B2 (en) Porcelain composition for temperature compensation
JP2576973B2 (en) Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same
KR100434004B1 (en) High Frequency Dielectric Composition
JPS5918159A (en) Dielectric ceramic composition
JP3385626B2 (en) Dielectric porcelain composition
JP3225838B2 (en) High frequency dielectric composition
JP5614503B2 (en) Dielectric porcelain composition and electronic component
JP3106371B2 (en) Dielectric porcelain composition
US4769354A (en) Type I dielectric composition based on neodymium titanate
JP2622292B2 (en) Dielectric paste
KR920006730B1 (en) Ceramic material
JP4006655B2 (en) Dielectric porcelain composition for microwave
JPS5920907A (en) Dielectric porcelain composition
JPS5849661A (en) High dielectric constant ceramic composition
JPS6223405B2 (en)
JPH10270230A (en) Composite electronic component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees