JP3385626B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP3385626B2
JP3385626B2 JP15878292A JP15878292A JP3385626B2 JP 3385626 B2 JP3385626 B2 JP 3385626B2 JP 15878292 A JP15878292 A JP 15878292A JP 15878292 A JP15878292 A JP 15878292A JP 3385626 B2 JP3385626 B2 JP 3385626B2
Authority
JP
Japan
Prior art keywords
weight
range
sample
capacitance
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15878292A
Other languages
Japanese (ja)
Other versions
JPH05325640A (en
Inventor
佳仁 木田
之雄 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15878292A priority Critical patent/JP3385626B2/en
Publication of JPH05325640A publication Critical patent/JPH05325640A/en
Application granted granted Critical
Publication of JP3385626B2 publication Critical patent/JP3385626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、誘電体磁器組成物に
関し、詳しくは、誘電率が高く、その温度特性に優れて
いるとともに、電圧依存性が小さく、大型品に使用した
場合にも大きな絶縁抵抗を有するような、コンデンサの
誘電体材料として優れた特性を備えた誘電体磁器組成物
に関する。 【0002】 【従来の技術及び発明が解決しようとする課題】誘電体
として広く使用されているチタン酸バリウム系誘電体磁
器組成物は、一般に、高い誘電率を有しており、その温
度特性に優れたものも少なくない。 【0003】しかし、チタン酸バリウム系誘電体磁器組
成物は、特性の電圧依存性が大きく、交流高電圧を印加
すると、誘電損失が極端に大きくなってしまうという問
題点がある。 【0004】また、SrTiO3−CaTiO3−PbT
iO3−Bi23−TiO2系の誘電体磁器組成物におい
ては、誘電率が高く、その電圧依存性の小さいものが提
案され、実用化されているものもある。しかし、この誘
電体磁器組成物においては、静電容量の温度変化率が大
きいという問題点があり、また、温度特性を改良するた
めに、CuOやNiOなどの金属酸化物を添加したもの
は、例えば、直径が20mm以上、厚みが10mm以上の大
型品に使用すると、内部がn型半導体化しやすく、絶縁
抵抗が低下して、高温負荷寿命試験において短時間に劣
化を生じ、破壊してしまうという問題点がある。 【0005】この発明は、上記問題点を解決するもので
あり、誘電率が高く、その温度特性に優れているととも
に、電圧依存性が小さく、大型品に使用した場合にも絶
縁抵抗が大きく、実用上十分な寿命を有する誘電体磁器
組成物を得ることを目的とする。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、この発明の誘電体磁器組成物は、 SrTiO3,CaTiO3,PbTiO3,Bi23
及びTiO2を、 SrTiO3 : 20〜44重量% CaTiO3 : 12〜28重量% PbTiO3 : 6〜22重量% Bi23 : 1〜40重量% TiO2 : 2〜14重量% の割合で含有してなる主成分に対して、CeO2などの
希土類元素酸化物、及びAl23を、その含有率が、 CeO2などの希土類元素酸化物 : 0.1〜0.8重量% Al23 : 0.1〜1.0重量% になるような割合で添加した誘電体磁器組成物であっ
て、20℃を基準とした場合の−30〜85℃における
静電容量の変化率が±5%以内(A特性の範囲内)にあ
ことを特徴とする。 【0007】 【実施例】以下、この発明の実施例を比較例とともに示
して、発明の特徴をより明瞭にする。 【0008】この実施例においては、誘電体磁器組成物
を作成するにあたり、まず、純度が98.0%以上のS
rTiO3,CaTiO3,PbTiO3,Bi23,T
iO2,Al23,CeO2を用意し、これらの原料を、
表1に示すような組成比になるように秤取する。 【0009】 【表1】【0010】なお、表1において、試料番号に*印を付
したもの(試料番号15〜24)は、この発明の範囲外
の組成を有する比較例を示し、その他のもの(試料番号
1〜14)は、この発明の範囲内の組成を有する実施例
を示す。 【0011】次に、秤取した原料を、水及びPSZ(部
分安定化ジルコニア)ボールとともにポリエチレンポッ
トに入れ、湿式で粉砕、混合する。それから、この混合
物を脱水、乾燥し、約1000℃で2時間仮焼して粉砕
する。 【0012】そして、この仮焼粉末にポリビニルアルコ
ール(PVA)系の有機バインダーを1〜2重量%添加
し、再び、水及びPSZ(部分安定化ジルコニア)ボー
ルとともにポリエチレンポットに入れて、湿式で粉砕、
混合し、脱水、乾燥を行った後、50メッシュのふるい
を通して粒度調整する。 【0013】それから、得られた原料粉末を、約2t/
cm2の圧力で、直径35mm,厚さ20mmの円板状に加圧
成形した後、円板状の成形体を1150〜1300℃で
2〜4時間焼成する。そして、得られた焼結体の両面に
銀電極を塗布、焼付けするとともに、銀電極に端子を取
り付け、エポキシ樹脂塗装を行って試料であるコンデン
サを作成する。 【0014】上記のようにして得られたコンデンサにつ
いて、1kHz,1vrmsにおける比誘電率εr
1kHz,1vrmsにおけるtanδ、20℃を基
準とした場合の−30〜85℃における静電容量(1k
Hz,1vrms)の温度変化率TC(A特性)、2
kvrms/mmのAC電圧を印加したときのtanδ(A
C電圧特性)、100℃,DC電圧2.8kv/mmの
条件で3000時間の高温負荷試験を行った後の静電容
量(1kHz,1vrms)、を測定した。その結果を
表2に示す。 【0015】 【表2】【0016】なお、表2において、各試料番号は表1の
試料番号に対応しており、試料番号に*印を付したもの
は、この発明の範囲外の組成の比較例を示し、その他
は、この発明の範囲内の実施例を示す。 【0017】表1,2より、比較例の誘電体磁器組成物
は、例えば、試料番号21のように、比誘電率が690
と大きくても、高温負荷試験において10時間以内に破
壊してしまうなど、その温度特性や電圧依存性、さらに
は、高温負荷試験における劣化の生じにくさなどの諸特
性のうち、いずれかの特性について好ましくない結果が
得られているのに対して、実施例の誘電体磁器組成物
は、比誘電率が500以上と比較的大きく、かつ、その
温度特性や電圧依存性、さらには、高温負荷試験におけ
る劣化の生じにくさなどの諸特性のいずれについても実
用上特に問題となるようなことのない特性が得られてい
ることがわかる。 【0018】次に、各成分の組成範囲を限定した理由に
ついて説明する。なお、この発明の誘電体磁器組成物に
おいて各組成の範囲を限定するにあたっては、表1,2
に示したデータのみならず、表1,2以外の他のデータ
をも考慮している。 【0019】[SrTiO3] 主成分中のSrTiO3の割合が20重量%未満になる
と、低温側における静電容量の温度変化率TCがJIS
のA特性の範囲を外れる。また、SrTiO3の割合が
44重量%を越えると高温側における静電容量の温度変
化率TCがA特性の範囲を外れるとともに、比誘電率ε
rが500未満に低下する(試料番号15)。したがっ
て、主成分中のSrTiO3の割合は、20〜44重量
%の範囲にあることが好ましい。 【0020】[CaTiO3] 主成分中のCaTiO3の割合が12重量%未満になる
と、静電容量の温度変化率TCがJISのA特性の範囲
を外れるとともに、AC電圧2kvrms/mm印加時の
tanδが3%を越える(試料番号19)。また、CaT
iO3の割合が28重量%を越えると、比誘電率εrが5
00未満に低下するとともに、焼結性が低下する(試料
番号18)。したがって、主成分中のCaTiO3の割
合は、12〜28重量%の範囲にあることが好ましい。 【0021】[PbTiO3] 主成分中のPbTiO3の割合が6重量%未満になる
と、高温側における静電容量の温度変化率TCがJIS
のA特性の範囲を外れるとともに、比誘電率εrが50
0未満に低下する。また、PbTiO3の割合が22重
量%を越えると、低温側における静電容量の温度変化率
TCがA特性の範囲を外れるとともに、tanδが1%を
越える。さらに、AC電圧2kvrms/mm印加時のta
nδが3%を越える(試料番号20)。したがって、主
成分中のPbTiO3の割合は、6〜22重量%の範囲
にあることが好ましい。 【0022】[Bi23] 主成分中のBi23の割合が1重量%未満になると、
静電容量の温度変化率TCがJISのA特性の範囲を外
れる。また、Bi23の割合が40重量%を越えると、
焼結性が低下するとともに、AC電圧2kvrms/mm
印加時のtanδが3%を越える(試料番号16)。した
がって、主成分中のBi23の割合は、1〜40重量
%の範囲にあることが好ましい。 【0023】[TiO2] 主成分中のTiO2の割合が2重量%未満になると、焼
結しなくなり(試料番号17)、TiO2の割合が14
重量%を越えると、高温負荷試験で破壊する(すなわ
ち、TiO 2 添加の効果がなくなる)(試料番号2
1)。したがって、主成分中のTiO2の割合は、2〜
14重量%の範囲にあることが好ましい。 【0024】[CeO2などの希土類元素酸化物] CeO2などの希土類元素酸化物の添加量(含有率)
が、0.1重量%未満になると、添加効果がなくなる。
また、CeO2などの希土類元素酸化物の添加量(含有
率)が0.8重量%を越えると、高温側における静電容
量の温度変化率TCがA特性の範囲を外れるとともに、
比誘電率εrが500未満に低下する(試料番号2
3)。したがって、CeO2などの希土類元素酸化物の
添加割合は、0.1〜0.8重量%の範囲にあることが
好ましい。 【0025】なお、上記実施例では、希土類元素酸化物
としてCeO2を用いた場合について説明したが、Ce
2以外にも、Y(イットリウム),La(ランタン)
などの酸化物を用いた場合にも同様の効果を得ることが
できる。 【0026】[Al23] Al23の添加量(含有率)が、0.1重量%未満にな
ると、高温負荷試験において破壊してしまう(試料番号
22)。また、Al23の添加量(含有率)が1.0重
量%を越えると、高温側における静電容量の温度変化率
TCがA特性の範囲を外れるとともに、比誘電率εr
500未満に低下する(試料番号24)。したがって、
Al23の添加割合は、0.1〜1.0重量%の範囲に
あることが好ましい。 【0027】なお、この発明の誘電体磁器組成物の組成
は、上記実施例に限定されるものではなく、この発明の
要旨の範囲内において各成分の割合を変化させるなどの
応用を加えることが可能である。 【0028】 【発明の効果】上述のように、この発明の誘電体磁器組
成物は、SrTiO3:20〜44重量%,CaTi
3:12〜28重量%,PbTiO3:6〜22重量
%,Bi23:1〜40重量%,TiO2:2〜14
重量%を含有する主成分に対して、CeO2などの希土
類元素酸化物:0.1〜0.8重量%,Al23:0.
1〜1.0重量%を添加しているので、比誘電率が50
0以上と比較的大きく、かつ、その温度特性に優れてい
るとともに電圧依存性の小さい、誘電体材料として優れ
た特性を有する誘電体磁器組成物を得ることができる。 【0029】さらに、この発明の誘電体磁器組成物は、
大型品に使用した場合にも、内部がn型半導体化しにく
く、大きな絶縁抵抗を有し、高温負荷試験においても劣
化を起こすことのない信頼性の高いコンデンサを得るこ
とができる。したがって、この発明の誘電体磁器組成物
は、高電圧用コンデンサの誘電体材料として特に有意義
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition, and more particularly, to a dielectric material having a high dielectric constant, excellent temperature characteristics, and low voltage dependency. The present invention relates to a dielectric ceramic composition having excellent characteristics as a dielectric material of a capacitor, which has a large insulation resistance even when used for a large product. 2. Description of the Related Art Barium titanate-based dielectric porcelain compositions widely used as dielectrics generally have a high dielectric constant, and have poor temperature characteristics. There are many excellent things. [0003] However, the barium titanate-based dielectric porcelain composition has a problem that the voltage dependence of its characteristics is large and the dielectric loss becomes extremely large when an AC high voltage is applied. Further, SrTiO 3 —CaTiO 3 —PbT
In iO 3 -Bi 2 O 3 -TiO 2 based dielectric ceramic composition, as high dielectric constant, is proposed having a small the voltage dependence, is also one which is put into practical use. However, in this dielectric ceramic composition, there is a problem that the temperature change rate of the capacitance is large, and, in order to improve the temperature characteristics, those in which a metal oxide such as CuO or NiO is added, For example, when used for a large product having a diameter of 20 mm or more and a thickness of 10 mm or more, the inside is easily converted to an n-type semiconductor, the insulation resistance is reduced, and a high-temperature load life test causes deterioration in a short time and breaks down. There is a problem. The present invention solves the above-mentioned problems, and has a high dielectric constant, excellent temperature characteristics, a small voltage dependency, and a large insulation resistance even when used in a large product. An object is to obtain a dielectric ceramic composition having a practically sufficient life. In order to achieve the above object, the dielectric ceramic composition of the present invention comprises SrTiO 3 , CaTiO 3 , PbTiO 3 , Bi 2 O 3 ,
And TiO 2, SrTiO 3: 20~44 wt% CaTiO 3: 12 to 28 wt% PbTiO 3: 6 to 22 wt% Bi 2 O 3: 1 2 ~40 wt% TiO 2: proportion of 2 to 14 wt% The content of the rare earth element oxide such as CeO 2 and Al 2 O 3 is 0.1 to 0.8% by weight with respect to the main component of the rare earth element oxide such as CeO 2. Al 2 O 3 : Dielectric ceramic composition added at a ratio of 0.1 to 1.0% by weight.
At -30 to 85 ° C. based on 20 ° C.
When the rate of change of the capacitance is within ± 5% (within the range of A characteristic)
Characterized in that that. Examples of the present invention will be described below together with comparative examples to clarify the features of the present invention. In this embodiment, in preparing a dielectric porcelain composition, first, the purity of S is higher than 98.0%.
rTiO 3 , CaTiO 3 , PbTiO 3 , Bi 2 O 3 , T
iO 2 , Al 2 O 3 and CeO 2 are prepared, and these raw materials are
It is weighed so as to have a composition ratio as shown in Table 1. [Table 1] In Table 1, samples marked with an asterisk (sample numbers 15 to 24) indicate comparative examples having compositions outside the scope of the present invention, and other samples (sample numbers 1 to 14). ) Shows examples having compositions within the scope of the present invention. Next, the weighed raw materials are put into a polyethylene pot together with water and PSZ (partially stabilized zirconia) balls, and ground and mixed by a wet method. The mixture is then dewatered, dried, calcined at about 1000 ° C. for 2 hours and ground. Then, a polyvinyl alcohol (PVA) -based organic binder is added to the calcined powder in an amount of 1 to 2% by weight, put again in a polyethylene pot together with water and PSZ (partially stabilized zirconia) balls, and wet-milled. ,
After mixing, dehydration and drying, the particle size is adjusted through a 50 mesh sieve. [0013] Then, the obtained raw material powder is reduced to about 2 t /
After pressure molding into a disk having a diameter of 35 mm and a thickness of 20 mm under a pressure of cm 2, the disk-shaped molded body is fired at 1150 to 1300 ° C. for 2 to 4 hours. Then, silver electrodes are applied and baked on both surfaces of the obtained sintered body, terminals are attached to the silver electrodes, and epoxy resin coating is performed to prepare a capacitor as a sample. With respect to the capacitor obtained as described above, the relative dielectric constant ε r at 1 kHz and 1 vrms,
1 kHz, tan δ at 1 vrms, capacitance at −30 to 85 ° C. based on 20 ° C. (1 k
Hz, 1 vrms) temperature change rate TC (A characteristic) , 2
tanδ (A) when an AC voltage of kvrms / mm is applied.
C voltage characteristic), and the capacitance (1 kHz, 1 vrms) after performing a 3000-hour high-temperature load test at 100 ° C. and a DC voltage of 2.8 kv / mm. Table 2 shows the results. [Table 2] In Table 2, each sample number corresponds to the sample number in Table 1, and a sample number with an asterisk indicates a comparative example of a composition outside the scope of the present invention. An embodiment within the scope of the present invention will now be described. According to Tables 1 and 2, the dielectric ceramic composition of the comparative example has a relative dielectric constant of 690 as shown in sample No. 21, for example.
Even if it is large, it will be destroyed within 10 hours in a high-temperature load test, and its temperature characteristics, voltage dependence, and other characteristics such as difficulty in causing deterioration in a high-temperature load test On the other hand, the dielectric ceramic compositions of the examples have a relatively large relative dielectric constant of 500 or more, and have a temperature characteristic and a voltage dependency, and furthermore, a high temperature load. It can be seen that for each of the various characteristics such as the difficulty in causing deterioration in the test, characteristics that are not particularly problematic in practical use are obtained. Next, the reason why the composition range of each component is limited will be described. In limiting the range of each composition in the dielectric ceramic composition of the present invention, Tables 1 and 2 were used.
In addition to the data shown in Table 1, data other than Tables 1 and 2 are also considered. [SrTiO 3 ] When the ratio of SrTiO 3 in the main component is less than 20% by weight, the temperature change rate TC of the capacitance on the low temperature side is JIS.
Out of the range of the A characteristic. If the ratio of SrTiO 3 exceeds 44% by weight, the temperature change rate TC of the capacitance on the high temperature side is out of the range of the A characteristic and the relative dielectric constant ε
r drops below 500 (sample no. 15). Therefore, the ratio of SrTiO 3 in the main component is preferably in the range of 20 to 44% by weight. [CaTiO 3 ] When the proportion of CaTiO 3 in the main component is less than 12% by weight, the temperature change rate TC of the capacitance is out of the range of the A characteristic of JIS, and when the AC voltage of 2 kvrms / mm is applied.
The tan δ exceeds 3% (Sample No. 19). In addition, CaT
When the ratio of iO 3 exceeds 28% by weight, the relative dielectric constant ε r becomes 5
While decreasing to less than 00, the sinterability decreases (Sample No. 18). Therefore, the proportion of CaTiO 3 in the main component is preferably in the range of 12 to 28% by weight. [PbTiO 3 ] When the proportion of PbTiO 3 in the main component is less than 6% by weight, the temperature change rate TC of the capacitance on the high temperature side becomes JIS.
Out of the range of the A characteristic, and the relative permittivity ε r is 50
It falls below 0. When the proportion of PbTiO 3 exceeds 22% by weight, the temperature change rate TC of the capacitance on the low temperature side falls outside the range of the A characteristic, and tan δ exceeds 1%. Furthermore, when an AC voltage of 2 kvrms / mm is applied, ta
nδ exceeds 3% (Sample No. 20). Therefore, the proportion of PbTiO 3 in the main component is preferably in the range of 6 to 22% by weight. [0022] If the ratio of the [Bi 2 O 3] Bi 2 O 3 in the main component is less than 1 2% by weight,
The temperature change rate TC of the capacitance is out of the range of the JIS A characteristic. Further, when the ratio of Bi 2 O 3 exceeds 40% by weight,
As the sinterability decreases, the AC voltage becomes 2 kvrms / mm
The tan δ at the time of application exceeds 3% (Sample No. 16). Accordingly, the ratio of Bi 2 O 3 in the main component is preferably in the range of 1 2 to 40 wt%. [TiO 2 ] When the proportion of TiO 2 in the main component is less than 2% by weight, sintering stops (sample No. 17) and the proportion of TiO 2 becomes 14%.
If it exceeds 10% by weight, it will break in the high temperature load test (that is, the effect of TiO 2 addition will be lost) (Sample No. 2
1). Therefore, the proportion of TiO 2 in the main component is 2 to
It is preferably in the range of 14% by weight. The addition of the rare earth element oxide such as CeO 2 [rare-earth element oxide such as CeO 2] (content)
However, if it is less than 0.1% by weight, the effect of addition is lost.
If the amount (content) of the rare earth element oxide such as CeO 2 exceeds 0.8% by weight, the temperature change rate TC of the capacitance on the high temperature side falls outside the range of the A characteristic,
The relative dielectric constant ε r decreases to less than 500 (Sample No. 2
3). Therefore, the proportion of the rare earth element oxide such as CeO 2 is preferably in the range of 0.1 to 0.8% by weight. In the above embodiment, the case where CeO 2 is used as the rare earth element oxide has been described.
In addition to O 2 , Y (yttrium), La (lanthanum)
The same effect can be obtained when an oxide such as is used. [Al 2 O 3 ] If the added amount (content) of Al 2 O 3 is less than 0.1% by weight, it will break in a high-temperature load test (sample No. 22). If the addition amount (content) of Al 2 O 3 exceeds 1.0% by weight, the temperature change rate TC of the capacitance on the high temperature side is out of the range of the A characteristic, and the relative dielectric constant ε r is 500. (Sample No. 24). Therefore,
The proportion of Al 2 O 3 added is preferably in the range of 0.1 to 1.0% by weight. The composition of the dielectric porcelain composition of the present invention is not limited to the above-mentioned embodiment, but may be modified by changing the ratio of each component within the scope of the present invention. It is possible. As described above, the dielectric porcelain composition according to the present invention comprises SrTiO 3 : 20 to 44% by weight, CaTi
O 3: 12 to 28 wt%, PbTiO 3: 6~22 wt%, Bi 2 O 3: 1 2 ~40 wt%, TiO 2: 2~14
Relative earth element oxide such as CeO 2 : 0.1 to 0.8% by weight, Al 2 O 3 : 0.
Since 1 to 1.0% by weight is added, the relative dielectric constant is 50%.
A dielectric ceramic composition having a relatively large value of 0 or more, having excellent temperature characteristics and low voltage dependency, and having excellent characteristics as a dielectric material can be obtained. Further, the dielectric porcelain composition of the present invention comprises:
Even when used for a large product, it is possible to obtain a highly reliable capacitor which is hard to be an n-type semiconductor inside, has a large insulation resistance, and does not deteriorate even in a high temperature load test. Therefore, the dielectric ceramic composition of the present invention is particularly significant as a dielectric material for a high-voltage capacitor.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 304 H01B 3/12 318 C04B 35/46 H01G 4/12 415 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 3/12 304 H01B 3/12 318 C04B 35/46 H01G 4/12 415

Claims (1)

(57)【特許請求の範囲】 【請求項1】 SrTiO3,CaTiO3,PbTiO
3,Bi23,及びTiO2を、 SrTiO3 : 20〜44重量% CaTiO3 : 12〜28重量% PbTiO3 : 6〜22重量% Bi23 : 1〜40重量% TiO2 : 2〜14重量% の割合で含有してなる主成分に対して、CeO2などの
希土類元素酸化物、及びAl23を、その含有率が、 CeO2などの希土類元素酸化物 : 0.1〜0.8重量% Al23 : 0.1〜1.0重量% になるような割合で添加した誘電体磁器組成物であっ
て、20℃を基準とした場合の−30〜85℃における
静電容量の変化率が±5%以内(A特性の範囲内)にあ
ことを特徴とする誘電体磁器組成物。
(57) [Claims 1] SrTiO 3 , CaTiO 3 , PbTiO
3, Bi 2 O 3, and TiO 2, SrTiO 3: 20~44 wt% CaTiO 3: 12 to 28 wt% PbTiO 3: 6 to 22 wt% Bi 2 O 3: 1 2 ~40 wt% TiO 2: Rare earth element oxides such as CeO 2 and Al 2 O 3 , relative to the main component contained at a ratio of 2 to 14% by weight, are rare earth oxides such as CeO 2 : 0. 1 to 0.8 wt% Al 2 O 3: a dielectric ceramic composition was added in an amount such that 0.1 to 1.0 wt%
At -30 to 85 ° C. based on 20 ° C.
When the rate of change of the capacitance is within ± 5% (within the range of A characteristic)
The dielectric ceramic composition characterized by that.
JP15878292A 1992-05-25 1992-05-25 Dielectric porcelain composition Expired - Fee Related JP3385626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15878292A JP3385626B2 (en) 1992-05-25 1992-05-25 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15878292A JP3385626B2 (en) 1992-05-25 1992-05-25 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH05325640A JPH05325640A (en) 1993-12-10
JP3385626B2 true JP3385626B2 (en) 2003-03-10

Family

ID=15679219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15878292A Expired - Fee Related JP3385626B2 (en) 1992-05-25 1992-05-25 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3385626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108117385B (en) * 2017-12-26 2020-11-10 中国科学院上海硅酸盐研究所 Large-size high-electric-strength titanium oxide-based dielectric ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH05325640A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
JPH05217426A (en) Non-reducing dielectric ceramic composition
KR20120075347A (en) Dielectric ceramic composition and electronic component
US5646081A (en) Non-reduced dielectric ceramic compositions
JPH02123614A (en) High permittivity type porcelain composition
JP3385626B2 (en) Dielectric porcelain composition
JP5668569B2 (en) Dielectric porcelain composition and electronic component
JP2795654B2 (en) High dielectric constant porcelain composition
JPS6351992B2 (en)
KR100245811B1 (en) Dielectric composition of ceramic capacitor and manufacturing method thereof
JPH0544763B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH03274606A (en) Dielectric cramic composite
JP2584985B2 (en) Semiconductor porcelain composition
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JP2023117901A (en) Dielectric ceramic composition and single layer capacitor
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
KR19980046582A (en) High dielectric constant dielectric self composition
JPS6126207B2 (en)
KR20130087419A (en) Dielectric ceramic composition and electronic component
JP3031104B2 (en) Dielectric porcelain composition
KR100262459B1 (en) Dielectric composition for ceramic capacitor
KR100262458B1 (en) Dielectric composition for ceramic capacitor
JP2620102B2 (en) High dielectric constant porcelain composition
JPH0715855B2 (en) Ceramic capacitors
JPH0544762B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees