JPH08168795A - Sewage denitrification and dephosphorization treatment and device used for the same - Google Patents

Sewage denitrification and dephosphorization treatment and device used for the same

Info

Publication number
JPH08168795A
JPH08168795A JP31479894A JP31479894A JPH08168795A JP H08168795 A JPH08168795 A JP H08168795A JP 31479894 A JP31479894 A JP 31479894A JP 31479894 A JP31479894 A JP 31479894A JP H08168795 A JPH08168795 A JP H08168795A
Authority
JP
Japan
Prior art keywords
tank
denitrification
nitrification
treatment
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31479894A
Other languages
Japanese (ja)
Other versions
JP2932045B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP31479894A priority Critical patent/JP2932045B2/en
Publication of JPH08168795A publication Critical patent/JPH08168795A/en
Application granted granted Critical
Publication of JP2932045B2 publication Critical patent/JP2932045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To make it possible to improve the respective removal rates of nitrogen and phosphorus and to reduce the driving power cost for circulation of a nitrifying liquid by subjecting a liquid mixture composed of inflow sewage and return sludge to an anaeration treatment, then repetitively subjecting the effluent liquid thereof to a nitrifying treatment and denitrifying treatment. CONSTITUTION: The inflow sewage which is raw water and the return sludge from a settling tank 7 are subjected to the anaeration treatment in an anaeration tank 1 at the time of subjecting the sewage to the denitrifying and dephosphorizing treatment. Next, the effluent liquid from the anaeration tank 1 is partly subjected to the nitrifying treatment in a first nitrifying tank 2 and the liquid mixture composed of the residual liquid of the effluent liquid from the anaeration tank 1 and the effluent liquid from the first nitrifying tank 2 is likewise subjected to the denitrifying treatment in a first denitrifying tank 3. In succession, the effluent liquid from the first denitrifying tank 3 is partly subjected to the nitrifying treatment in a second nitrifying tank 4 and the liquid mixture composed of the residual liquid of the effluent liquid from the first nitrifying tank 3 and the effluent liquid from the second nitrifying tank 4 is subjected to the denitrifying treatment in a second denitrifying tank 5. The treated liquid is subjected to a reaeration treatment in a reaeration tank 6. The water is repetitively subjected to the nitrifying treatments and the denitrifying treatments in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】下水の脱窒・脱リン処理方法に関
する。
[Industrial field of application] The present invention relates to a method for denitrifying and dephosphorizing sewage.

【0002】[0002]

【従来の技術】下水の窒素、リンの同時除去方法には、
嫌気−無酸素−好気法〔Anaerobic Anoxic/Oxic (A2O
法)〕がある。この方法は窒素の60〜70%、リンの
90%程度を除去できる方法であるが、窒素の除去率を
向上させようとすると硝化液の循環量を流入下水の2倍
程度にする必要があり、ポンプの動力費が多大になる欠
点があった。窒素除去に関しては、二段硝化液循環法が
ある。この方法によれば窒素の75%程度が除去可能で
ある。窒素除去に関しては、A2O法より効率的な方法で
あるが、リンの除去性が悪く、硝化液循環を二段で行う
ためA2O法より、さらに、ポンプの動力費がかかる欠点
があった。
2. Description of the Related Art A method for simultaneously removing nitrogen and phosphorus from sewage is
Anaerobic Anoxic / Oxic (A 2 O
Law)]. This method can remove about 60 to 70% of nitrogen and about 90% of phosphorus, but in order to improve the removal rate of nitrogen, it is necessary to make the circulating amount of nitrification solution about twice as much as inflowing sewage. However, there is a drawback that the power cost of the pump becomes large. There is a two-stage nitrification solution circulation method for nitrogen removal. According to this method, about 75% of nitrogen can be removed. With respect to nitrogen removal, it is a more efficient way A 2 O process, poor removability of phosphorus, from A 2 O method for performing nitrification circulation through a double, further power cost of the pump is such drawbacks there were.

【0003】[0003]

【発明が解決しようとする課題】ここにおいて、本発明
は、かかる事情を背景としてなされたものであって、そ
の解決課題とするところは、リンの除去率をA2O法なみ
に維持しつつ、窒素の除去率を二段硝化液循環法よりさ
らに高くし、また、硝化液の循環ポンプの動力費を削減
する方法を提供することにある。
The present invention has been made in view of such circumstances, and the problem to be solved is to maintain the removal rate of phosphorus at the same level as the A 2 O method. Another object of the present invention is to provide a method of further increasing the nitrogen removal rate as compared with the two-stage nitrification solution circulation method and reducing the power cost of the nitrification solution circulation pump.

【0004】[0004]

【課題を解決する手段】本発明の下水の脱窒・脱リン処
理方法は、流入下水と返送汚泥との混合液を嫌気槽で嫌
気処理する第1の工程と、該工程の流出液の一部を第1
硝化槽へ送るとともに、残部を分流水として第1脱窒槽
へ送る第2の工程と、前記第1硝化槽で流出液を硝化処
理する第3の工程と、前記嫌気槽から送られた分流水と
前記第1硝化槽から送られた流出液との混合液を前記第
1脱窒槽で脱窒処理する第4の工程と、該工程の流出液
の一部を第2硝化槽へ送るとともに、残部を分流水とし
て第2脱窒槽へ送る第5の工程と、第2硝化槽で流出液
を硝化処理する第6の工程と、前記第1脱窒槽から送ら
れた分流水と前記第2硝化槽から送られた流出液との混
合液を前記第2脱窒槽で脱窒処理する第7の工程と、該
工程の処理液を再曝気槽で再曝気処理する第8の工程と
からなり、硝化処理と脱窒処理とを繰り返すことを特徴
とする。
A method for denitrifying and dephosphorizing sewage according to the present invention comprises a first step of anaerobically treating a mixed solution of inflowing sewage and return sludge in an anaerobic tank and one of effluents of the step. Part 1
A second step of sending the rest to the first denitrification tank as split water while sending it to the nitrification tank, a third step of nitrifying the effluent in the first nitrification tank, and the split water sent from the anaerobic tank And a fourth step of denitrifying the mixed solution of the effluent sent from the first nitrification tank with the first denitrification tank, and sending a part of the effluent of the step to the second nitrification tank, A fifth step of sending the remainder to the second denitrification tank as split water, a sixth step of nitrifying the effluent in the second nitrification tank, the split water sent from the first denitrification tank and the second nitrification A seventh step of denitrifying the mixed liquid with the effluent sent from the tank in the second denitrification tank, and an eighth step of re-aeration processing the treatment liquid of the step in the re-aeration tank, It is characterized in that the nitrification treatment and the denitrification treatment are repeated.

【0005】また、第2脱窒槽の流出液を第3硝化槽、
第3脱窒槽にて硝化処理と脱窒処理とをさらに繰り返す
ことも好適である。
The effluent of the second denitrification tank is changed to the third nitrification tank,
It is also preferable to further repeat the nitrification treatment and the denitrification treatment in the third denitrification tank.

【0006】そして、本発明に従う好ましい態様におい
ては、前記分流水の比率が40〜60%である。ここ
で、分流水の比率とは、流出液に対する分流水の比率を
いう。
In a preferred embodiment according to the present invention, the proportion of the split water is 40 to 60%. Here, the ratio of the divided water refers to the ratio of the divided water to the effluent.

【0007】また、本発明の下水の脱窒・脱リン処理装
置は、嫌気槽、第1硝化槽、第1脱窒槽、第2硝化槽、
第2脱窒槽、および再曝気槽を流下方向に向かって配置
し、前記嫌気槽の流出液の一部を第1硝化槽へ送る越流
ぜきと、残部を分流水として第1脱窒槽へ送るための越
流ぜきと、また第1脱窒槽の流出液の一部を第2硝化槽
へ送る越流ぜきと、残部を分流水として第2脱窒槽へ送
るための越流ぜきとを備えたことを特徴とする。
The sewage denitrification / dephosphorization treatment apparatus of the present invention comprises an anaerobic tank, a first nitrification tank, a first denitrification tank, a second nitrification tank,
The second denitrification tank and the re-aeration tank are arranged in the downflow direction, and a part of the effluent of the anaerobic tank is sent to the first nitrification tank, and the rest is used as split water to the first denitrification tank. Overflow weir for sending, overflow weir for sending a part of the effluent of the first denitrification tank to the second nitrification tank, and overflow weir for sending the rest as split water to the second denitrification tank. It is characterized by having and.

【0008】また、第2脱窒槽の後段に、第3硝化槽お
よび第3脱窒槽を流下方向に向かって配置し、第2脱窒
槽の流出液の一部を第3硝化槽へ送る越流ぜきと、残部
を分流水として第3脱窒槽へ送るための越流ぜきとを備
えたものも好適である。
Further, a third nitrification tank and a third denitrification tank are arranged downstream of the second denitrification tank, and a part of the effluent of the second denitrification tank is sent to the third nitrification tank. Those having a weir and an overflow weir for sending the remainder to the third denitrification tank as split water are also preferable.

【0009】[0009]

【実施例】以下に本発明を図示の実施例によって更に詳
細に説明し、併せて発明の作用を説明する。まず装置の
構成について説明すると、図1及び図2においては、反
応槽を6個に区画してあり、流入側から流出側に液が流
下する程度に水位を順次低くしてある。区画された各槽
は流入側より順に、嫌気槽(1)、第1硝化槽(2)、
第1脱窒槽(3)、第2硝化槽(4)、第2脱窒槽
(5)、再曝気槽(6)となっている。
The present invention will be described in more detail with reference to the embodiments shown in the drawings, and the operation of the present invention will be described. First, the structure of the apparatus will be described. In FIGS. 1 and 2, the reaction tank is divided into six, and the water level is sequentially lowered to the extent that the liquid flows down from the inflow side to the outflow side. The divided tanks are, in order from the inflow side, an anaerobic tank (1), a first nitrification tank (2),
A first denitrification tank (3), a second nitrification tank (4), a second denitrification tank (5), and a re-aeration tank (6).

【0010】まず原水である流入下水と沈殿槽からの返
送汚泥は、嫌気槽(1)へ入る。嫌気槽(1)では、活
性汚泥(返送汚泥由来)は、ATP(アデノシン3リン
酸)の関与と原水中の有機物を利用して細胞内物質の蓄
積と体内のリンを放出する。処理時間は1〜1.5時間
である。
First, the inflow sewage which is the raw water and the returned sludge from the settling tank enter the anaerobic tank (1). In the anaerobic tank (1), activated sludge (derived from returned sludge) uses the involvement of ATP (adenosine triphosphate) and the organic matter in the raw water to accumulate intracellular substances and release phosphorus in the body. The processing time is 1 to 1.5 hours.

【0011】嫌気槽(1)の流出液は、流出端にある2
個の越流ぜきによって次工程の第1硝化槽(2)へ送ら
れるものと、第1硝化槽(2)をバイパスして第1脱窒
槽(3)へ送られる嫌気槽(1)の分流水とに分けられ
る。越流ぜきは図1に示すような阻流壁と隔壁の間の側
面に設けられ、次工程の第1硝化槽(2)へ繋がるもの
と、更に次工程の第1脱窒槽(3)に繋がるものとから
成り、流量の割り振りはせき高さ遮蔽板等により調節す
る。また、この越流ぜきは図2に示すように,隔壁上に
設けてもよく、この場合は、第1硝化槽(2)へは直接
越流させ、第1脱窒槽(3)へは越流水を樋に向けてバ
イパスさせる。
The effluent of the anaerobic tank (1) is at the outflow end 2
The one that is sent to the first nitrification tank (2) in the next step by the individual overflow and the anaerobic tank (1) that is sent to the first denitrification tank (3) by bypassing the first nitrification tank (2). Divided into split water. The overflow weir is provided on the side surface between the baffle wall and the partition wall as shown in FIG. 1, and is connected to the first nitrification tank (2) of the next step, and the first denitrification tank (3) of the next step. The flow rate is controlled by the weir height shield plate and so on. Further, as shown in FIG. 2, this overflow overflow may be provided on a partition wall, and in this case, it overflows directly into the first nitrification tank (2) and into the first denitrification tank (3). Bypass the overflow water to the gutter.

【0012】第1硝化槽(2)では、曝気により原水に
含まれるBOD(生物化学的酸素要求量)成分など有機
物の除去の後に有機性窒素(Org−N)及びアンモニ
ア性窒素(NH4 −N)が酸化され、窒素酸化物(NO
X −N)に変換される。処理時間は、通常の活性汚泥法
で2〜3時間程度、PVAゲル、PEGゲルなどの固定
化担体を10体積%程度添加していれば1時間前後でよ
い。
[0012] In the first nitrification tank (2), organic nitrogen after removal of organic material such as BOD (biochemical oxygen demand) components contained in the raw water by aeration (Org-N) and ammonium nitrogen (NH 4 - N) is oxidized and nitrogen oxides (NO
X- N). The treatment time may be about 2 to 3 hours by an ordinary activated sludge method, and about 1 hour if an immobilized carrier such as PVA gel or PEG gel is added at about 10% by volume.

【0013】第1硝化槽(2)の流出液は、嫌気槽
(1)の分流水とともに第1脱窒槽(3)へ入る。ここ
では、第1硝化槽(2)の流出液に起因するNOX −N
が、嫌気槽(1)の分流水に起因する有機物を水素供与
体として脱窒される。したがって、ここでの脱窒率は、
第1硝化槽(2)の流出液のNOX −N量と嫌気槽
(1)の分流水中の有機物量のバランスにより決まるこ
ととなり、流出液量の比率が高く、分流水の比率が低い
ときには有機物不足により完全脱窒できずにNOX −N
が残留し、逆の場合には完全脱窒するものの流出液量に
応じて、その脱窒量は少なく、分流水が多い分これに由
来したOrg−N、NH4 −Nが多く残留する。処理時
間は、通常の活性汚泥法で3〜4時間程度、PVAゲ
ル、PEGゲルなどの固定化担体を10体積%程度添加
していれば2時間程度である。
The effluent of the first nitrification tank (2) enters the first denitrification tank (3) together with the split water of the anaerobic tank (1). Here, NO X -N caused by the effluent of the first nitrification tank (2)
However, it is denitrified by using an organic substance derived from the branched water in the anaerobic tank (1) as a hydrogen donor. Therefore, the denitrification rate here is
First nitrification tank (2) and becomes determined by the balance of the organic matter of diversion water NO X -N amount and anaerobic tank effluent (1) of a high ratio of the effluent volume is the ratio of the partial water flow is low nO X -N to not be completely denitrification by sometimes organic material shortage
In the opposite case, the denitrification amount is small but the denitrification amount is small according to the amount of the effluent, and a large amount of the branched water leaves a large amount of Org-N and NH 4 -N derived therefrom. The treatment time is about 3 to 4 hours by an ordinary activated sludge method, and about 2 hours if an immobilizing carrier such as PVA gel or PEG gel is added at about 10% by volume.

【0014】第1脱窒槽(3)の流出液は、嫌気槽
(1)の流出液と同様、2個の越流ぜきによって次工程
の第2硝化槽(4)へ送られるものと、第2硝化槽
(4)をバイパスして第2脱窒槽(5)へ送られる第1
脱窒槽(3)の分流水に振り分けられる。
The effluent of the first denitrification tank (3), like the effluent of the anaerobic tank (1), is sent to the second nitrification tank (4) of the next step by two overflows. The first, which bypasses the second nitrification tank (4) and is sent to the second denitrification tank (5)
It is distributed to the split water of the denitrification tank (3).

【0015】第2硝化槽(4)では、第1硝化槽(2)
をバイパスした嫌気槽(1)の分流水由来のBOD等有
機物の分解とOrg−N、NH4 −Nの酸化によるNO
X −Nの転換が行われる。処理時間は、第1硝化槽
(2)の50%程度でよい。これは、第1脱窒槽(3)
の流出液中の約50%は、既に第1硝化槽(2)で処理
を受けているからである。
In the second nitrification tank (4), the first nitrification tank (2)
NO due to decomposition of organic matter such as BOD derived from the shunt water of the anaerobic tank (1) bypassing the gas and oxidation of Org-N and NH 4 -N
The X- N conversion takes place. The treatment time may be about 50% of the first nitrification tank (2). This is the first denitrification tank (3)
This is because about 50% of the effluent of 1) has already been treated in the first nitrification tank (2).

【0016】第2硝化槽(4)の流出液は、第1脱窒槽
(3)の分流水とともに第2脱窒槽(5)に入る。第2
脱窒槽(5)では嫌気槽(1)と同様のメカニズムで、
第1硝化槽(2)で硝化され、NOX −Nとなった窒素
化合物が第1脱窒槽(3)の分流水由来の有機物を水素
供与体として脱窒される。第2脱窒槽(5)の処理時間
も第2硝化槽(4)の処理時間と同様の理由で第1脱窒
槽(3)の約50%でよい。
The effluent of the second nitrification tank (4) enters the second denitrification tank (5) together with the split water of the first denitrification tank (3). Second
The denitrification tank (5) has the same mechanism as the anaerobic tank (1),
Nitrated in a first nitrification tank (2), nitrogen compounds becomes NO X -N is denitrified minute running water from the organic matter of the first denitrification tank (3) as a hydrogen donor. The treatment time of the second denitrification tank (5) may be about 50% of that of the first denitrification tank (3) for the same reason as the treatment time of the second nitrification tank (4).

【0017】このようにして、嫌気槽(1)の流出液
は、硝化と脱窒を繰り返しながら、反応槽の流出側へ流
下することになる。反応槽の区画が6個なら、第2脱窒
槽(5)の流出液は、図1のように再曝気槽(6)へ入
ることになるが、反応槽の区画数が、8個、10個、・
・・のときは硝化と脱窒を更に1回、2回、・・・繰り
返した後に再曝気槽(6)に入る。
In this way, the effluent of the anaerobic tank (1) flows down to the outflow side of the reaction tank while repeating nitrification and denitrification. If the reaction tank has six compartments, the effluent of the second denitrification tank (5) enters the re-aeration tank (6) as shown in FIG. 1, but the number of reaction tank compartments is eight, ten. Individual,·
・ ・ In the case of, the nitrification and denitrification are repeated once, twice, etc., and then the re-aeration tank (6) is entered.

【0018】以上の工程を経て窒素は脱窒される。この
際の脱窒率は、流入下水の水質に影響されることは勿論
であるが、通常の流入下水は水質がほぼ一定のため、反
応槽の区画数(言い換えれば、硝化と脱窒操作の繰り返
し回数)と嫌気槽又は脱窒槽の流出水に対する分流水の
比率に支配される。図5は、全窒素(T−N)除去率と
これらの関係を示したものであるが、反応槽の区画数
は、6〜8個、分流水の比率は、40〜60%がよい。
分流水の比率が一定のとき、反応槽の区画が6個より少
ないと、硝化と脱窒の繰り返しが少なくなり脱窒率が低
下し、8個より多くても、それ以上の脱窒率は望めな
い。又、反応槽の区画が一定のとき、分流水の比率が4
0%より少ないと硝化される窒素に見合う有機物が確保
できないため、NOX −Nが残留して、脱窒率が低下
し、60%より多くても、硝化が制限されて、Org−
N、NH4 −Nが残留して脱窒率が低下することにな
る。なお、脱窒率が最も良いのは反応槽の区画数が8個
以上、分流水の比率が50〜60%のときである。又、
嫌気槽(1)の分流水、脱窒槽の分流水の比率は、各槽
必ずしも一定である必要はなく、40〜60%の範囲内
であれば、各槽において比率が異なっていてもよい(例
えば、嫌気槽(1)の分流水比率:45%、第1脱窒槽
(3)の分流水比率:55%)。
Through the above steps, nitrogen is denitrified. The denitrification rate at this time is of course affected by the water quality of the inflowing sewage, but since the water quality of normal inflowing sewage is almost constant, the number of sections in the reaction tank (in other words, nitrification and denitrification operation It is controlled by the number of repetitions) and the ratio of the diverted water to the effluent of the anaerobic tank or denitrification tank. FIG. 5 shows the relationship between the total nitrogen (TN) removal rate and these, and the number of sections in the reaction tank is preferably 6 to 8 and the split water ratio is preferably 40 to 60%.
When the ratio of split water is constant, if the number of sections in the reaction tank is less than 6, the number of repetitions of nitrification and denitrification will decrease, and the denitrification rate will decrease. I can't hope. In addition, when the division of the reaction tank is fixed, the ratio of split water is 4
If it is less than 0%, it is not possible to secure an organic substance commensurate with the nitrogen to be nitrified, so that NO X -N remains and the denitrification rate decreases, and if it exceeds 60%, nitrification is limited and Org-
N and NH 4 —N remain and the denitrification rate decreases. The denitrification rate is best when the number of sections in the reaction tank is 8 or more and the split water ratio is 50 to 60%. or,
The ratio of the divided water in the anaerobic tank (1) and the divided water in the denitrification tank are not necessarily constant in each tank, and may be different in each tank as long as they are in the range of 40 to 60% ( For example, the split water ratio of the anaerobic tank (1): 45%, the split water ratio of the first denitrification tank (3): 55%).

【0019】第2脱窒槽(5)の分流水は、全量、再曝
気槽(6)へ入る。ここでは、今までの処理において、
バイパスにより硝化槽で曝気処理を受けなかった一部の
混合液中のBOD等の有機物を利用して活性汚泥がリン
を過剰摂取(活性汚泥が嫌気槽で放出したリンより多く
のリンを摂取すること)してポリリン酸として体内に貯
えることにより、水中のリンを除去する。又、残余の有
機物を曝気により分解するとともに、やはり、バイパス
によって残留した一部のOrg−N、NH4 −Nを硝化
する。処理時間は、2〜3時間である。
All the split water in the second denitrification tank (5) enters the re-aeration tank (6). Here, in the processing so far,
Activated sludge excessively ingests phosphorus by using organic substances such as BOD in some mixed liquids that were not aerated in the nitrification tank due to bypass (active sludge ingests more phosphorus than phosphorus released in the anaerobic tank) Then, it is stored in the body as polyphosphoric acid to remove phosphorus in water. In addition, the residual organic matter is decomposed by aeration, and also a part of the Org-N and NH 4 -N remaining by the bypass is nitrified. The processing time is 2-3 hours.

【0020】再曝気槽(6)の流出液は、全量、沈殿槽
に導かれ、固液分離される。上澄み水は、処理水として
放流され、沈降汚泥の一部は余剰汚泥として系外に引き
抜くとともに、残りは返送汚泥として嫌気槽(1)に戻
される。
The total amount of the effluent of the re-aeration tank (6) is introduced into the sedimentation tank for solid-liquid separation. The supernatant water is discharged as treated water, and part of the settled sludge is drawn out of the system as excess sludge, and the rest is returned to the anaerobic tank (1) as return sludge.

【0021】以上のように本発明では、流入下水でも1
0.5〜15時間(活性汚泥法)、7.5〜9時間(硝
化槽、脱窒槽へ10体積%程度固定化担体の添加)程度
で有機物、窒素、リンが除去できる。又、従来法のよう
に硝化液の循環ポンプの動力も必要としない。表1に1
2m3 /日の規模で流入下水を処理した結果を示す。本
発明の実施例の処理時間が11.0時間であるのに対
し、比較例(A2O法)では13.5時間であり、約80
%の処理時間となった。また、本発明の実施例のT−N
除去率は78.4%であるのに対し、比較例(A2O法)
では64.3%であり、21.9%改善された。
As described above, according to the present invention, even if the inflowing sewage is 1
Organic matter, nitrogen, and phosphorus can be removed in about 0.5 to 15 hours (activated sludge method) and about 7.5 to 9 hours (addition of about 10% by volume immobilized carrier to the nitrification tank and denitrification tank). Further, unlike the conventional method, the power of the circulation pump for the nitrification solution is not required. 1 in Table 1
The results of treating the influent sewage on a scale of 2 m 3 / day are shown. The treatment time of the example of the present invention was 11.0 hours, whereas that of the comparative example (A 2 O method) was 13.5 hours, which was about 80 hours.
% Processing time. In addition, the TN of the embodiment of the present invention
The removal rate is 78.4%, while the comparative example (A 2 O method)
Was 64.3%, which was an improvement of 21.9%.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【効果】以上に説明したように、本発明の下水の脱窒・
脱リン処理方法によれば、次の通り多くの利点が得られ
る。 処理時間が、従来法の80%であるにもかかわらず、
窒素化合物以外の成分除去率は、従来法と同等、T−N
の除去率については、従来法の20%強増の78%が得
られる。 処理の際の動力は、従来法の場合、硝化液の循環に原
水吸い上げと同等の動力を要している(原水量と硝化液
の循環量は同量)のに対して、本発明では、循環水がな
く、自然流下するので硝化液の循環ポンプの動力は全く
必要としない。 本発明の下水の脱窒・脱リン処理方法によるT−Nの
除去率を従来法で得るには、硝化液の循環量を400%
程度にする必要があり、更に4倍の硝化液の循環ポンプ
の動力が必要となる。
[Effect] As described above, the denitrification of the sewage of the present invention
The dephosphorization treatment method has many advantages as follows. Although the processing time is 80% of the conventional method,
The removal rate of components other than nitrogen compounds is the same as that of the conventional method, TN
As for the removal rate of, a 78% increase of 20% over the conventional method is obtained. In the case of the conventional method, the power during the treatment requires a power equivalent to the suction of raw water for circulating the nitrification liquid (the amount of raw water and the circulation amount of the nitrification liquid are the same amount), whereas in the present invention, Since there is no circulating water and it naturally flows down, the power of the circulation pump for nitrification liquid is not required at all. In order to obtain the removal rate of TN by the conventional method by the denitrification / dephosphorization treatment method of the sewage of the present invention, the circulation amount of the nitrification solution is 400%.
It is necessary to set the degree to a certain degree, and the power of the circulation pump for the nitrification solution is required to be four times as large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の平面図および断面図であ
る。
FIG. 1 is a plan view and a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の平面図および断面図であ
る。
FIG. 2 is a plan view and a sectional view of a second embodiment of the present invention.

【図3】従来法(A2O法)のフローシートである。FIG. 3 is a flow sheet of a conventional method (A 2 O method).

【図4】従来法(二段硝化液循環法)のフローシートで
ある。
FIG. 4 is a flow sheet of a conventional method (two-stage nitrification solution circulation method).

【図5】本発明におけるT−Nの除去率(脱窒率)と反
応槽区画数及び嫌気槽又は、脱窒槽の分流水比率の関係
図である。
FIG. 5 is a diagram showing the relationship between the TN removal rate (denitrification rate), the number of reaction tank sections, and the split water ratio of the anaerobic tank or the denitrification tank in the present invention.

【符号の説明】[Explanation of symbols]

1 嫌気槽 2 第1硝化槽 3 第1脱窒槽 4 第2硝化槽 5 第2脱窒槽 6 再曝気槽 7 沈殿槽 8 脱窒槽 9 硝化槽 11 阻流壁 12 隔壁 14 越流ぜき 1 Anaerobic tank 2 1st nitrification tank 3 1st denitrification tank 4 2nd nitrification tank 5 2nd denitrification tank 6 Reaeration tank 7 Precipitation tank 8 Denitrification tank 9 Nitrification tank 11 Barrier wall 12 Partition wall 14 Overflow weir

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流入下水と返送汚泥との混合液を嫌気槽
で嫌気処理する第1の工程と、 該工程の流出液の一部を第1硝化槽へ送るとともに、残
部を分流水として第1脱窒槽へ送る第2の工程と、 前記第1硝化槽で流出液を硝化処理する第3の工程と、 前記嫌気槽から送られた分流水と前記第1硝化槽から送
られた流出液との混合液を前記第1脱窒槽で脱窒処理す
る第4の工程と、 該工程の流出液の一部を第2硝化槽へ送るとともに、残
部を分流水として第2脱窒槽へ送る第5の工程と、 第2硝化槽で流出液を硝化処理する第6の工程と、 前記第1脱窒槽から送られた分流水と前記第2硝化槽か
ら送られた流出液との混合液を前記第2脱窒槽で脱窒処
理する第7の工程と、 該工程の処理液を再曝気槽で再曝気処理する第8の工程
とからなり、硝化処理と脱窒処理とを繰り返すことを特
徴とする下水の脱窒・脱リン処理方法。
1. A first step of anaerobically treating a mixed liquid of inflowing sewage and returned sludge in an anaerobic tank, sending a part of the effluent of the step to a first nitrification tank, and leaving the rest as split water. No. 1 second step of sending to the denitrification tank, third step of nitrifying the effluent in the first nitrification tank, split water sent from the anaerobic tank and effluent sent from the first nitrification tank A fourth step of performing a denitrification treatment of the mixed liquid with the first denitrification tank, and a part of the effluent of the step is sent to the second nitrification tank, and the rest is sent to the second denitrification tank as split water. 5, a sixth step of nitrifying the effluent in the second nitrification tank, and a mixed solution of the split water sent from the first denitrification tank and the effluent sent from the second nitrification tank. It comprises a seventh step of performing denitrification treatment in the second denitrification tank and an eighth step of re-aeration treatment of the treatment liquid of the step in the re-aeration tank. Denitrification - dephosphorization treatment method of the sewage and repeating the nitrification process and denitrification.
【請求項2】 前記分流水の比率が40〜60%である
請求項1に記載の下水の脱窒・脱リン処理方法。
2. The method for denitrifying and dephosphorizing sewage according to claim 1, wherein the ratio of the split water is 40 to 60%.
【請求項3】 第2脱窒槽の流出液を第3硝化槽、第3
脱窒槽にて硝化処理と脱窒処理とをさらに繰り返す請求
項1または請求項2に記載の下水の脱窒・脱リン処理方
法。
3. The effluent of the second denitrification tank is used as a third nitrification tank and a third nitrification tank.
The method for denitrifying and dephosphorizing sewage according to claim 1 or 2, wherein the nitrification treatment and the denitrification treatment are further repeated in a denitrification tank.
【請求項4】 嫌気槽、第1硝化槽、第1脱窒槽、第2
硝化槽、第2脱窒槽、および再曝気槽を流下方向に向か
って配置し、前記嫌気槽の流出液の一部を第1硝化槽へ
送る越流ぜきと、残部を分流水として第1脱窒槽へ送る
ための越流ぜきと、また第1脱窒槽の流出液の一部を第
2硝化槽へ送る越流ぜきと、残部を分流水として第2脱
窒槽へ送るための越流ぜきとを備えたことを特徴とする
下水の脱窒・脱リン処理装置。
4. An anaerobic tank, a first nitrification tank, a first denitrification tank, a second
The nitrification tank, the second denitrification tank, and the re-aeration tank are arranged in the downward direction, and a part of the effluent of the anaerobic tank is sent to the first nitrification tank, and the rest is used as split water. Overflow weir for sending to the denitrification tank, overflow weir for sending a part of the effluent of the first denitrification tank to the second nitrification tank, and overflow for sending the rest as split water to the second denitrification tank. A sewage denitrification and dephosphorization treatment device characterized by being equipped with a flow sink.
【請求項5】嫌気槽、第1硝化槽、第1脱窒槽、第2硝
化槽、第2脱窒槽、第3硝化槽、第3脱窒槽、再曝気槽
を流下方向に向かって配置し、第2脱窒槽の流出液の一
部を第3硝化槽へ送る越流ぜきと、残部を分流水として
第3脱窒槽へ送るための越流ぜきとを備えた請求項4に
記載の下水の脱窒・脱リン処理装置。
5. An anaerobic tank, a first nitrification tank, a first denitrification tank, a second nitrification tank, a second denitrification tank, a third nitrification tank, a third denitrification tank, and a re-aeration tank are arranged in the downward direction, 5. An overflow overflow for sending a part of the effluent of the second denitrification tank to the third nitrification tank, and an overflow overflow for sending the rest as split water to the third denitrification tank. Sewage denitrification and dephosphorization treatment equipment.
JP31479894A 1994-12-19 1994-12-19 Sewage denitrification / phosphorus removal method and apparatus used therefor Expired - Fee Related JP2932045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31479894A JP2932045B2 (en) 1994-12-19 1994-12-19 Sewage denitrification / phosphorus removal method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31479894A JP2932045B2 (en) 1994-12-19 1994-12-19 Sewage denitrification / phosphorus removal method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH08168795A true JPH08168795A (en) 1996-07-02
JP2932045B2 JP2932045B2 (en) 1999-08-09

Family

ID=18057731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31479894A Expired - Fee Related JP2932045B2 (en) 1994-12-19 1994-12-19 Sewage denitrification / phosphorus removal method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP2932045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876334A (en) * 2015-05-17 2015-09-02 北京工业大学 Short-range nitrification/denitrification dephosphorization-series device and method for synchronously recovering phosphorus
WO2021182603A1 (en) * 2020-03-13 2021-09-16 株式会社クラレ Wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876334A (en) * 2015-05-17 2015-09-02 北京工业大学 Short-range nitrification/denitrification dephosphorization-series device and method for synchronously recovering phosphorus
WO2021182603A1 (en) * 2020-03-13 2021-09-16 株式会社クラレ Wastewater treatment method

Also Published As

Publication number Publication date
JP2932045B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US6787035B2 (en) Bioreactor for treating wastewater
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
JP3385150B2 (en) Wastewater treatment method
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
JP3351149B2 (en) Simultaneous removal of nitrogen and phosphorus from wastewater.
CA2295751A1 (en) Process for reducing nitrous oxide emission from waste water treatment
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JP2932045B2 (en) Sewage denitrification / phosphorus removal method and apparatus used therefor
JPS6117558B2 (en)
JP2000005794A (en) System for removing nitrogen and phosphorus in drain and removing method
JPH1157778A (en) Waste water treating device and treatment
JPS645959B2 (en)
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
JP4464035B2 (en) Treatment method of sludge return water
JPS59145098A (en) Plant for biological denitrification-dephosphorization of waste water
JPS6052880B2 (en) Biological denitrification and dephosphorization equipment for wastewater
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP2607030B2 (en) Wastewater treatment method and apparatus
JPH0576893A (en) Treatment of waste water
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
CZ20001573A3 (en) Sewage denitrification process
KR970002628B1 (en) Waste water treatment process
JPH03229693A (en) Treatment of organic waste water
JPH0550091A (en) Nitrifying and denitrfifying method of drainage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

LAPS Cancellation because of no payment of annual fees