JPH08165331A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JPH08165331A
JPH08165331A JP30864194A JP30864194A JPH08165331A JP H08165331 A JPH08165331 A JP H08165331A JP 30864194 A JP30864194 A JP 30864194A JP 30864194 A JP30864194 A JP 30864194A JP H08165331 A JPH08165331 A JP H08165331A
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
epoxy resin
formula
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30864194A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kokado
博義 小角
Kuniyuki Eguchi
州志 江口
Toshiaki Ishii
利昭 石井
Akira Nagai
永井  晃
Masahiko Ogino
雅彦 荻野
Akira Mogi
亮 茂木
Kazuhiro Suzuki
和宏 鈴木
Kunihiko Nishi
邦彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30864194A priority Critical patent/JPH08165331A/en
Publication of JPH08165331A publication Critical patent/JPH08165331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: To obtain a high-reliability resin-sealed semiconductor device by coating or molding a semiconductor device with or in an epoxy resin composition prepared by melt-kneading an epoxy resin represented by a specific formula, a curing agent, a cure accelerator and a filter. CONSTITUTION: 100 pts.wt. biphenyl epoxy resin of formula I (wherein R is H or methyl; and N2 is 0-2) is mixed with 0.5-1.5 equivalents of a curing agent containing a phenol/alkyl ether polycondensate of formula II (wherein m is 1-10), 500-1mmol of a cure accelerator comprising an organophosphorus compound of formula III (wherein X is a quaternary ammonium ion; R is 1-4 C alkyl or alkoxy; and N1 is 1-2) and 50-90vol.%, based on the resin composition, inorganic filler of a particle diameter distribution of 0.1-100μm, the obtained mixture is melt-kneaded, and the obtained solid is ground to obtain an epoxy resin composition sealing material. A silicone chip with aluminum wirings is mounted on a lead frame, subjected to wire bonding, and transfer-molded with this sealing agent to obtain a resin-sealed semiconductor device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エポキシ樹脂組成物で
封止され、特に、成形性及び耐はんだリフロー性が優れ
た樹脂封止型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device which is encapsulated with an epoxy resin composition and is particularly excellent in moldability and solder reflow resistance.

【0002】[0002]

【従来の技術】トランジスタ,IC,LSI等の半導体
素子のパッケージには、量産性に優れた樹脂封止方式が
広く用いられている。封止材料としては成形性,吸湿特
性及び耐熱性等に優れたO−クレゾールノボラック型エ
ポキシ樹脂に硬化剤としてフェノールノボラック樹脂を
用い、これに充填剤や各種添加剤を配合したエポキシ樹
脂組成物が用いられている。
2. Description of the Related Art A resin encapsulation method, which is excellent in mass productivity, is widely used for packages of semiconductor elements such as transistors, ICs and LSIs. An epoxy resin composition in which a phenol novolac resin is used as a curing agent in an O-cresol novolac type epoxy resin having excellent moldability, hygroscopicity, heat resistance and the like as a sealing material, and a filler and various additives are added to the epoxy resin composition It is used.

【0003】ところで、各種エレクトロニクス機器の小
型軽量化,高性能化等のニーズから、これに用いる半導
体装置は実装の高密度化が強く要望され、最近では高密
度実装に適した表面実装型半導体装置が主流になりつつ
ある。しかも、パッケージは年々小型薄型化の趨勢にあ
る。それに伴い封止樹脂層の厚さは著しく薄肉化してい
る。特に、TSOP(Thin Small Outline Package),
TQFJ(Thin QuadOutline J-lead Package),TQF
P(Thin Quad Flat Package)といった半導体装置の内
で、厚さが1mm前後の薄型表面実装型パッケージの需要
が増大している。
By the way, due to the needs for miniaturization, weight reduction, and high performance of various electronic equipment, there is a strong demand for high-density mounting of semiconductor devices used therein, and recently, surface-mounted semiconductor devices suitable for high-density mounting. Is becoming mainstream. Moreover, packages are becoming smaller and thinner year after year. Along with that, the thickness of the sealing resin layer is significantly reduced. Especially TSOP (Thin Small Outline Package),
TQFJ (Thin QuadOutline J-lead Package), TQF
Among semiconductor devices such as P (Thin Quad Flat Package), the demand for a thin surface mount type package having a thickness of around 1 mm is increasing.

【0004】更には、厚さが0.5mm 以下の超薄型表面
実装型パッケージの開発も進められている。
Furthermore, development of an ultra-thin surface mount type package having a thickness of 0.5 mm or less is under way.

【0005】前記の半導体パッケージの生産において
は、生産性向上及び生産コスト低減を目的とした生産プ
ロセスの合理化が進められている。例えば、成形時間の
短縮を図るためには成形品に損傷を与えることなく取り
出す必要があることから、成形品の硬度や金型離型性が
必要である。硬度や離型性の改善には成形材料の硬化性
の向上が重要である。また、封止材料の流動特性は保管
中に経時変化するので、その防止目的に低温保管してい
るが、それでも変化を抑えることはできず、長期保管が
できないのが実状である。従来は成形終了後に未使用と
なった成形材料を成形機から取り出して、再び低温保管
していた。しかしながら、最近は生産工程の簡略化か
ら、成形終了後でも成形材料を回収することなくそのま
ま成形機内に、あるいはその周辺に放置しておく場合が
ある。そのため、材料特性の経時変化は益々大きくなっ
ており、成形品の信頼性が低下するので、成形メーカに
とって大きな問題となっている。つまり、封止材料の貯
蔵安定性向上が大切である。すなわち、封止材料として
は保管の簡素化には貯蔵安定性の向上、連続成形性
の増進には硬化性,金型離型性の成形性向上等の改善が
必要である。
In the production of the above-mentioned semiconductor package, the rationalization of the production process has been promoted for the purpose of improving the productivity and reducing the production cost. For example, in order to shorten the molding time, it is necessary to take out the molded product without damaging it. Therefore, the hardness of the molded product and the mold releasability are required. To improve the hardness and releasability, it is important to improve the curability of the molding material. Further, since the flow characteristics of the sealing material change with time during storage, it is stored at a low temperature for the purpose of preventing it, but even then it is not possible to suppress the change and it is impossible to store for a long time. Conventionally, the unused molding material was taken out of the molding machine after the completion of molding and was stored again at low temperature. However, recently, due to the simplification of the production process, there is a case where the molding material is left as it is in the molding machine or in the vicinity thereof without being collected even after the molding is completed. As a result, the change over time in the material properties is increasing, and the reliability of the molded product decreases, which is a major problem for molding manufacturers. That is, it is important to improve the storage stability of the sealing material. That is, as a sealing material, it is necessary to improve storage stability to simplify storage and to improve continuous moldability such as curability and mold releasability.

【0006】一方、封止樹脂層が薄くなるにつれてパッ
ケージ内への水の浸入が容易になり、また、樹脂層の機
械的強度が小さくなるため、パッケージは小さな力が加
っただけで破損するようになる。また、表面実装型半導
体はプリント基板に赤外線やベーパーリフロー方式によ
るはんだ付け(実装)が行われており、その際、パッケ
ージは200℃以上の高温に曝される。そのために、パ
ッケージが吸湿していると吸湿水分が急激に気化し、そ
の蒸気圧によってパッケージが膨れ、チップと封止樹脂
との界面に剥離が生じたり、パッケージにクラックが生
じたりする。その結果、半導体装置は素子特性が変動し
たり、素子表面のアルミニウム配線が腐食し易くなり、
実装後の各種信頼性が低下する。そのため、薄肉の表面
実装型の樹脂封止型半導体装置には耐はんだリフロー性
(はんだリフロー時のパッケージの耐クラック性)の向
上が強く望まれている。
On the other hand, as the sealing resin layer becomes thinner, water easily enters the package, and the mechanical strength of the resin layer becomes smaller, so that the package is damaged by a small force. Like Further, the surface mount type semiconductor is soldered (mounted) to a printed circuit board by infrared ray or vapor reflow method, and at that time, the package is exposed to a high temperature of 200 ° C. or higher. Therefore, when the package absorbs moisture, the absorbed moisture rapidly evaporates, and the vapor pressure swells the package, causing peeling at the interface between the chip and the sealing resin or cracking in the package. As a result, in the semiconductor device, the element characteristics change, and the aluminum wiring on the element surface easily corrodes,
Various reliability after mounting is reduced. Therefore, improvement in solder reflow resistance (crack resistance of the package at the time of solder reflow) is strongly desired for the thin surface-mounting resin-sealed semiconductor device.

【0007】前記水分のパッケージへの浸入経路には次
の2つがある。1つは、樹脂封止層からの拡散透過、も
う1つは、リードフレームと封止材料との界面からの浸
入である。表面実装型半導体装置のパッケージに要求さ
れる耐はんだリフロー性を向上するためには、こうした
浸入水分の低減が極めて重要である。
There are the following two paths for the moisture to enter the package. One is diffusion and permeation from the resin sealing layer, and the other is penetration from the interface between the lead frame and the sealing material. In order to improve the solder reflow resistance required for the package of the surface mount type semiconductor device, it is extremely important to reduce such infiltration moisture.

【0008】上記課題を解決するために、これまで種々
の対策が検討され、特に、封止材料の低吸湿化並びに高
接着化が有効であった。例えば、特開平3−207714 号ま
たは特開平4−48759号公報に提案されているように、ビ
フェニル骨格を有するエポキシ樹脂とフェノールアラル
キル樹脂硬化剤からなるエポキシ樹脂組成物でパッケー
ジを構成したり、また、特開平4−50223 号,特開平4−
199856号または特開平4−199857 号公報に提案されてい
るように、ナフタレン骨格を有する低吸湿性のエポキシ
樹脂組成物でパッケージを構成することによって、耐は
んだリフロー性を大幅に改善することが可能になった。
In order to solve the above-mentioned problems, various measures have been studied so far, and it has been particularly effective to reduce the moisture absorption and the adhesion of the sealing material. For example, as proposed in JP-A-3-207714 or JP-A-4-48759, a package is composed of an epoxy resin composition comprising an epoxy resin having a biphenyl skeleton and a phenol aralkyl resin curing agent, or , JP-A-4-50223, JP-A-4-50223
As proposed in 199856 or Japanese Unexamined Patent Publication No. 4-199857, it is possible to significantly improve the solder reflow resistance by configuring the package with a low hygroscopic epoxy resin composition having a naphthalene skeleton. Became.

【0009】[0009]

【発明が解決しようとする課題】しかし、前記の従来技
術は耐はんだリフロー性の改善にはかなりの効果がある
ものの、封止材料自体は室温付近の比較的低温でも貯蔵
安定性が劣る。しかも、成形時には成形品内部にボイド
が発生し易いという欠点があり、品質の安定した成形品
を得るのが難しかった。また、封止品を高温に放置する
と、半導体素子表面のアルミニウム電極とリードフレー
ムとを電気的に接続する金ワイヤとの接合部が短時間に
腐食され易く、接続信頼性が著しく劣るという問題があ
った。
However, although the above-mentioned prior art is considerably effective in improving the solder reflow resistance, the encapsulating material itself is inferior in storage stability even at a relatively low temperature near room temperature. Moreover, there is a drawback that voids are likely to occur inside the molded product during molding, and it has been difficult to obtain a molded product with stable quality. Further, if the sealed product is left at a high temperature, the joint between the aluminum electrode on the surface of the semiconductor element and the gold wire that electrically connects the lead frame is likely to be corroded in a short time, resulting in a problem that the connection reliability is significantly deteriorated. there were.

【0010】本発明の目的は、こうした状況に鑑み、貯
蔵安定性が優れており、ボイド等の内部欠陥がなく、し
かも、耐はんだリフロー性及び前記電極と金ワイヤとの
接続信頼性の優れたエポキシ樹脂組成物で封止された樹
脂封止型半導体装置を安定的に提供することにある。
In view of these circumstances, the object of the present invention is that the storage stability is excellent, there are no internal defects such as voids, and the solder reflow resistance and the connection reliability between the electrode and the gold wire are excellent. To stably provide a resin-encapsulated semiconductor device encapsulated with an epoxy resin composition.

【0011】[0011]

【課題を解決するための手段】本発明者らは前記特性に
影響を及ぼすと考えられる硬化促進剤を始め充填剤,カ
ップリング剤,離型剤などの各種添加剤,各素材の混練
条件,成形条件等について鋭意検討した。その結果、前
記課題は特定の硬化促進剤を用いることによって改善で
きることを見出し、本発明に至った。本発明の要旨は次
のとおりである。一般式(1)
[Means for Solving the Problems] The inventors of the present invention include various additives such as a filler, a coupling agent, and a release agent, as well as a curing accelerator that is considered to affect the above-mentioned properties, kneading conditions for each material, Extensive studies were conducted on molding conditions and the like. As a result, they have found that the above problems can be improved by using a specific curing accelerator, and have reached the present invention. The gist of the present invention is as follows. General formula (1)

【0012】[0012]

【化4】 [Chemical 4]

【0013】(式中、Xは第四級ホスホニウムイオン、
RはC1〜4のアルキル基又はアルコキシ基、n1 は1
〜2の整数を示す。)で表される有機リン系化合物を含
むエポキシ樹脂組成物で封止されていることを特徴とす
る樹脂封止型半導体装置。
(Wherein X is a quaternary phosphonium ion,
R is a C1-4 alkyl group or alkoxy group, n 1 is 1
Indicates an integer of ˜2. ) A resin-encapsulated semiconductor device, which is encapsulated with an epoxy resin composition containing an organophosphorus compound represented by

【0014】前記一般式(1)で表される硬化促進剤
は、第四級ホスホニウムのテトラ置換フェニルボレート
である。具体的にはテトラフェニルホスホニウム・テト
ラ(メチルフェニル)ボレート、テトラフェニルホスホ
ニウム・テトラ(エチルフェニル)ボレート、テトラフ
ェニルホスホニウム・テトラ(プロピルフェニル)ボレ
ート、テトラフェニルホスホニウム・テトラ(ブチルフ
ェニル)ボレート、テトラフェニルホスホニウム・テト
ラ(メトキシフェニル)ボレート、テトラフェニルホス
ホニウム・テトラ(エトキシフェニル)ボレート、テト
ラフェニルホスホニウム・テトラ(プロポキシフェニ
ル)ボレート、テトラフェニルホスホニウム・テトラ
(ブトキシフェニル)ボレート、テトラフェニルホスホ
ニウム・テトラ(2,4−ジメチルフェニル)ボレー
ト、テトラフェニルホスホニウム・テトラ(3,5−ジ
メトキシフェニル)ボレート、トリス(4−メチルフェ
ニル)フェニルホスホニウム・テトラ(メチルフェニ
ル)ボレート、ブチルトリス(3−メチルフェニル)ホ
スホニウム・テトラ(メチルフェニル)ボレート等があ
る。これら硬化促進剤は必要に応じて2種類以上併用す
ることができる。また、必要に応じて公知の硬化促進剤
と併用することができる。上記硬化促進剤は通常の硬化
促進剤と全く同様に用いることができる。しかも、必要
に応じて、予め100℃以上で前記硬化剤と加熱,溶融
させてから用いることができる。硬化促進剤はエポキシ
樹脂100重量部に対して500〜1mmol、好ましくは
200〜5mmolの範囲で配合するのが良い。
The curing accelerator represented by the general formula (1) is a quaternary phosphonium tetra-substituted phenyl borate. Specifically, tetraphenylphosphonium tetra (methylphenyl) borate, tetraphenylphosphonium tetra (ethylphenyl) borate, tetraphenylphosphonium tetra (propylphenyl) borate, tetraphenylphosphonium tetra (butylphenyl) borate, tetraphenyl Phosphonium tetra (methoxyphenyl) borate, tetraphenylphosphonium tetra (ethoxyphenyl) borate, tetraphenylphosphonium tetra (propoxyphenyl) borate, tetraphenylphosphonium tetra (butoxyphenyl) borate, tetraphenylphosphonium tetra (2,2 4-dimethylphenyl) borate, tetraphenylphosphonium tetra (3,5-dimethoxyphenyl) borate, Scan (4-methylphenyl) phenyl phosphonium tetra (methylphenyl) borate, Buchirutorisu (3-methylphenyl) phosphonium tetra (methylphenyl) is borate. Two or more kinds of these curing accelerators can be used in combination, if necessary. Further, it may be used in combination with a known curing accelerator, if necessary. The above curing accelerator can be used in exactly the same manner as a usual curing accelerator. Moreover, if necessary, it can be used after being heated and melted with the curing agent at 100 ° C. or higher in advance. The curing accelerator is added in an amount of 500 to 1 mmol, preferably 200 to 5 mmol, per 100 parts by weight of the epoxy resin.

【0015】本発明に使用されるエポキシ樹脂は特に限
定されるものではなく、公知のエポキシ樹脂が広く使用
できる。例えば、ビスフェノールA,ビスフェノール
F,レゾルシノール,フェノールノボラック,クレゾー
ルノボラック等のフェノール類のグリシジルエーテル,
ブタンジオール,ポリエチレングリコール,ポリプロピ
レングリコール等のアルコール類のグリシジルエーテ
ル,フタル酸,イソフタル酸,テトラヒドロフタル酸等
のカルボンサン類のグリシジルエステル,アニリン,イ
ソシアヌール酸等の窒素原子に結合した活性水素をグリ
シジル基で置換したもの等のグリシジル型(メチルグリ
シジル型も含む)エポキシ樹脂、分子内のオレフィン結
合をエポキシ化して得られるビニルシクロヘキセンジエ
ポキシド、3,4−エポキシシクロヘキシルメチル−
3,4−エポキシシクロヘキサンカルボキシレート、2
−(3,4−エポキシ)シクロヘキシル−5,5スピロ
(3,4−エポキシ)シクロヘキサン−m−ジオキサン
等いわゆる脂環型エポキシ樹脂,ビフェニル型エポキシ
樹脂,ナフタレン骨格を有する多官能のエポキシ樹脂,
ハロゲン化フェノールノボラック型エポキシ樹脂等が用
いられる。これらエポキシ樹脂の内で特に好適なのは、
前記一般式(2)
The epoxy resin used in the present invention is not particularly limited, and known epoxy resins can be widely used. For example, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenol novolac and cresol novolac,
Glycidyl ether of glycidyl ethers of alcohols such as butanediol, polyethylene glycol, polypropylene glycol, glycidyl esters of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid, aniline and isocyanuric acid Glycidyl-type (including methylglycidyl-type) epoxy resins substituted with groups, vinylcyclohexene diepoxide obtained by epoxidizing the olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-
3,4-epoxycyclohexanecarboxylate, 2
-(3,4-epoxy) cyclohexyl-5,5 spiro (3,4-epoxy) cyclohexane-m-dioxane, etc., so-called alicyclic epoxy resin, biphenyl type epoxy resin, polyfunctional epoxy resin having a naphthalene skeleton,
A halogenated phenol novolac type epoxy resin or the like is used. Of these epoxy resins, the most suitable is
The general formula (2)

【0016】[0016]

【化5】 Embedded image

【0017】(式中、Rは水素原子またはメチル基を示
し互いに異なっていても良い。n2 は0〜2の整数を示
す。)で表される1分子当たり2個以上のエポキシ基と
ビフェニル骨格とを有するビフェニル型エポキシ樹脂、
または一般式(4)
(Wherein R represents a hydrogen atom or a methyl group and may be different from each other; n 2 represents an integer of 0 to 2), and two or more epoxy groups and biphenyl per molecule. A biphenyl type epoxy resin having a skeleton,
Or general formula (4)

【0018】[0018]

【化6】 [Chemical 6]

【0019】(式中、n=1〜10)で表されるジシク
ロペンタジエン骨格を有するエポキシ樹脂、または一般
式(5)
An epoxy resin having a dicyclopentadiene skeleton represented by the formula (n = 1 to 10), or a general formula (5)

【0020】[0020]

【化7】 [Chemical 7]

【0021】または一般式(6)Or the general formula (6)

【0022】[0022]

【化8】 Embedded image

【0023】または一般式(7)Or the general formula (7)

【0024】[0024]

【化9】 [Chemical 9]

【0025】(式中、n=1〜10)で表されるナフタ
レン骨格を有するエポキシ樹脂等がある。また、これら
エポキシ樹脂は必要に応じて2種以上あるいは液状のエ
ポキシ樹脂と併用することができる。
There is an epoxy resin having a naphthalene skeleton represented by the formula (n = 1 to 10). In addition, two or more of these epoxy resins can be used in combination with a liquid epoxy resin, if necessary.

【0026】本発明に使用される硬化剤は特に限定され
るものではなく、公知の硬化剤が使用できる。例えば、
フェノール,クレゾール,キシレノール等とホルムアル
デヒド等とを酸性触媒で縮合させて得られるノボラック
類,フェノール/アラルキルエーテルとの重縮合物,ジ
シクロペンタジエン化合物,ナフタレン骨格を有する化
合物及びアルケニルフェノールの重合体等がある。それ
らの内では前記一般式(3)で表される硬化剤は、
The curing agent used in the present invention is not particularly limited, and known curing agents can be used. For example,
Novolaks obtained by condensing phenol, cresol, xylenol, etc. and formaldehyde, etc. with an acidic catalyst, polycondensates of phenol / aralkyl ethers, dicyclopentadiene compounds, compounds having a naphthalene skeleton, polymers of alkenylphenols, etc. is there. Among them, the curing agent represented by the general formula (3) is

【0027】[0027]

【化10】 [Chemical 10]

【0028】(式中、mは1〜10の整数を示す。)1
分子当たり少なくとも2個の水酸基を有するフェノール
とアラルキルエーテルとの重縮合物であり、前記一般式
(2)で表されるビフェニル型エポキシ樹脂に、特に好
適である。上記エポキシ樹脂に対して0.5〜1.5当
量、好ましくは0.8〜1.2当量配合する。0.5 当量
未満ではエポキシ樹脂の硬化が不充分となり、硬化物の
耐熱性,耐湿性並びに電気特性が劣る。また、1.5 当
量を超えると硬化剤成分が過剰になり硬化樹脂中に多量
のフェノール性水酸基が残るため、電気特性並びに耐湿
性が悪くなる。上記硬化剤は、本発明の目的を損なわな
い範囲において、硬化剤全体に対して70重量%以下の
他の硬化剤例えばフェノールノボラック樹脂のようなフ
ェノール類とアルデヒド類との縮合物とを併用すること
もできる。
(In the formula, m represents an integer of 1 to 10.) 1
It is a polycondensate of a phenol having at least two hydroxyl groups per molecule and an aralkyl ether, and is particularly suitable for the biphenyl type epoxy resin represented by the general formula (2). It is added in an amount of 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents, relative to the epoxy resin. If it is less than 0.5 equivalent, the curing of the epoxy resin will be insufficient and the cured product will be inferior in heat resistance, moisture resistance and electrical properties. On the other hand, if it exceeds 1.5 equivalents, the curing agent component becomes excessive and a large amount of phenolic hydroxyl groups remain in the cured resin, resulting in poor electrical properties and moisture resistance. As the above-mentioned curing agent, within a range not impairing the object of the present invention, 70% by weight or less of another curing agent is used together with a condensate of phenols and aldehydes such as phenol novolac resin. You can also

【0029】無機充填剤としては溶融シリカ,結晶シリ
カ,アルミナ,炭酸カルシウム,ケイ酸ジルコニウム,
ケイ酸カルシウム,タルク,クレー,マイカ等の微粉末
を用いることができる。無機充填剤は樹脂組成物全体に
対して、50〜90容量%の無機充填剤を配合すること
が望ましい。これら無機充填剤は硬化物の熱膨張係数や
熱伝導率,弾性率などの改良を目的に添加するものであ
り、配合量が50容量%未満ではこれらの特性を充分に
改良できず、また、90容量%を超えると樹脂組成物の
粘度が著しく上昇し流動性が低下して成形が困難にな
る。また、無機充填剤の平均粒径は0.1〜50μmの
範囲が特に好ましい。0.1μm未満では樹脂組成物の
粘度が上昇し、また、100μmを超えると樹脂成分と
充填剤とが分離しやすくなり、硬化物が不均一になった
りあるいは硬化物特性がばらついたり、更には狭い隙間
への充填性が低下する。例えば、充填剤を75容量%以
上配合する場合、充填剤粒子は角形より球形が好まし
く、且つ粒度分布が0.1〜100μmと云う広範囲に分布
したものが望ましい。このような充填剤は最密充填構造
をとりやすいため配合量を増しても材料の粘度上昇が少
なく、流動性の優れた組成物を得ることができる。
As the inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, zirconium silicate,
Fine powders of calcium silicate, talc, clay, mica, etc. can be used. As for the inorganic filler, it is desirable to add 50 to 90% by volume of the inorganic filler to the entire resin composition. These inorganic fillers are added for the purpose of improving the thermal expansion coefficient, thermal conductivity, elastic modulus, etc. of the cured product, and if the blending amount is less than 50% by volume, these properties cannot be sufficiently improved, and If it exceeds 90% by volume, the viscosity of the resin composition remarkably increases and the fluidity decreases, making molding difficult. The average particle size of the inorganic filler is particularly preferably in the range of 0.1 to 50 μm. If it is less than 0.1 μm, the viscosity of the resin composition will increase, and if it exceeds 100 μm, the resin component and the filler will be easily separated from each other, and the cured product will become uneven or the cured product characteristics will vary. Fillability into narrow gaps is reduced. For example, when the filler is blended in an amount of 75% by volume or more, it is preferable that the filler particles have a spherical shape rather than a square shape and that the particle size distribution is in a wide range of 0.1 to 100 μm. Since such a filler tends to have a close-packed structure, the viscosity of the material does not increase even if the compounding amount is increased, and a composition having excellent fluidity can be obtained.

【0030】本発明では、必要に応じて樹脂硬化物の強
靱化や低弾性率化のための可撓化剤等を用いることがで
きる。可撓化剤はエポキシ樹脂及び硬化剤と非相溶性あ
るいは一部相溶性のものがガラス転移温度を余り下げず
に硬化物の低弾性化が図れることから、ブタジエン・ア
クリルニトリル系共重合体やそれらの末端または側鎖に
アミノ基,エポキシ基,カルボキシル基を有する変性共
重合体やアクリルニトリル・ブタジエン・スチレン共重
合体等のブタジエン系可撓化剤や末端または側鎖にアミ
ノ基,水酸基,エポキシ基,カルボキシル基等を有する
変性シリコーン系のエラストマー等が用いられるが、耐
湿性や純度の点からシリコーン系可撓化剤が特に有効で
ある。可撓化剤の配合量は全樹脂組成物に対して2〜2
0重量%が好ましい。配合量が2重量%未満では硬化物
の強靱化や低弾性率化にはほとんど効果がない。また、
20重量%を超えると樹脂組成物の流動性や高温の機械
的強度が著しく低下したり、樹脂硬化物表面に可撓化剤
が浮き出て成形金型を汚すので好ましくない。
In the present invention, a flexibilizing agent or the like for increasing the toughness and lowering the elastic modulus of the cured resin can be used if necessary. As the flexibilizer, those which are incompatible or partially compatible with the epoxy resin and the curing agent can lower the elasticity of the cured product without lowering the glass transition temperature so much that the butadiene / acrylonitrile copolymer or A butadiene-based flexibilizing agent such as a modified copolymer having an amino group, an epoxy group or a carboxyl group at its terminal or side chain, an acrylonitrile-butadiene-styrene copolymer, or an amino group or a hydroxyl group at the terminal or side chain, A modified silicone-based elastomer having an epoxy group, a carboxyl group, or the like is used, and the silicone-based flexibilizing agent is particularly effective in terms of moisture resistance and purity. The blending amount of the flexibilizer is 2 to 2 with respect to the total resin composition.
0% by weight is preferred. If the blending amount is less than 2% by weight, there is almost no effect on the toughness and low elastic modulus of the cured product. Also,
If it exceeds 20% by weight, the fluidity of the resin composition and the mechanical strength at high temperature are remarkably reduced, or the flexibilizing agent is raised on the surface of the cured resin to stain the molding die, which is not preferable.

【0031】また、上記の各種添加剤の他に樹脂成分と
充填剤との接着性を高めるためのカップリング剤とし
て、各種シラン系化合物,チタン系化合物,アルミニウ
ムキレート類,アルミニウム/ジルコニウム系化合物等
の公知の添加剤を用いることができる。更に、カルナバ
ワックス,モンタン酸系ワックス,ポリエチレン系ワッ
クス,ポリアルキレン系ワックス等公知の化合物を離型
剤として用いても良い。カーボンブラック,酸化チタ
ン,鉛丹,ベンガラ等の公知の化合物を着色剤として用
いても良い。
In addition to the above-mentioned various additives, various silane-based compounds, titanium-based compounds, aluminum chelates, aluminum / zirconium-based compounds, etc. are used as coupling agents for increasing the adhesiveness between the resin component and the filler. Known additives can be used. Further, known compounds such as carnauba wax, montanic acid wax, polyethylene wax and polyalkylene wax may be used as a release agent. Known compounds such as carbon black, titanium oxide, red lead and red iron oxide may be used as the colorant.

【0032】前記の各素材は通常ミキシングロール,押
出し機,ニーダ等を用い50〜100℃で溶融,混練して
封止材料にすることができる。
Each of the above materials can be usually melted and kneaded at 50 to 100 ° C. by using a mixing roll, an extruder, a kneader, etc. to form a sealing material.

【0033】[0033]

【作用】本発明の半導体装置が優れた生産性及び耐はん
だリフロー性を示す理由は以下のように考えられる。
The reason why the semiconductor device of the present invention exhibits excellent productivity and solder reflow resistance is considered as follows.

【0034】先ず、前記一般式(1)で示される硬化促
進剤を用いたエポキシ樹脂組成物を用いると優れた生産
性を示すのは、本発明の硬化促進剤は常温付近の温度で
は極めて安定で、加熱することにより速やかに硬化する
所謂、優れた潜在的な反応性を有しているため、樹脂組
成物の硬化時の溶融粘度の上昇を防止し、被封止体に対
する濡れ性を向上すると共にボイドの極めて少ない成形
品が得られるためと考えられる。しかも、潜在硬化性を
有しているため封止材料は金型の細部にまで充填され易
く、しかも硬化が速やかに行われるため成形品の金型離
型性が極めて良好である。それ故、成形品の金型離型性
が優れており、樹脂封止型半導体装置は損傷を受けるこ
となく容易に金型から取り出すことができる。従って、
信頼性の高い樹脂封止型半導体装置が得られる。
First, the epoxy resin composition using the curing accelerator represented by the general formula (1) shows excellent productivity because the curing accelerator of the present invention is extremely stable at a temperature near room temperature. Since it has so-called excellent latent reactivity that cures quickly when heated, it prevents the melt viscosity of the resin composition from increasing during curing and improves the wettability of the object to be sealed. It is considered that this is because a molded product having extremely few voids can be obtained. Moreover, since the encapsulating material has latent curability, it is easy to fill the details of the mold, and since the curing is quick, the mold releasability of the molded product is extremely good. Therefore, the mold release property of the molded product is excellent, and the resin-sealed semiconductor device can be easily taken out from the mold without being damaged. Therefore,
A highly reliable resin-sealed semiconductor device can be obtained.

【0035】また、優れた耐はんだリフロー性を示すの
は、上述したようにボイドが少ない無損傷である成形信
頼性の高い半導体装置が得られることから、実装試験に
おいても高信頼性のものが得られるものと考えられる。
Further, excellent solder reflow resistance is exhibited because a semiconductor device having few voids and no damage and high molding reliability can be obtained as described above. It is thought to be obtained.

【0036】また、本発明で用いるエポキシ樹脂は特に
限定するものではないが、ビフェニル型エポキシ樹脂ま
たはジシクロペンタジエン型エポキシ樹脂またはナフタ
レン型エポキシ樹脂を用いると特に好適な理由は、従来
のものに比べて化学構造的に疎水性であり、しかも硬化
物は高い密度を有することから分子鎖のパッキングが密
になっているため、形成された網目構造が水を透過させ
にくいことや、あるいは硬化物中の水酸基濃度が小さい
ため低吸湿性になっているものと考えられる。従って、
こうした樹脂を用いた封止材料は、それ自体が低吸湿性
になっているものと考えられる。また、このような樹脂
は硬化物のガラス転移温度が高いわりに、橋かけ密度が
低いため樹脂が柔軟性であり、硬化によって発生する残
留応力が小さく、これを用いた封止材料はチップやリー
ドフレームに対する接着性が優れており、これらの界面
からパッケージ内に浸入する水分量は大幅に低減される
ものと考える。従って、耐はんだリフロー性が著しく向
上するのは、上記のようにパッケージ内に浸入する水分
量が大幅に低減するためと考えられる。
The epoxy resin used in the present invention is not particularly limited, but the reason why it is particularly preferable to use a biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin or a naphthalene type epoxy resin is as follows. It is hydrophobic in terms of chemical structure, and because the cured product has a high density, the packing of the molecular chains is dense, which makes it difficult for the formed network structure to permeate water. It is considered that it has a low hygroscopicity due to the low concentration of hydroxyl groups. Therefore,
It is considered that the sealing material using such a resin itself has low hygroscopicity. In addition, such a resin has a high glass transition temperature of a cured product and has a low cross-linking density, so that the resin is flexible and the residual stress generated by curing is small. The adhesiveness to the frame is excellent, and it is considered that the amount of water entering the package from these interfaces is greatly reduced. Therefore, it is considered that the reason why the solder reflow resistance is remarkably improved is that the amount of water entering the package is significantly reduced as described above.

【0037】耐はんだリフロー性が著しく向上するの
は、上記のようにパッケージ内に浸入する水分量が大幅
に低減するためと考えられる。
It is considered that the reason why the solder reflow resistance is remarkably improved is that the amount of water entering the package is significantly reduced as described above.

【0038】特に、前記一般式(2)で示されるエポキ
シ樹脂を用いた場合に優れた耐はんだリフロー性を示す
のは、この樹脂の持っている低吸湿性,高接着性の特性
と共に、本発明の硬化促進剤を用いたことによって封止
樹脂の分子鎖パッキングがより密になって、吸湿率がよ
り小さくなり、硬化物の柔軟性が高まるために接着力が
一層高くなるためと考えられる。更に、本発明で用いた
硬化促進剤は潜在的な反応促進性を有するため、樹脂組
成物の硬化時の溶融粘度を低下させ、被封止体に対する
濡れ性を向上するためと考えられる。
In particular, when the epoxy resin represented by the above general formula (2) is used, excellent solder reflow resistance is exhibited, in addition to the low hygroscopicity and high adhesiveness of the resin, It is considered that by using the curing accelerator of the invention, the molecular chain packing of the encapsulating resin becomes denser, the moisture absorption rate becomes smaller, and the flexibility of the cured product increases, so that the adhesive strength becomes higher. . Furthermore, since the curing accelerator used in the present invention has a latent reaction accelerating property, it is considered that the melt viscosity of the resin composition at the time of curing is reduced and the wettability with respect to the sealed object is improved.

【0039】また、本発明で用いた樹脂組成物が成形時
にボイドの発生が少ないのは、上記硬化促進剤がエポキ
シ樹脂や硬化剤中の低分子量成分と比較的低温で選択的
に反応し、樹脂が硬化する際発生する揮発成分を低減さ
せる効果があるためと考えられる。
Further, the resin composition used in the present invention is less likely to cause voids during molding because the curing accelerator selectively reacts with the low molecular weight component in the epoxy resin or the curing agent at a relatively low temperature, This is considered to be due to the effect of reducing volatile components generated when the resin cures.

【0040】上記の硬化促進剤がエポキシ樹脂組成物か
らなる封止材料に対して優れた特性を付与し、封止後の
半導体装置の各種信頼性を大幅に改善する効果があるこ
とは、全く予想外のことである。
The above-mentioned curing accelerator has the effect of imparting excellent characteristics to the encapsulating material made of the epoxy resin composition and greatly improving various reliability of the semiconductor device after encapsulation. This is unexpected.

【0041】[0041]

【実施例】以下に、本発明の実施例を示して更に具体的
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0042】〔実施例1〜8,比較例1〜7〕表1に実
施例及び比較例に用いた硬化促進剤名と略号を示す。
[Examples 1 to 8 and Comparative Examples 1 to 7] Table 1 shows the names and abbreviations of the curing accelerators used in Examples and Comparative Examples.

【0043】[0043]

【表1】 [Table 1]

【0044】表2,表3に示すエポキシ樹脂組成物を6
0〜100℃に加熱した二軸ロールで約10分間混練し
た後、冷却,粉砕して封止材料を得た。なお、表中の配
合量は部で示す。また、硬化促進剤の配合法において、
単独添加とは封止材料の全成分をビニール袋内で混合す
る方法であり、溶融添加とは硬化促進剤と硬化剤を予め
100℃以上で加熱溶融,混合,冷却,粉砕後に他の成
分とビニール袋内で混合する方法である。表中の各種封
止材料を作製した後、4℃で一昼夜保管した後、180
℃,70kg/cm2,90秒間の条件でトランスファー成形
し、成形性,成形品中のボイド量,吸湿率及び封止材料
の貯蔵安定性について評価した。
The epoxy resin compositions shown in Tables 2 and 3 were
After kneading with a twin-screw roll heated to 0 to 100 ° C. for about 10 minutes, it was cooled and pulverized to obtain a sealing material. The compounding amounts in the table are shown in parts. In addition, in the compounding method of the curing accelerator,
Single addition is a method of mixing all the components of the encapsulating material in a vinyl bag, and melt addition is a method in which a curing accelerator and a curing agent are heated and melted at 100 ° C or higher in advance, mixed, cooled, pulverized and then mixed with other components. This is a method of mixing in a plastic bag. After making the various encapsulating materials in the table, storing them at 4 ° C for one day and then 180
Transfer molding was performed under the conditions of 70 ° C., 70 kg / cm 2 and 90 seconds, and the moldability, the amount of voids in the molded product, the moisture absorption rate, and the storage stability of the sealing material were evaluated.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】結果を表4,表5及び図1に示す。The results are shown in Tables 4 and 5 and FIG.

【0050】表中、スパイラルフローはEMMI−1−
66に定められたスパイラルフロー測定用金型をトラン
スファー成形機の上下熱板間に狭持し、25gの封止材
料を上記条件で成形したときの成形品の長さで評価し
た。熱時硬度は直径20mmφ,厚さ2mmの円板を上記条
件でトランスファー成形し、成形金型が開いた直後の硬
度をバーコル硬度計で測定した。バリ長さの評価にはバ
リ発生金型を用いた。すなわち、金型内にギャップの異
なる狭室を設け、上記条件でトランスファー成形した時
のギャップ5μmの狭室に流れる距離を測定した。ま
た、成形品の内部ボイドは上記直径20mmφの円板をソ
フトX線透視装置で観察して評価した。
In the table, spiral flow is EMMI-1-
The spiral flow measuring mold defined in No. 66 was sandwiched between the upper and lower hot plates of the transfer molding machine, and 25 g of the sealing material was molded under the above conditions, and the length of the molded product was evaluated. The hot hardness was measured by transfer molding a disk having a diameter of 20 mmφ and a thickness of 2 mm under the above conditions, and the hardness immediately after the molding die was opened was measured with a Barcol hardness meter. A burr-generating mold was used to evaluate the burr length. That is, narrow chambers having different gaps were provided in the mold, and the distance flowing into the narrow chamber having a gap of 5 μm when transfer molding was performed under the above conditions was measured. The internal voids of the molded product were evaluated by observing the disk having the diameter of 20 mmφ with a soft X-ray fluoroscope.

【0051】吸湿率は直径90mmφ,厚さ2mmの円板を
ポリテトラフルオロエチレン−SUSの二重圧力容器に入
れて、60℃/100%RHの雰囲気中で168時間吸
湿させたときの値を吸湿率とした。
The moisture absorption rate is a value obtained by placing a disc having a diameter of 90 mmφ and a thickness of 2 mm in a polytetrafluoroethylene-SUS double pressure vessel and absorbing moisture in an atmosphere of 60 ° C./100% RH for 168 hours. The moisture absorption rate was used.

【0052】また、封止材料を温度25℃,湿度90%
RHの恒温恒湿槽に所定時間保管した時の流動性(スパ
イラルフロー)の経時変化を測定し,結果を図1に示
す。
Further, the sealing material is set at a temperature of 25 ° C. and a humidity of 90%.
The time-dependent change in fluidity (spiral flow) when stored in a RH constant temperature and humidity chamber for a predetermined time was measured, and the results are shown in FIG.

【0053】表4,表5より本実施例の封止材料は流動
性,熱時硬度等の成形性が優れており、しかも成形品の
吸湿率が小さくて半導体封止材料に適していることが分
かる。
From Tables 4 and 5, the encapsulating material of this embodiment is excellent in moldability such as fluidity and hot hardness, and the moisture absorption of the molded article is small, so that it is suitable as a semiconductor encapsulating material. I understand.

【0054】図1より本実施例の封止材料は貯蔵安定性
が特に優れていることが分かる。
It can be seen from FIG. 1 that the encapsulating material of this example is particularly excellent in storage stability.

【0055】次に、表面にアルミニウムのジクザク配線
を形成したシリコーンチップ(6×6mm)を42アロイ
系のリードフレームに搭載し、更に、チップ表面のアル
ミニウム電極間とリードフレーム間を金線(ψ30μ
m)でワイヤボンデングした後、全体を実施例1〜8及
び比較例1〜7で用いたと同じ材料を用いて前記と同条
件でトランスファー成形して封止し、更に180℃で5
時間の後硬化を行い、QFP(Quad Flat Package)−6
4 ピンを作製した。各半導体装置の耐はんだリフロー
性,耐湿信頼性試験,高温放置信頼性試験を行った。結
果を表6に示す。耐はんだリフロー性試験は、上記の樹
脂封止型半導体装置を85℃/85%RH下にて168
時間吸湿させた後、240℃の赤外線リフロー炉中で9
0秒間加熱する試験を行い、パッケージのクラック発生
数を調べた。
Next, a silicone chip (6 × 6 mm) having aluminum zigzag wiring formed on the surface thereof is mounted on a 42 alloy lead frame, and a gold wire (ψ30 μm) is provided between the aluminum electrodes on the chip surface and between the lead frames.
After wire bonding in m), the whole is transfer-molded and sealed under the same conditions as above using the same materials as used in Examples 1-8 and Comparative Examples 1-7, and further at 180 ° C. for 5 minutes.
QFP (Quad Flat Package) -6 after post-curing
4 pins were produced. We performed solder reflow resistance, humidity resistance reliability test, and high temperature storage reliability test of each semiconductor device. The results are shown in Table 6. For the solder reflow resistance test, the above resin-encapsulated semiconductor device was tested at 168 at 85 ° C./85% RH.
After absorbing moisture for 9 hours, in an infrared reflow oven at 240 ° C,
A test of heating for 0 seconds was performed to check the number of cracks in the package.

【0056】耐湿信頼性試験は、上記半導体装置を65
℃,95%RHの恒温恒湿槽中で168時間吸湿させた
後、215℃/90秒間のベーパーリフロー処理を行
い、更に、塩水に浸漬後、65℃/95%RHの条件下
で500時間放置した後、アルミニウム腐食が発生した
素子数を調べた。
For the moisture resistance reliability test, the above semiconductor device
After absorbing moisture for 168 hours in a thermo-hygrostat at 95 ° C and 95% RH, vapor reflow treatment is performed at 215 ° C / 90 seconds, and after dipping in salt water, 500 hours at 65 ° C / 95% RH. After standing, the number of elements in which aluminum corrosion occurred was examined.

【0057】高温放置信頼性試験は上記半導体装置を2
00℃の高温槽中に200時間放置し、金ワイヤとアル
ミニウム配線の接合部の接続不良を調べた。
In the high temperature storage reliability test, the semiconductor device
It was left in a high temperature bath at 00 ° C. for 200 hours, and the connection failure at the joint between the gold wire and the aluminum wiring was examined.

【0058】表6より、本実施例の半導体装置は耐はん
だリフロー性,耐湿信頼性及び高温放置特性等が優れて
いることが分かる。
From Table 6, it can be seen that the semiconductor device of this embodiment is excellent in solder reflow resistance, moisture resistance reliability, high temperature storage characteristics and the like.

【0059】[0059]

【表6】 [Table 6]

【0060】上記各実施例の封止材料は成形性に優れ、
しかも成形品の吸湿率も小さく、半導体装置として高い
信頼性が得られることが分かる。
The encapsulating material of each of the above examples is excellent in moldability,
Moreover, it is understood that the moisture absorption rate of the molded product is small, and high reliability is obtained as a semiconductor device.

【0061】[0061]

【発明の効果】本発明の樹脂封止型半導体は成形性及び
耐湿信頼性等が優れており、実装の高信頼性及び高密度
化を図ることが出来る。
The resin-encapsulated semiconductor of the present invention is excellent in moldability and moisture resistance reliability, and can achieve high reliability and high density of mounting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の封止材料と比較例の材料について、2
5℃,湿度90%RHで保管した時の、材料の流動性の
経時変化を示したものである。本発明の封止材料は貯蔵
安定性がすぐれていることがわかる。
FIG. 1 shows a sealing material of the present invention and a material of a comparative example, 2
It shows the change with time of the fluidity of the material when stored at 5 ° C. and a humidity of 90% RH. It can be seen that the encapsulating material of the present invention has excellent storage stability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 (72)発明者 永井 晃 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 荻野 雅彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 茂木 亮 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 和宏 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 西 邦彦 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01L 23/29 23/31 (72) Inventor Akira Nagai 7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd., Hitachi Research Laboratory, Ltd. (72) Inventor, Masahiko Ogino, 1-1 1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd., Hitachi Research Laboratory, (72) Inventor, Ryo Mogi, 7 Mika-cho, Oita, Ibaraki Prefecture 1-chome 1-1 Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Kazuhiro Suzuki 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Kunihiko Nishi Kodaira, Tokyo 5-20-1 Joumizuhoncho, Ichi, Japan Semiconductor Company, Hitachi Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】エポキシ樹脂,硬化剤,硬化促進剤,充填
剤を必須成分とする成分を溶融混練してなるエポキシ樹
脂組成物によって被覆ないしはモールドされた樹脂封止
型半導体装置において、該硬化促進剤は一般式(1) 【化1】 (式中、Xは第四級ホスホニウムイオン、RはC1〜4
のアルキル基又はアルコキシ基、n1 は1〜2の整数を
示す。)で表される有機リン系化合物であることを特徴
とする樹脂封止型半導体装置。
1. A resin-encapsulated semiconductor device coated or molded with an epoxy resin composition obtained by melt-kneading components comprising an epoxy resin, a curing agent, a curing accelerator, and a filler as essential components. The agent has the general formula (1) (In the formula, X is a quaternary phosphonium ion, and R is C1-4.
Is an alkyl group or an alkoxy group, and n 1 is an integer of 1 to 2. ) A resin-encapsulated semiconductor device, which is an organic phosphorus compound represented by
【請求項2】前記エポキシ樹脂は一般式(2) 【化2】 (式中、Rは水素原子またはメチル基を示し互いに異な
っていても良い。n2 は0〜2の整数を示す。)で表さ
れるビフェニル骨格を有するエポキシ樹脂、またはジシ
クロペンタジエン骨格を有するエポキシ樹脂、またはナ
フタレン骨格を有するエポキシ樹脂の少なくとも1種類
を含むことを特徴とする請求項1記載の樹脂封止型半導
体装置。
2. The epoxy resin has the general formula (2): (In the formula, R represents a hydrogen atom or a methyl group and may be different from each other. N 2 represents an integer of 0 to 2.) An epoxy resin having a biphenyl skeleton or a dicyclopentadiene skeleton. The resin-encapsulated semiconductor device according to claim 1, comprising at least one kind of epoxy resin or epoxy resin having a naphthalene skeleton.
【請求項3】前記硬化剤は一般式(3) 【化3】 (式中、mは1〜10の整数を示す。)で表されるフェ
ノールとアラルキルエーテルとの重縮合物は硬化剤全体
の100〜30重量%含むことを特徴とする請求項1記
載の樹脂封止型半導体装置。
3. The curing agent is represented by the general formula (3): The resin according to claim 1, wherein the polycondensate of phenol and aralkyl ether represented by the formula (m represents an integer of 1 to 10) is contained in an amount of 100 to 30% by weight based on the total amount of the curing agent. Sealed semiconductor device.
【請求項4】前記一般式(1)で表される硬化促進剤
は、前記エポキシ樹脂100重量部に対して500〜1
mmol配合されていることを特徴とする請求項1記載の樹
脂封止型半導体装置。
4. The curing accelerator represented by the general formula (1) is 500 to 1 with respect to 100 parts by weight of the epoxy resin.
The resin-encapsulated semiconductor device according to claim 1, wherein the resin-encapsulated semiconductor device is contained in the composition.
【請求項5】前記一般式(3)で表される硬化剤は、前記
エポキシ樹脂に対して0.5〜1.5当量配合されている
ことを特徴とする請求項1記載の樹脂封止型半導体装
置。
5. The resin encapsulation according to claim 1, wherein the curing agent represented by the general formula (3) is blended in an amount of 0.5 to 1.5 equivalents with respect to the epoxy resin. Type semiconductor device.
【請求項6】前記充填剤は粒度分布0.1〜100μm
の球形または角形あるいは両者を併用した充填剤である
ことを特徴とする請求項1記載の樹脂封止型半導体装
置。
6. The filler has a particle size distribution of 0.1 to 100 μm.
2. The resin-encapsulated semiconductor device according to claim 1, wherein the resin-encapsulated semiconductor device is a spherical or square-shaped filler, or a combination of both.
JP30864194A 1994-12-13 1994-12-13 Resin-sealed semiconductor device Pending JPH08165331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30864194A JPH08165331A (en) 1994-12-13 1994-12-13 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30864194A JPH08165331A (en) 1994-12-13 1994-12-13 Resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH08165331A true JPH08165331A (en) 1996-06-25

Family

ID=17983509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30864194A Pending JPH08165331A (en) 1994-12-13 1994-12-13 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH08165331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117075A (en) * 1997-04-28 1999-01-22 Nitto Denko Corp Semiconductor device
US6005030A (en) * 1997-01-28 1999-12-21 Hitachi Chemical Company, Ltd. Epoxy resin composition for semiconductor sealing and resin molded type semiconductor device sealed with the epoxy resin composition
US6296940B1 (en) 1997-05-30 2001-10-02 Sumitomo Bakelite Company Limited Laminate comprising a flame-retardant resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005030A (en) * 1997-01-28 1999-12-21 Hitachi Chemical Company, Ltd. Epoxy resin composition for semiconductor sealing and resin molded type semiconductor device sealed with the epoxy resin composition
JPH1117075A (en) * 1997-04-28 1999-01-22 Nitto Denko Corp Semiconductor device
US6296940B1 (en) 1997-05-30 2001-10-02 Sumitomo Bakelite Company Limited Laminate comprising a flame-retardant resin composition

Similar Documents

Publication Publication Date Title
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP2591392B2 (en) Thermosetting resin composition and semiconductor device
JP2701695B2 (en) Epoxy resin composition and semiconductor device
JPH0597970A (en) Thermosetting resin composition and semiconductor device
JP2005105087A (en) Epoxy resin composition and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JPH08165331A (en) Resin-sealed semiconductor device
JP4172065B2 (en) Epoxy resin composition and electronic component device
JPH11130936A (en) Epoxy resin composition and semiconductor device
CN108485185B (en) High-reliability high-fluidity epoxy resin composition for vehicles and application thereof
JP2005089486A (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JPH10324795A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JPH07118366A (en) Epoxy resin composition
JP2816290B2 (en) Resin-sealed semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JPH05148410A (en) Thermosetting resin composition and semiconductor device
JPH11286594A (en) Resin composition for sealing and semiconductor-sealed device
CN108384195B (en) Nickel-to-epoxy resin composition with high adhesion and application thereof
JPH08258077A (en) Semiconductor device
JPH10176099A (en) Epoxy resin composition and resin-sealed type semiconductor device by using the same
JPH11106612A (en) Epoxy resin composition and semiconductor device
JPH09208669A (en) Resin-sealed semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device