JPH08164320A - High voltage pulse power source and pulse corona application device using same - Google Patents

High voltage pulse power source and pulse corona application device using same

Info

Publication number
JPH08164320A
JPH08164320A JP9907494A JP9907494A JPH08164320A JP H08164320 A JPH08164320 A JP H08164320A JP 9907494 A JP9907494 A JP 9907494A JP 9907494 A JP9907494 A JP 9907494A JP H08164320 A JPH08164320 A JP H08164320A
Authority
JP
Japan
Prior art keywords
voltage
electrode
pulse
power supply
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9907494A
Other languages
Japanese (ja)
Inventor
Senichi Masuda
閃一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9907494A priority Critical patent/JPH08164320A/en
Publication of JPH08164320A publication Critical patent/JPH08164320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE: To periodically generate sufficiently strong corona discharge by releasing an output obstruction function again in a switch non-continuity period of a discharge high voltage synchronous switch element, to charge pulse voltage forming capacitors again with high voltage oscillatingly in parallel, and after that repeatedly applying to a load. CONSTITUTION: From high voltage side output terminals 7, 8 and earth side output terminals 10, 11 through a full wave rectifier 51 from the secondary winding of a high voltage transformer 48, charging voltage is applied to a series connected body of a capacitor 3 and a high impedance element 1 and a series connected body of a capacitor 4 and a high impedance element 2 to oscillatingly charge the capacitors 3, 4 with voltage higher than output voltage of a rectifier 51 by resonance charging. Next, sparks are generated in a rotary spark switches 56, 57 at the point of time of spark in a continuity period to provide continuity for them, and high voltage pulse voltage in which rising is steep and peak voltage is high is applied to between a high voltage side input terminal 24 and an earth side input terminal 26 from high voltage pulse output terminals 22, 25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は放電負荷、特に絶縁配
設されたコロナ放電極とこれに大きな間隙距離をもって
対向配置された接地対向電極よりなる大間隙コロナ電極
系に、立ち上がりが急峻でかつピーク電圧値の極めて高
いパルス高電圧を周期的に印加して、該コロナ放電極か
ら該対向電極に向かって強力な周期的パルス・コロナ放
電を発生せしめるための高圧パルス電源に関するもので
ある。またかかる大間隙コロナ電極系を内蔵し且つその
両電極間に上記高圧パルス電源を用いて荷電し、該コロ
ナ放電極から該対向電極に向かって大間隙を介して強力
な周期的コロナ放電を発生せしめる所の新規の電気集塵
装置、汚染ガス処理装置、物体表面処理装置、気相合成
装置等々のパルス・コロナ応用装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge gap, in particular, to a large gap corona electrode system composed of a corona discharge electrode arranged insulatively and a ground counter electrode arranged opposite to this with a large gap distance, and has a sharp rise and The present invention relates to a high-voltage pulse power supply for periodically applying a pulse high voltage having an extremely high peak voltage value to generate a strong periodic pulse corona discharge from the corona discharge electrode toward the counter electrode. In addition, such a large gap corona electrode system is built-in, and the high voltage pulse power source is used to charge between both electrodes to generate a strong periodic corona discharge from the corona discharge electrode to the counter electrode through a large gap. The present invention relates to a pulse corona application device such as a new electrostatic precipitator, a pollutant gas treatment device, an object surface treatment device, a gas phase synthesis device, etc.

【0002】[0002]

【従来の技術】従来大間隙コロナ放電極系負荷に立ち上
がりが急峻でかつピーク電圧値の極めて高いパルス高電
圧を周期的に印加して、該コロナ放電極から該対向電極
に向かって大間隙を介して十分強力なコロナ放電を周期
的に発生せしめるためには、複数個のパルス成形用コン
デンサーを並列に充電のうえ、これを複数個の火花スイ
ッチを介して直列に接続し、その充電電圧を直列に合成
して該負荷に印加するマルクス回路方式が用いられてい
るが、それぞれの火花スイッチ時点にわずかの差を生じ
て発生パルス電圧にジッターを生ずるため十分早い立ち
上がり時間とパルス・ピーク電圧を得ることが困難であ
った。
2. Description of the Prior Art Conventionally, a large gap corona discharge electrode system is periodically applied with a pulse high voltage having a sharp rise and an extremely high peak voltage value to form a large gap from the corona discharge electrode to the counter electrode. In order to periodically generate a sufficiently strong corona discharge via the above, after charging multiple pulse forming capacitors in parallel, connect them in series via multiple spark switches and change the charging voltage. A Marx circuit method is used in which they are combined in series and applied to the load, but a slight difference occurs at the time of each spark switch and jitter occurs in the generated pulse voltage, so a sufficiently fast rise time and pulse peak voltage are used. It was difficult to get.

【0003】これに対して上記複数個の火花スイッチの
1部ないし全部を固定電極と回転電極よりなる回転火花
スイッチで構成してジッターを減少させる試みも見られ
るが、その発生パルス電圧には限界があり、これを大き
くするためには多数のコンデンサーと多数の火花スイッ
チを必要とするのみならず、火花発生時にコンデンサー
の充電電源から負荷に短絡電流が流れ、火花やアークの
発生を生ずるという難点があって、小型で電圧が余り高
くないものを除いては実用されるに至っていない。
On the other hand, there is an attempt to reduce jitter by constructing a part or all of the above-mentioned plurality of spark switches by a rotary spark switch composed of a fixed electrode and a rotary electrode, but the generated pulse voltage is limited. However, in order to increase this, not only a large number of capacitors and a large number of spark switches are required, but when sparks occur, a short-circuit current flows from the capacitor charging power supply to the load, causing sparks and arcs. However, it has not been put to practical use except for a small size and a voltage that is not so high.

【0004】[0004]

【発明が解決しようとする課題】この発明の目的は上記
大間隙コロナ電極系負荷に立ち上がりが急峻でかつピー
ク電圧値の極めて高いパルス高電圧を周期的に印加すべ
き高圧パルス電源おける上記問題点を解決し、そのコロ
ナ放電極から該対向電極に向かって大間隙を介して十分
強力なコロナ放電を周期的に発生せし得る様にすること
にある。
DISCLOSURE OF THE INVENTION The object of the present invention is to solve the above problems in a high voltage pulse power supply to which a pulse high voltage having a sharp rise and an extremely high peak voltage value should be periodically applied to the large gap corona electrode system load. Therefore, a sufficiently strong corona discharge can be periodically generated from the corona discharge electrode toward the counter electrode through a large gap.

【0005】またこのような大間隙を介しての強力な周
期的パルス・コロナ放電を利用する電気集塵装置、汚染
ガス処理装置、物体の表面処理装置、気相合成装置等々
パルス・コロナ応用装置を実現可能にすることにある。
Further, a pulse corona application device such as an electrostatic precipitator, a pollutant gas treatment device, an object surface treatment device, a vapor phase synthesizing device, etc. utilizing a strong periodic pulse corona discharge through such a large gap. To make it feasible.

【0006】[0006]

【課題を解決するための手段】この発明の高圧パルス電
源はマルクス回路において使用すべき複数個のパルス成
形用コンデンサーの一端をそれぞれインダクタンスない
しインダクタンスと抵抗の直列接続体よりなる高インピ
ーダンス素子を介して接地すると共に、他端を高圧充電
電源に接続して、その充電時に該コンデンサーと該高圧
インピーダンスの直列共振で振動的に充電して該コンデ
ンサーそれぞれの充電電圧を該高圧充電電源の出力電圧
よりも遥かに高く、最大2倍付近の電圧値まで充電す
る。
In the high voltage pulse power supply of the present invention, one end of each of a plurality of pulse shaping capacitors to be used in a Marx circuit is connected via a high impedance element composed of an inductance or a series connection body of the inductance and the resistance. The other end is connected to a high-voltage charging power supply while being grounded, and at the time of charging, the capacitors are oscillatingly charged by series resonance of the capacitor and the high-voltage impedance so that the charging voltage of each capacitor is higher than the output voltage of the high-voltage charging power supply. It is much higher and charges up to twice the voltage.

【0007】ついで上記コンデンサーを相互に同期して
高速でオン・オフする複数個の放電用高圧同期スイッチ
で直列接続して、その急峻で極めて高い直列合成電圧を
出力パルス高電圧として上記の大間隙コロナ電極負荷に
印加する。
Then, the capacitors are connected in series by a plurality of high-voltage synchronous switches for discharging, which are turned on and off at high speed in synchronization with each other, and the steep and extremely high series combined voltage is used as the output pulse high voltage for the large gap. Apply to corona electrode load.

【0008】この場合この放電用高圧同期スイッチに同
期してそのスイッチ導通期間には上記高圧充電電源の充
電出力をオフしてこれから直接負荷に短絡電流が流れる
のを阻止し、また該高圧充電電源の出力端にはコンデン
サーの数だけの保護用インダクタンスを設け該放電用高
圧同期スイッチのスイッチ非導通期間には、この保護用
インダクタンスのそれぞれを介して上記コンデンサーの
それぞれを別々に充電する。
In this case, in synchronization with the discharging high-voltage synchronous switch, the charging output of the high-voltage charging power supply is turned off during the conduction period of the switch to prevent a short-circuit current from directly flowing to the load, and the high-voltage charging power supply. At the output end, the same number of protective inductances as the number of capacitors are provided, and during the switch non-conduction period of the discharging high-voltage synchronous switch, the capacitors are separately charged through the protective inductances.

【0009】上記保護用インダクタンスの作用で上記の
急峻で極めてピーク電圧の高い出力パルス高電圧の発生
時にも、それを阻止してこれが該高圧充電電源に逆印加
されこれを破壊することを防止する。また該コンデンサ
ーそれぞれを別々の該保護用インダクタンスと別々の高
圧側出力端子を介して充電することにより、その放電時
のコンデンサーの短絡を阻止する。
Even when the steep and high peak voltage of the output pulse is generated due to the action of the protective inductance, it is blocked and prevented from being reversely applied to the high voltage charging power source and destroyed. . Moreover, short-circuiting of the capacitors at the time of discharging is prevented by charging each of the capacitors via the protection inductance and the high-voltage side output terminal.

【0010】いま本発明の構成と原理を図1により詳細
に説明する。インダクタンスまたはインダクタンスとと
抵抗の直列接続体よりなる高インピーダンス素子1、
2、−−−を介して一端を接地せる少なくとも2個のパ
ルス電圧成形用コンデンサー3、4、−−−があり、高
圧出力側に該コンデンサー3、4、−−−毎にそれぞれ
別々の保護用インダクタンス5、6、−−−と高圧側出
力端子7、8、−−−を介して該コンデンサー3、4、
−−−を別々に充電するための高圧出力電圧を供給する
高圧充電電源9がある。
Now, the configuration and principle of the present invention will be described in detail with reference to FIG. A high impedance element 1 consisting of an inductance or a series connection body of an inductance and a resistance,
There is at least two pulse voltage shaping capacitors 3, 4, --- whose one end is grounded via 2, ---, and a separate protection is provided for each of the capacitors 3, 4, --- on the high voltage output side. For the capacitors 3, 4, through the inductances 5, 6, --- and the high-voltage side output terminals 7, 8, ---
There is a high voltage charging power supply 9 which provides a high voltage output voltage for separately charging ---.

【0011】該高圧充電電源9の高圧側出力端子7、
8、−−−のそれぞれを該コンデンサー3、4、−−−
それぞれの非接地側端子に接続し、該高圧充電電源9の
接地側出力端子10、11(本例では省略、図3参照)
を共通接地導体12を介して該コンデンサー3、4、−
−−それぞれの該高インピーダンス素子1、2、−−−
の接地側端子13、14、−−−に接続する。
The high voltage side output terminal 7 of the high voltage charging power source 9,
8, --- are connected to the capacitors 3, 4, ---
Ground-side output terminals 10 and 11 of the high-voltage charging power supply 9 connected to the respective non-ground-side terminals (omitted in this example, see FIG. 3)
Through the common ground conductor 12 to the capacitors 3, 4,
--- Each of the high impedance elements 1, 2, ---
Connected to the ground side terminals 13, 14, ---.

【0012】該パルス電圧成形用コンデンサーのうち第
1コンデンサー3の非接地側端子15と該共通接地導体
12の間に介入して両者を周期的に短時間導通せしめた
後ただちに非導通状態に復帰するための高速オン・オフ
機能を具備せる放電用第1高圧同期スイッチ16を設
け、また該第1コンデンサー3の接地側端子とその上記
高インピーダンス素子1間の接続点17と第2コンデン
サー4の非接地側端子18との間に介入して上記放電用
第1高圧同期スイッチ16と同じ機能を具備し且つこれ
に同期して該接続点17と該第2コンデンサーの非接地
側端子18との間をオン・オフする放電用第2高圧同期
スイッチ19、−−−を設ける。
Of the pulse voltage shaping capacitors, the non-grounding side terminal 15 of the first capacitor 3 and the common grounding conductor 12 are interposed so as to conduct them for a short period of time and then immediately return to the non-conducting state. A first high-voltage synchronous switch 16 for discharging, which has a high-speed on / off function for operating the high-impedance element 1, and a connection point 17 between the ground side terminal of the first capacitor 3 and the high impedance element 1 and the second capacitor 4 are provided. It has the same function as the first high-voltage synchronous switch 16 for discharging by interposing with the non-ground side terminal 18, and in synchronization with this, the connection point 17 and the non-ground side terminal 18 of the second capacitor are connected. A second high-voltage synchronous switch 19 for discharge for turning on / off the interval is provided.

【0013】以下該コンデンサーの数に応じて順次第1
番目以下のコンデンサー3、4、−−−の接地側端子と
その高インピーダンス素子1、2、−−−間の接続点1
7、20、−−−と第2番目以下のコンデンサーの非接
地側端子18、−−−との間に介入して上記放電用第1
高圧同期スイッチ素子16と同じ子能を具備し且つこれ
に同期して両者の間をオン・オフする第2番目以下の放
電用高圧同期スイッチ素子19、−−−を設ける。
In the following, the number of the capacitors will be first
Connection point 1 between the ground side terminal of the third and following capacitors 3, 4, --- and their high impedance elements 1, 2, ---
7, 20, --- and the non-grounded side terminals 18, --- of the second and lower capacitors to intervene between the first and second discharge terminals.
The second and subsequent high-voltage synchronous switch elements 19 for discharge, which have the same function as the high-voltage synchronous switch element 16 and which are turned on and off in synchronization with the same, are provided.

【0014】最後の番目のコンデンサー、本図の例では
コンデンサー4の接地側端子と高インピーダンス素子2
間の接続点20を本発明の高圧パルス電源21の高圧側
出力端子22に接続し、これを負荷23の高圧側入力端
子24に接続し、また該最後の番目のコンデンサー4の
接地側の高インピーダンス素子2の接地端子14を該高
圧パルス電源21の接地側出力端子25に接続し、これ
を該負荷23の接地側端子入力26に接続する。
The last capacitor, in the example of this figure, the ground side terminal of the capacitor 4 and the high impedance element 2
The connection point 20 between them is connected to the high voltage side output terminal 22 of the high voltage pulse power supply 21 of the present invention, this is connected to the high voltage side input terminal 24 of the load 23, and the ground side high voltage of the last capacitor 4 is connected. The ground terminal 14 of the impedance element 2 is connected to the ground side output terminal 25 of the high-voltage pulse power supply 21, and this is connected to the ground side terminal input 26 of the load 23.

【0015】上記各放電用高圧同期スイッチ16、1
9、−−−のオン働作後、少なくともそのオフ機能が回
復するまでのスイッチ導通期間の間、該高圧充電電源9
のそれぞれの出力端子7、8、−−−からの出力を阻止
して上記パルス電圧成形用コンデンサー3、4、−−−
それぞれへの充電を阻止すると共に、該各放電用高圧同
期スイッチ16、19、−−−のスイッチ非導通期間に
は上記出力阻止機能を解除して、該パルス電圧成形用コ
ンデンサー3、4、−−−それぞれへの充電を可能なら
しめる所の充電制御機構27を該高圧充電電源9に具備
せしめる。
The high voltage synchronous switches 16 and 1 for each discharge described above.
After the ON operation of 9, ---, at least during the switch conduction period until the OFF function is restored, the high voltage charging power source 9
Of the pulse voltage shaping capacitors 3, 4, --- by blocking the output from the respective output terminals 7, 8, ---
In addition to blocking charging to each of them, the output blocking function is released during the switch non-conduction period of each of the discharging high-voltage synchronous switches 16, 19, ---, and the pulse voltage shaping capacitors 3, 4,-. --The high-voltage charging power source 9 is equipped with a charging control mechanism 27 for charging each of them.

【0016】これにより該充電制御機構27の上記出力
阻止機能を解除して上記各パルス電圧成形用コンデンサ
ー3、4、−−−それぞれを振動的に該高圧充電電源9
の出力電圧の最大2倍付近までの高い電圧値まで並列に
高圧充電し、ついで該充電制御機構27の該出力阻止機
能を働作せしめつつ、その間に上記各放電用高圧同期ス
イッチ16、19、−−−を同期してオン・オフせしめ
各コンデンサー3、4、−−−の充電電圧を上記放電用
高圧同期スイッチ16、19、−−−を介して直列接続
のうえ、その直列合成パルス高電圧を上記高圧パルス電
源21の高圧側出力端子22および接地側出力端子25
から該負荷23に印加し、ついで該放電用高圧同期スイ
ッチ素子16、19、−−−のスイッチ非導通期間に再
び上記出力阻止機能を解除して、上記パルス電圧成形用
コンデンサー3、4、−−−それぞれを再び振動的に並
列に高圧充電し、以後上記働作を周期的に繰り返して該
負荷23に周期的にパルス高電圧を印加する。
As a result, the output blocking function of the charging control mechanism 27 is released and each of the pulse voltage shaping capacitors 3, 4, --- is vibrated and the high voltage charging power source 9 is vibrated.
High-voltage charging in parallel to a high voltage value up to about twice the output voltage of the above, and then activating the output blocking function of the charge control mechanism 27, while the high-voltage synchronous switches 16 and 19 for discharge are provided. By turning on and off the capacitors in synchronization with each other, the charging voltages of the capacitors 3, 4 and --- are connected in series via the discharging high voltage synchronous switches 16, 19 and-, and the series combined pulse height is increased. The voltage is supplied to the high voltage side output terminal 22 and the ground side output terminal 25 of the high voltage pulse power supply 21.
To the load 23, and then the output blocking function is canceled again during the non-conducting period of the discharge high-voltage synchronous switch elements 16, 19, ---, and the pulse voltage shaping capacitors 3, 4,-. Each of them is again oscillated in parallel for high voltage charging, and thereafter, the above operation is periodically repeated to periodically apply the pulse high voltage to the load 23.

【0017】この場合本発明では図2に示す様に、該高
圧充電電源9の高圧側出力端子7、8、−−−を、それ
ぞれのパルス成形用コンデンサー3、4、−−−の高圧
側端子15、18、−−−に接続し、該放電用高圧同期
スイッチ28、−−−を第1コンデンサー3の高圧側端
子15と第2コンデンサー4の低圧側端子とその高圧イ
ンピーダンス素子2間の接続点20の間、またコンデン
サーの数に応じて第2以下の番目のコンデンサー4、−
−−の高圧側端子18、−−−とその次の番目のコンデ
ンサーの低圧側端子とその高圧インピーダンス素子間の
接続点の間に順次接続し、最後の番目のコンデンサー、
本図の例では第2コンデンサー4の高圧側端子18を最
後の番目の放電用高圧同期スイッチ29を介して本発明
の高圧パルス電源の高圧側出力端子22に接続してもよ
い。
In this case, according to the present invention, as shown in FIG. 2, the high voltage side output terminals 7, 8, --- of the high voltage charging power source 9 are connected to the high voltage sides of the respective pulse shaping capacitors 3, 4, ---. The terminals 15 and 18 are connected to the high-voltage synchronous switch 28 for discharging and the high-voltage synchronous switch 28 is connected between the high-voltage side terminal 15 of the first capacitor 3 and the low-voltage side terminal of the second capacitor 4 and its high-voltage impedance element 2. Between the connection points 20, and depending on the number of capacitors, the second and subsequent capacitors 4, −
−− high-voltage side terminal 18, −−− and a low-voltage side terminal of the next capacitor and a connection point between the high-voltage impedance element and the last capacitor.
In the example of this figure, the high-voltage side terminal 18 of the second capacitor 4 may be connected to the high-voltage side output terminal 22 of the high-voltage pulse power supply of the present invention via the last high-voltage synchronous switch 29 for discharging.

【0018】図2における上記以外の番号の要素の名称
と機能は図1における同一番号の要素のそれと同じであ
り、説明を省略する。
The names and functions of the elements with the numbers other than the above in FIG. 2 are the same as those of the elements with the same numbers in FIG.

【0019】本発明に用いる放電用高圧同期スイッチと
しては、固定電極と回転電極よりなる回転火花スイッチ
と該回転電極を回転する電動機の組み合わせがもっとも
適当であるが、それ以外のいかなる適当なスイッチ素
子、例えばサイリスター、GTO、IGBT、パワート
ランジスター等の固体スイッチ素子等々をも使用出来、
また該放電用高圧同期スイッチ相互の同期方法も、回転
火花スイッチにあってはその回転軸を回転させる電動機
ないし駆動機構を相互に電気的または機械的に同期させ
て各回転位相を適当に調整したり、あるいは共通の回転
軸に各回転電極を取り付けたりすることで、また上記の
各固体スイッチにあってはそれをオン・オフさせるため
の制御信号を相互に適当な位相関係をもって同期させる
ことによって容易に実現できる。
As the discharge high-voltage synchronous switch used in the present invention, a combination of a rotary spark switch having a fixed electrode and a rotary electrode and an electric motor for rotating the rotary electrode is most suitable, but any other suitable switch element. , Thyristors, GTOs, IGBTs, solid state switching devices such as power transistors, etc. can also be used,
In the method of synchronizing the discharge high-voltage synchronous switches with each other, in the rotary spark switch, an electric motor or a drive mechanism for rotating the rotary shaft of the rotary spark switch is electrically or mechanically synchronized with each other to appropriately adjust each rotational phase. Or by attaching each rotary electrode to a common rotary shaft, and by synchronizing the control signals for turning on / off each solid-state switch with the appropriate phase relationship. Easy to implement.

【0020】また本発明の充電用高圧電源の高圧出力を
上記該放電用高圧同期スイッチに同期してオン・オフす
るための充電制御機構は、上記充電用高圧電源を交流電
源と、1次側をこれに接続し2次側を整流器、該別々の
保護用インダクタンスを介して該別々の高圧側出力端子
に接続せる高圧変圧器で構成し、該交流電源を該放電用
高圧同期スイッチに同期してその非導通期間Tbのみに
半サイクル以上の交流電圧を上記高圧変圧器の1次側に
供給し、該放電用高圧同期スイッチの導通期間Taには
上記交流電圧の供給を停止する如き制御信号を、該放電
用高圧同期スイッチに同期し且つ適当な位相をもって外
部制御部から該交流電源の制御端子に印加してその働作
を制御する外部制御型交流電源とすることでも実現でき
る。
A charging control mechanism for turning on / off the high-voltage output of the high-voltage power source for charging of the present invention in synchronization with the high-voltage synchronous switch for discharging includes a high-voltage power source for charging and an AC power source and a primary side. To a rectifier on the secondary side and a high-voltage transformer connected to the separate high-voltage side output terminal through the separate protective inductance, and the AC power supply is synchronized with the discharge high-voltage synchronous switch. A control signal for supplying an AC voltage of half a cycle or more to the primary side of the high-voltage transformer only during the non-conduction period Tb, and for stopping the supply of the AC voltage during the conduction period Ta of the discharging high-voltage synchronous switch. Can also be realized by an external control type AC power supply which controls the operation by applying to the control terminal of the AC power supply from the external control section in synchronization with the discharge high voltage synchronous switch and with an appropriate phase.

【0021】あるいは上記充電制御機構は、上記充電用
高圧電源を交流電源と、1次側をこれに接続し2次側を
整流器、該保護用インダクタンスを介してその高圧側出
力端子に接続せる高圧変圧器で構成し、該交流電源の出
力端子と該高圧変圧器の1次側を逆並列接続のサイリス
ター等の外部制御方スイッチ素子対をもって接続し、該
放電用高圧スイッチの働作周期を該交流電源の周波数に
同期せしめ、適当な位相をもって該周波数に同期して上
記導通期間Taには該外部制御型スイッチ素子の制御端
子にこれをオンするための制御信号を外部制御部から印
加せず、また上記非導通期間Tbには上記制御信号を外
部制御部から該外部制御型スイッチ素子の制御端子に印
加してこれをオンせしめることによっても実現できる。
Alternatively, the charging control mechanism may connect the charging high-voltage power source to an AC power source, a primary side thereof to the secondary side thereof, a secondary side thereof to a rectifier, and a high-voltage side output terminal thereof via the protective inductance. A transformer, the output terminal of the AC power source and the primary side of the high-voltage transformer are connected by an external control switch element pair such as a thyristor connected in antiparallel, and the operating period of the high-voltage switch for discharging is The external control unit does not apply a control signal for turning on the control terminal of the external control type switch element in the conduction period Ta in synchronization with the frequency of the AC power supply in an appropriate phase in synchronization with the frequency. Also, it can be realized by applying the control signal from the external control unit to the control terminal of the external control type switch element during the non-conduction period Tb to turn on the control terminal.

【0022】あるいは上記充電制御機構は、上記充電用
高圧電源を交流電源と、1次側をこれに接続し2次側を
半波整流器、該保護用インダクタンスを介してその高圧
側出別々の力端子に接続せる高圧変圧器で構成し、該放
電用高圧スイッチの動作周期を該交流電源の周波数に同
期せしめ、その動作位相を適当な位相調整部をもって調
整し、上記変圧器の2次電圧の極性が上記半波整流器の
順方向をとる半サイクルの期間を上記スイッチ非導通期
間Tbに一致せしめ、該2次電圧の極性が逆となる半サ
イクルの期間を上記スイッチ導通期間Taに一致せしめ
ることによっても実現できる。
Alternatively, in the charging control mechanism, the charging high-voltage power source is connected to an AC power source, the primary side is connected to this, the secondary side is a half-wave rectifier, and the high-voltage side separate power is output via the protective inductance. It is composed of a high-voltage transformer that can be connected to a terminal, the operating cycle of the discharging high-voltage switch is synchronized with the frequency of the AC power source, and the operating phase thereof is adjusted by an appropriate phase adjusting unit. A half cycle period in which the polarity is in the forward direction of the half-wave rectifier is matched with the switch non-conduction period Tb, and a half cycle period in which the polarity of the secondary voltage is reversed is matched with the switch conduction period Ta. Can be realized by

【0023】あるいは上記充電制御機構は、上記充電用
高圧電源を、直流高圧電源と、その出力端を固定電極と
回転電極で構成され該回転電極を該放電用高圧同期スイ
ッチに同期して回転させる電動機を備えた充電用回転火
花スイッチを介し、且つ該パルス成形用コンデンサーの
数だけの保護用インダクタンスを介してそれぞれの数の
高圧側出力端子に接続して構成し、該放電用高圧同期ス
イッチと該充電用回転火花スイッチの回転電極を適当な
位相制御部で位相調整のうえ同期回転させ、これによっ
て該充電用回転火花スイッチの非導通期間を上記放電用
高圧同期スイッチのスイッチ導通期間Taに一致せし
め、且つ該充電用回転火花スイッチのスイッチ導通期間
を該放電用高圧同期スイッチのスイッチ非導通期間Tb
に一致せしめることによっても実現できる。
Alternatively, the charging control mechanism is configured such that the charging high-voltage power supply includes a direct-current high-voltage power supply, and an output end thereof is composed of a fixed electrode and a rotating electrode, and rotates the rotating electrode in synchronization with the discharging high-voltage synchronous switch. Through a charging rotary spark switch equipped with an electric motor, and connected to each of the high voltage side output terminals through a protective inductance corresponding to the number of the pulse shaping capacitors, the discharge high voltage synchronous switch and The rotating electrode of the charging rotary spark switch is phase-adjusted by an appropriate phase control unit and synchronously rotated, so that the non-conducting period of the charging rotary spark switch coincides with the switch conducting period Ta of the discharging high-voltage synchronous switch. In addition, the switch conduction period of the charging rotary spark switch is set to the switch non-conduction period Tb of the discharging high-voltage synchronous switch.
It can also be achieved by matching with.

【0024】あるいは上記充電制御機構は、上記充電用
高圧電源を、直流高圧電源と、その出力端を大きな値の
インダクタンス、抵抗、あるいは両者の直列接続体より
なる限流インピーダンスを介し、かつ上記パルス成形用
コンデンサーの数だけの保護用インダクタンスを介して
それぞれの数の該高圧側出力端子に接続して構成し、該
放電用高圧同期スイッチの導通期間Taにおける該高圧
側出力端子からの該負荷への電流を短絡や火花による続
流が消滅する程度の小さい値に制限することによっても
実現できる。
Alternatively, the charging control mechanism may be configured such that the charging high-voltage power supply is a DC high-voltage power supply and an output terminal thereof via a current limiting impedance formed of a large value of an inductance, a resistance, or a series connection body of both, and the pulse. To the load from the high voltage side output terminal in the conduction period Ta of the discharge high voltage synchronous switch to the load by being connected to each of the high voltage side output terminals via the protective inductances corresponding to the number of molding capacitors. Can also be realized by limiting the current to a value that is small enough to eliminate the follow-up current due to a short circuit or spark.

【0025】上記の各放電用第1高圧同期スイッチや充
電用高圧火花スイッチを構成する各回転火花スイッチを
同期運転させるには、それぞれの回転電極を共通として
もよい。あるいはそれぞれの回転電極の回転軸またはそ
れを回転させる電動機の少なくとも一方を共通としても
よい。
In order to operate the rotary spark switches constituting the first high-voltage synchronous switch for discharging and the high-voltage spark switch for charging synchronously, the rotary electrodes may be common. Alternatively, at least one of the rotary shafts of the rotary electrodes or the electric motors that rotate the rotary shafts may be common.

【0026】該回転火花スイッチの回転電極としては種
々の構成方法があるが、適当なすべてのものを用いえ
る。例えば回転軸に支持された相隣る相互の交角が等し
い複数個の長さの等しい導体支持アームの先端に電極片
を固定して構成してもよい。
There are various construction methods for the rotary electrode of the rotary spark switch, but any suitable one can be used. For example, the electrode pieces may be fixed to the tips of a plurality of conductor supporting arms that are supported by the rotating shaft and that have mutually equal angles of intersection with each other and that have the same length.

【0027】あるいは回転軸に支持された絶縁物円板の
周縁部付近の同一円上に、複数個のロッド状電極片を、
相隣る相互に等しい間隔をもって該円板を貫通しかつ該
円板の表裏両面より突出する如く固定配設して構成して
もよい。
Alternatively, a plurality of rod-shaped electrode pieces may be provided on the same circle near the peripheral edge of the insulating disk supported by the rotating shaft.
The disks may be fixedly arranged so as to penetrate through the disks at equal intervals and project from both front and back surfaces of the disks.

【0028】また該回転電極の回転軸は導体で構成し、
その両端軸受を絶縁碍子に支持する構造としてもよい
が、該回転軸を絶縁物で構成してもよく、さらにその両
端軸受を絶縁碍子に支持された構造としてもよい。
The rotating shaft of the rotating electrode is made of a conductor,
The both-end bearings may be supported by the insulator, but the rotary shaft may be made of an insulator, and the both-end bearings may be supported by the insulator.

【0029】また該回転電極はケージ型構造としてもよ
く、互いに距離を隔てて共通の回転軸に固定せる2枚の
回転導体円板を設け、両円板の周縁部付近の円上に複数
個の導体ロッドを、その両端が相隣る相互に等間隔にな
るように該回転導体板の回転軸と平行に該円板に固定支
持してケージ状とし、該回転軸の両端軸受を絶縁碍子に
支持して構成してもよい。
The rotating electrode may have a cage structure, in which two rotating conductor discs which are spaced apart from each other and can be fixed to a common rotating shaft are provided, and a plurality of discs are provided on the circles near the peripheral portions of both discs. The conductor rods are fixedly supported on the circular plate in parallel with the rotary shaft of the rotary conductor plate so that both ends thereof are equally spaced from each other, and are formed into a cage. It may be configured to be supported by.

【0030】本発明の高圧パルス電源は、急峻な立ち上
がりと高いピーク電圧のパルス高電圧を応用するあらゆ
る装置、特にコロナ放電極とこれに対向した接地の対向
電極をもって構成したコロナ電極系を内蔵せる装置に適
用して、新しい効果を発揮するパルス・コロナ応用装置
を実現でき、かかる新規のパルス・コロナ応用装置も本
発明の内容を構成する。
The high-voltage pulse power supply of the present invention incorporates any device that applies a pulse high voltage of steep rise and high peak voltage, in particular, a corona electrode system composed of a corona discharge electrode and a grounded counter electrode facing the corona discharge electrode. The present invention can be applied to a device to realize a pulse / corona application device exhibiting a new effect, and such a new pulse / corona application device also constitutes the content of the present invention.

【0031】かかるパルス・コロナ応用装置としては、
例えば含塵ガス入り口と清浄ガス出口とダストホッパー
を備えたケーシング中に、絶縁せるコロナ放電極とこれ
に対向してガス通路を挟んで接地の集塵電極を設けてな
る集塵フィールドをガス流方向に1フィールドないし複
数フイールド配設して電気集塵装がある。
As such a pulse corona application device,
For example, in a casing equipped with a dust-containing gas inlet, a clean gas outlet, and a dust hopper, a corona discharge electrode to be insulated and a dust collection field that is opposed to this and has a ground dust collection electrode sandwiching a gas passage is used as a gas flow field. There is an electrostatic precipitator in which one field or a plurality of fields are arranged in the direction.

【0032】その少なくとも1フィールドの該コロナ放
電極と集塵電極間に本発明の高圧パルス電源からパルス
高電圧を印加することによって、従来から知られている
パルス荷電特有の逆電離の発生作用を、遥かに大きく促
進してその集塵作用を大幅に向上することが出来る。こ
れは本発明の高圧パルス電源特有の極めて急峻でピーク
電圧が著しく高いパルス高電圧の印加で発生する独特の
パルス・コロナによるプラズマ化学作用による。すなわ
ち該含塵ガス中のSOをSOに転換してダスト表面
に吸着させ、その形成するHSOの表面層の作用で
電気抵抗を大幅に下げて逆電離を完全に阻止すると共
に、ダストの凝集性を上げて集塵電極槌打時の再飛散を
防止することによる。
By applying a pulse high voltage from the high voltage pulse power source of the present invention between the corona discharge electrode and the dust collecting electrode in at least one field, the conventionally known action of generating reverse ionization peculiar to pulse charging can be achieved. , It can be greatly promoted and its dust collection effect can be greatly improved. This is due to the plasma chemistry by the unique pulse corona generated by the application of the pulse high voltage which is extremely steep and has a remarkably high peak voltage, which is characteristic of the high voltage pulse power supply of the present invention. That is, SO 2 in the dust-containing gas is converted to SO 3 to be adsorbed on the dust surface, and the surface layer of H 2 SO 4 thus formed significantly lowers the electric resistance to completely prevent reverse ionization. , By increasing the cohesiveness of dust and preventing re-scattering when hammering the dust collecting electrode.

【0032】さらに上記のプラズマ化学作用で、該含塵
ガス中に含まれるNOやSO等のガス状汚染物質も同
時に分解処理する事ができる。
Further, by the plasma chemistry described above, gaseous pollutants such as NO and SO 2 contained in the dust-containing gas can be decomposed at the same time.

【0033】この場合必要に応じて該集塵作用ないしガ
ス状汚染物質分解等のプラズマ化学作用を促進するため
のアンモニア、石灰等の気体または粉体状の添加物質を
適宜該含塵ガス入り口ないしその上流で該ガス中に注入
してもよい。
In this case, if necessary, a gas such as ammonia, lime or the like or a powdery additive substance for promoting the plasma collecting action such as the dust collecting action or the decomposition of the gaseous pollutant is appropriately added to the dust-containing gas inlet or the dust-containing gas inlet. It may be injected into the gas upstream thereof.

【0034】またこの場合、スプレイ・ノズルないし潅
水ノズル等の水洗機構を設けて該集塵フィールドの少な
くとも1フィールドの該コロナ放電極ないし集塵電極の
両方または少なくとも集塵電極を常時または間欠的に水
洗して湿式フィールドとし、これによって該プラズマ化
学反応の反応生成物を水で洗って除いてもよい。
Further, in this case, a water washing mechanism such as a spray nozzle or an irrigation nozzle is provided to constantly or intermittently provide both the corona discharge electrode or the dust collecting electrode or at least the dust collecting electrode in at least one field of the dust collecting field. It may be washed with water to give a wet field, whereby the reaction products of the plasma chemistry may be washed away with water.

【0035】また上記パルス・コロナ応用装置としては
汚染ガス成分を含むガスの入り口と清浄ガスの出口を備
えたケーシング中に、絶縁せるコロナ放電極とこれに対
向してガス通路を挟んで設けられた接地の対向電極より
なるコロナ・リアクターを収納配設し、該コロナ放電極
と該接地対向電極間に本発明の電源より上記の立ち上が
りが極めて急峻でかつ著しくピーク電圧の高いパルス高
電圧を印加し、該コロナ放電極から該接地対向電極に向
かってガス流を挟んで強力なパルス・コロナ放電を発生
せしめ、そのプラズマ化学作用で、NO、SO、ダイ
オキシン、水銀等の重金属蒸気、フロン、ハロン、トリ
クロロエタン、トリクロロエチレン、トルエン等々の、
上記ガス状汚染物質を分解処理する汚染ガス処理装置も
ある。
Further, as the above-mentioned pulse corona application device, a corona discharge electrode to be insulated is provided in a casing having an inlet for a gas containing a pollutant gas component and an outlet for a clean gas, and a gas passage is sandwiched opposite to the corona discharge electrode. A corona reactor consisting of a grounded counter electrode is housed and disposed, and a pulsed high voltage having a very steep rise and a remarkably high peak voltage is applied between the corona discharge electrode and the grounded counter electrode by the power supply of the present invention. Then, a strong pulsed corona discharge is generated by sandwiching a gas flow from the corona discharge electrode toward the grounded counter electrode, and the plasma chemistry thereof causes heavy metal vapor such as NO, SO 2 , dioxin, and mercury, Freon, Halon, trichloroethane, trichlorethylene, toluene, etc.,
There is also a pollutant gas treatment device for decomposing the above-mentioned gaseous pollutants.

【0036】この場合も必要に応じて該プラズマ化学分
解処理作用を助長・補助するための気体または粉体状の
添加物質を適宜該ガス入り口ないしその上流で該ガス中
に注入することが出来る。またコロナ放電極と該接地対
向電極のうち、少なくとも該接地対向電極を常時または
間欠的に水洗する上記水洗機構を設けてもよい。
Also in this case, if necessary, a gas or a powdery additive substance for promoting / assisting the plasma chemical decomposition treatment action can be appropriately injected into the gas at the gas inlet or upstream thereof. Further, the above-mentioned water washing mechanism for washing at least the grounding counter electrode among the corona discharge electrode and the grounding counter electrode with water constantly or intermittently may be provided.

【0037】上記のパルス・コロナ応用装置に使用する
コロナ放電極としては、丸線、角線、スパイラル線、帯
状ストリップ、細長い棒状ないしアングル状の支持導体
の側縁上にそって鋭い突起部を有する刺状ないし帯状導
体を配設したり、該支持導体にこれと直角に等間隔に周
縁が鋭利な少なくとも1枚の円形または多角形の導体板
を配設固定したてなるコロナ放電極等、各種の複合コロ
ナ放電極を使用することができる。
As the corona discharge electrode used in the above-mentioned pulse corona applying device, a round wire, a square wire, a spiral wire, a strip strip, and a sharp protrusion along a side edge of a support conductor having an elongated rod shape or an angle shape. A corona discharge electrode or the like in which a barbed or strip-shaped conductor having the conductor is arranged, or at least one circular or polygonal conductor plate having a sharp peripheral edge is equidistantly arranged at a right angle to the support conductor. Various composite corona discharge electrodes can be used.

【0038】上記のパルス・コロナ応用装置としては、
更に絶縁せるコロナ放電極とこれに対向して空間および
被処理物体を介して配設せる接地の対向電極よりなる処
理用コロナ電極系を備え、本発明の高圧パルス電源から
両電極間に固有の上記の立ち上がりが極めて急峻でかつ
著しくピーク電圧の高いパルス高電圧を印加、該コロナ
放電極から該接地対向電極に向かって空間と該被処理物
体を介して強力なパルス・コロナ放電を発生せしめつ
つ、両電極間に該被処理物体を静置または通過させるこ
とによって上記パルス・コロナ放電のプラズマ化学作用
で上記被処理物体の表面を化学的に処理する物体表面処
理装置もある。この場合も必要に応じて適宜両電極間の
空間に上記表面処理作用を助長する適当な添加ガスまた
は添加剤を供給することができる。
As the above-mentioned pulse corona application device,
Further, a corona discharge electrode for insulation and a treatment corona electrode system composed of a grounded counter electrode arranged opposite to this through a space and an object to be treated are provided. While applying a pulsed high voltage with a very steep rise and a remarkably high peak voltage, while generating a strong pulsed corona discharge from the corona discharge electrode toward the grounded counter electrode through the space and the object to be treated. There is also an object surface treatment apparatus for chemically treating the surface of the object to be processed by the plasma chemical action of the pulse corona discharge by allowing the object to be processed to stand still or passing between the electrodes. Also in this case, an appropriate additive gas or additive that promotes the above-mentioned surface treatment action can be appropriately supplied to the space between both electrodes, if necessary.

【0039】さらに上記のパルス・コロナ応用装置とし
ては、原料ガス入り口、ガス出口および生成物質出口を
有するケーシング中に絶縁配設せるコロナ放電極とこれ
に対向して原料ガスを介して配設せる接地の対向電極よ
りなるパルス・プラズマ気相合成用コロナ電極系を内蔵
し、該コロナ放電極と該接地対向電極との間に本発明の
高圧パルス電源から固有の上記立ち上がりが極めて急峻
でかつ著しくピーク電圧の高いパルス高電圧を印加し、
該コロナ放電極から該接地対向電極に向かって該原料ガ
スを介して強力なパルス・コロナ放電を発生せしめ、そ
のプラズマ化学作用で上記原料ガスからセラミック超微
粒子等の特殊物質を気相合成する気相合成装置もある。
Further, as the above-mentioned pulse corona application device, a corona discharge electrode which is disposed in an insulating manner in a casing having a raw material gas inlet, a gas outlet and a produced substance outlet, and a corona discharge electrode which is opposed to the corona discharge electrode via a raw material gas. Incorporating a corona electrode system for pulsed plasma vapor phase synthesis composed of a grounded counter electrode, the above-mentioned rising characteristic of the high-voltage pulse power supply of the present invention between the corona discharge electrode and the grounded counter electrode is extremely steep and remarkable. Apply pulse high voltage with high peak voltage,
A strong pulsed corona discharge is generated from the corona discharge electrode to the grounded counter electrode through the raw material gas, and a plasma chemical action is used to vapor-phase synthesize a special substance such as ceramic ultrafine particles from the raw material gas. There is also a phase synthesizer.

【0040】上記の各種パルス・コロナ応用装置におけ
る該コロナ放電極と、該接地集塵電極ないし接地対向電
極間の間隙距離は十分おおきく少なくとも250mm以
上と経済的にも有利であるが、さらにパルス・コロナの
放電の長さを長くすることで、放電ストリーマー先端の
電子数を大幅に増し、その空間電荷電界を極めて大きく
出来、電子エネルギーを大幅に増大できて上記のプラズ
マ化学作用を飛躍的に向上できるというより大きな利点
がある。。
Although the gap distance between the corona discharge electrode and the grounded dust collecting electrode or the grounded counter electrode in the above various pulse corona applied devices is sufficiently large and at least 250 mm or more, it is economically advantageous. By increasing the length of the corona discharge, the number of electrons at the tip of the discharge streamer can be greatly increased, the space charge electric field can be made extremely large, the electron energy can be greatly increased, and the above plasma chemistry is dramatically improved. There is a big advantage over being able to do it. .

【0041】また上記のプラズマ化学作用はパルス高電
圧の立ち上がり時間を早くする程、またそのピーク電圧
と繰り返し周波数を大きくする程向上するが、特に該立
ち上がり時間を10μs以下とし、そのピーク電圧を1
00kV以上とし、かつそのパルス繰り返し周波数を5
0pps以上とすることが、上記パルス・コロナ応用装
置に強力なストリーマー・コロナを発生させて両電極間
を進展させ、その間のガス空間全体に一様なプラズマを
発生させて、すぐれたプラズマ化学効果を得るのに有効
である。
The plasma chemistry described above improves as the rise time of the pulsed high voltage is made faster, and as the peak voltage and the repetition frequency are made larger. Especially, the rise time is set to 10 μs or less and the peak voltage is set to 1
More than 00kV and its pulse repetition frequency is 5
When it is set to 0 pps or more, a strong streamer corona is generated in the above-mentioned pulse corona application device to develop between both electrodes, a uniform plasma is generated in the entire gas space between them, and an excellent plasma chemical effect is obtained. Is effective in obtaining.

【0042】また上記パルス・コロナ応用装置に用いる
コロナ放電の極性は、正負いずれの極性も使用できる
が、多くの場合正極性を用いる方がよりすぐれたプラズ
マ化学効果が得られて好適である。
The polarity of the corona discharge used in the above-mentioned pulse corona application device can be either positive or negative, but in many cases, the positive polarity is preferable because a better plasma chemical effect can be obtained.

【0043】[0043]

【作用】本発明により該充電制御機構27の上記出力電
流阻止機能を解除して上記各パルス電圧成形用コンデン
サー3、4、−−−それぞれをその高インピーダンス素
子を介して直列共振により振動的に該高圧充電電源9の
出力電圧の最大2倍付近までの十分高い電圧値まで並列
に高圧充電する。
According to the present invention, the output current blocking function of the charge control mechanism 27 is released and each of the pulse voltage shaping capacitors 3, 4, --- is vibrated by series resonance through its high impedance element. High voltage charging is performed in parallel to a sufficiently high voltage value up to about twice the output voltage of the high voltage charging power source 9.

【0044】ついで該充電制御機構27の該出力阻止機
能を働作せしめつつ、その間に上記各高圧同期スイッチ
素子16、19、−−−を同期してオン・オフせしめ各
コンデンサー3、4、−−−の充電電圧を上記放電用高
圧同期スイッチ16、19、−−−を介して直列接続の
うえ、その直列合成パルス高電圧を上記高圧パルス電源
21の高圧側出力端子22および接地側出力端子25か
ら該負荷23に印加する。
Next, while operating the output blocking function of the charge control mechanism 27, the respective high voltage synchronous switch elements 16, 19, --- are synchronously turned on and off during the period, and the capacitors 3, 4,-. The charging voltage of −− is connected in series through the high voltage synchronous switches 16 and 19 for discharging, and the high voltage of the series synthesized pulse is output to the high voltage side output terminal 22 and the ground side output terminal of the high voltage pulse power source 21. It is applied to the load 23 from 25.

【0045】ついで該高圧同期スイッチ素子16、1
9、−−−の非導通期間に再び上記出力阻止機能を解除
して、上記パルス電圧成形用コンデンサー3、4、−−
−それぞれを再び振動的に並列に高圧充電し、以後上記
働作を周期的に繰り返して該負荷23に周期的にパルス
高電圧を印加する。
Then, the high-voltage synchronous switch elements 16 and 1
9, the output blocking function is canceled again during the non-conduction period, and the pulse voltage shaping capacitors 3, 4,
Each of them is again oscillatingly charged in parallel in high voltage, and thereafter, the above operation is periodically repeated to periodically apply a pulse high voltage to the load 23.

【0046】上記直列合成パルス高電圧の発生時に、上
記保護用インダクタンスの阻止作用でこのパルス電圧が
該高圧充電電源の内部に逆電圧としてかかり、これを破
壊することがない。また該パルス成形用コンデンサーの
それぞれが、それぞれの別々の高圧側出力端子と保護用
インダクタンスを介して該高圧充電電源により独立的に
充電されるので、該放電用高圧同期スイッチの導通期間
にもそれぞれの該コンデンサーが該スイッチを介して短
絡されることがない。
When the series combined pulse high voltage is generated, the pulse voltage is applied to the inside of the high-voltage charging power source as a reverse voltage due to the blocking action of the protective inductance, and is not destroyed. Further, since each of the pulse shaping capacitors is independently charged by the high voltage charging power source via the respective separate high voltage side output terminals and the protective inductance, the pulse shaping capacitors are respectively charged during the conduction period of the discharging high voltage synchronous switch. Of the capacitor is not short circuited through the switch.

【0047】[0047]

【実施例】図3は本発明の高圧パルス電源とパルス・コ
ロナ応用装置の1実施例を示す。30は商用周波交流電
源で誘導電圧調整器、スライダック、位相制御サイリス
タースイッチ等の適当な電圧調整機構31および両波整
流器32を介してその直流出力電圧をタンク・コンデン
サー33の端子34と35間に供給し、これを充電す
る。36はトランジスター、サイリスター、GTO、I
GBT等の適当な外部制御型固体スイッチ素子37、3
8、39、40よりなるブリッジで、素子37、40の
制御端子37a、40aは共通の導線41を介して制御
部42(図1における充電制御機構27に相当)の第1
制御信号出力端子43に接続され、素子38、39の制
御端子38a、39aは共通の導線44を介して該制御
部42の第2制御信号出力端子45に接続される。かく
て31から45までの要素が一つのケーシング46に収
納されて外部制御型交流電源47を構成する。
FIG. 3 shows an embodiment of the high voltage pulse power supply and pulse corona application device of the present invention. Reference numeral 30 is a commercial frequency AC power source, and its DC output voltage is transferred between terminals 34 and 35 of the tank condenser 33 through an appropriate voltage adjusting mechanism 31 such as an induction voltage regulator, a slider, a phase control thyristor switch and a double wave rectifier 32. And then charge it. 36 is a transistor, thyristor, GTO, I
Appropriate external control type solid state switching devices 37, 3 such as GBT
In the bridge consisting of 8, 39, 40, the control terminals 37a, 40a of the elements 37, 40 are connected to the first of the control unit 42 (corresponding to the charging control mechanism 27 in FIG. 1) via the common lead wire 41.
It is connected to the control signal output terminal 43, and the control terminals 38 a and 39 a of the elements 38 and 39 are connected to the second control signal output terminal 45 of the control unit 42 via the common lead wire 44. Thus, the elements 31 to 45 are housed in one casing 46 to form an external control type AC power supply 47.

【0048】48は高圧変圧器で、その一次側は上記ブ
リッジ36の出力端子49、50に接続され、またその
二次側は両波整流器51を介し、その高圧側端子52
(本例では正極性側)から保護用インダクタンス5、6
を介して2個の高圧側出力端子7、8に接続され、該両
波整流器51の低圧側端子53(本例では負極性側)は
別の保護用インダクタンス5’、6’を介して2個の接
地側出力端子10、11に接続される。要素5、6およ
び48から53まで要素は一つのオイル・タンク54に
収納されて高圧変圧器部55構成する。そして上記外部
制御型交流電源47と、高圧変圧器部55をもって高圧
充電電源9の全体を構成する。
Reference numeral 48 is a high-voltage transformer, the primary side of which is connected to the output terminals 49 and 50 of the bridge 36, and the secondary side of which is through a double-wave rectifier 51 and its high-voltage side terminal 52.
(In this example, the positive polarity side) From the protective inductance 5, 6
Is connected to two high-voltage side output terminals 7 and 8 via a double-sided rectifier 51. It is connected to the ground side output terminals 10 and 11. Elements 5, 6 and 48 to 53 are housed in one oil tank 54 to form a high voltage transformer section 55. The external control type AC power source 47 and the high voltage transformer section 55 constitute the entire high voltage charging power source 9.

【0049】3、4はパルス成形用コンデンサーでそれ
ぞれの接地側は接続点17、20ならびにインダクタン
スまたはインダクタンスト抵抗の直列接続体よりなる高
インピーダンス素子1、2を介して共通接地導体12に
接続点13、14において接続されて、本例では上記高
圧充電電源9の外部で短絡した接地側出力端子10、1
1に接続されている。また該コンデンサー3、4の高圧
側端子15、18は上記高圧充電電源9の高圧側出力端
子7、8にそれぞれ接続されている。
Reference numerals 3 and 4 denote capacitors for pulse shaping, and the ground side of each is connected to a common ground conductor 12 via connection points 17 and 20 and high impedance elements 1 and 2 composed of a series connection body of an inductance or an inductance resistance. The ground side output terminals 10 and 1 which are connected at 13 and 14 and are short-circuited outside the high voltage charging power source 9 in this example.
Connected to 1. The high voltage side terminals 15 and 18 of the capacitors 3 and 4 are connected to the high voltage side output terminals 7 and 8 of the high voltage charging power source 9, respectively.

【0050】56、57はそれぞれ図1における放電用
高速同期スイッチ16、17に相当する回転火花スイッ
チで、56の1対の固定電極58、59はそれぞれ該コ
ンデンサー3の高圧側端子15、共通接地導体12に接
続されている。また56の回転電極60は本例では垂直
のセラミック・シャフト等の絶縁物回転軸61に嵌設固
定された環状導体62から相隣る相互に90度の角度を
もって放射状に突出する4本の等長の導体アーム63の
先端に固定された4個の電極片64から成る。
Reference numerals 56 and 57 denote rotary spark switches corresponding to the discharge high-speed synchronous switches 16 and 17, respectively, in FIG. 1, and a pair of fixed electrodes 58 and 59 of 56 are respectively the high-voltage side terminal 15 of the capacitor 3 and a common ground. It is connected to the conductor 12. Further, 56 rotating electrodes 60 are, in this example, 4 pieces, etc. which radially protrude at an angle of 90 degrees from each other from an annular conductor 62 fitted and fixed to an insulator rotating shaft 61 such as a vertical ceramic shaft. It is composed of four electrode pieces 64 fixed to the tip of a long conductor arm 63.

【0051】回転火花スイッチ57の1対の固定電極6
5、66はそれぞれ該コンデンサー4の高圧側端子1
8、上記接続点17に接続されている。また57の回転
電極67は同じ絶縁物回転軸61に嵌設固定された環状
導体68から相隣る相互に90度の角度をもって放射状
に突出する4本の等長の導体アーム69の先端に固定さ
れた4個の電極片70から成る。
A pair of fixed electrodes 6 of the rotary spark switch 57
5 and 66 are high-voltage side terminals 1 of the condenser 4, respectively.
8. It is connected to the connection point 17. Further, the rotary electrode 67 of 57 is fixed to the tips of four equal-length conductor arms 69 which radially project from adjacent annular conductors 68 fitted and fixed to the same insulator rotary shaft 61 at an angle of 90 degrees to each other. It is composed of four electrode pieces 70 formed.

【0052】そして両火花スイッチ56、57のそれぞ
れの固定電極58、59および65、66に対する各回
転電極60、67の電極片64、70の回転位相角は等
しくなるよう調整されている。したがって両火花スイッ
チ56、57は完全に同期してオン・オフ働作を行い、
そのスイッチ導通期間とスイッチ非導通期間は相互に完
全に一致している。
The rotational phase angles of the electrode pieces 64, 70 of the rotary electrodes 60, 67 with respect to the fixed electrodes 58, 59 and 65, 66 of the spark switches 56, 57 are adjusted to be equal. Therefore, both spark switches 56 and 57 perform on / off operation in perfect synchronization,
The switch conducting period and the switch non-conducting period are completely coincident with each other.

【0053】該絶縁物回転軸61はその下端71におい
てスラスト・ベアリング72を介して垂直支持碍子73
に回転自在に支持され、その上端74付近においてベア
リング75を介して水平支持碍子76に回転自在に支持
され、かつ該上端74において回転用電動機77に直結
されている。
The insulator rotary shaft 61 has a vertical support insulator 73 at its lower end 71 via a thrust bearing 72.
Is rotatably supported by the horizontal support insulator 76 via a bearing 75 near its upper end 74, and is directly connected to the rotating electric motor 77 at its upper end 74.

【0054】78は該上端64付近において該回転軸6
1に嵌設された周辺に4個の小孔を等間隔に有する回転
位相角検出用円板で、その周円を挟んで送光部と受光部
を有する光センサー79が嵌接されて、78、79で回
転位相角検出部80を構成し、両回転火花スイッチ5
6、57のそれぞれの固定電極に対する回転電極の電極
片の回転位相角θを検出、これが所定の値θoをとった
時その出力端子81から光ファイバー82を介して上記
外部制御型交流電源47の制御部42の入力端子83に
トリガー信号を送る。
Reference numeral 78 denotes the rotary shaft 6 near the upper end 64.
A rotating phase angle detecting disc having four small holes at equal intervals in the periphery fitted in 1 is fitted with an optical sensor 79 having a light transmitting unit and a light receiving unit sandwiching the circumferential circle, The rotary phase angle detector 80 is composed of 78 and 79, and the rotary spark switch 5
The rotation phase angle θ of the electrode piece of the rotating electrode with respect to each of the fixed electrodes 6 and 57 is detected, and when this takes a predetermined value θo, control of the external control type AC power supply 47 from the output terminal 81 via the optical fiber 82. A trigger signal is sent to the input terminal 83 of the section 42.

【0055】このトリガー信号を該制御部42の内部で
さらに適当な位相調整を行って、上記回転位相角θの値
が、両回転火花スイッチ56、57のそれぞれの固定電
極に対する回転電極の電極片の離隔距離が十分大きく両
者の間が火花で導通しない期間Tb(第4図参照)内の
時点T1にまず該制御部42の第1制御信号出力端子4
3から導線41を介して制御信号を、ブリッジ36の外
部制御型固体スイッチ素子37、40の制御端子37
a,40aに供給、37、40をオンせしめてタンク・
コンデンサー33の端子34−固体スイッチ素子37−
端子50−高圧変圧器同38の1次巻線−端子49−固
体スイッチ素子40−タンク・コンデンサー33端子3
5を通って上記スイッチ非導通期間Tb内に該変圧器4
8の一次巻線に正の半周期電流I(図4)を流す。
The trigger signal is further subjected to appropriate phase adjustment inside the control unit 42 so that the value of the rotation phase angle θ is the electrode piece of the rotary electrode with respect to the fixed electrode of each of the rotary spark switches 56 and 57. At a time T1 within a period Tb (see FIG. 4) in which the distance between them is sufficiently large that they are not electrically connected by sparks (see FIG. 4).
Control signal from the external control type solid state switch elements 37 and 40 of the bridge 36 through the conductor 41.
a, 40a supply, 37, 40 on and tank
Terminal 34 of Capacitor 33-Solid State Switching Element 37-
Terminal 50-Primary winding of the high voltage transformer 38-Terminal 49-Solid state switching element 40-Tank condenser 33 Terminal 3
5 through the transformer 4 within the switch non-conduction period Tb.
A positive half-cycle current I + (FIG. 4) is passed through the primary winding of No. 8.

【0056】これにより該高圧変圧器48の二次巻線よ
り両波整流器51を介して高圧側出力端子7、8および
接地側出力端子10、11から充電電圧がコンデンサー
3と高インピーダンス素子1の直列接続体、およびコン
デンサー4と高インピーダンス素子2の直列接続体に印
加され、該コンデンサー3、4をそれぞれ共振充電によ
り振動的に該整流器51の出力電圧よりも十分高い(最
大2倍付近)電圧Vまで正に充電する。
As a result, the charging voltage of the secondary winding of the high-voltage transformer 48 from the high-voltage side output terminals 7 and 8 and the ground-side output terminals 10 and 11 via the double-wave rectifier 51 is the capacitor 3 and the high impedance element 1. A voltage that is applied to the series connection body and the series connection body of the capacitor 4 and the high impedance element 2 and is sufficiently higher than the output voltage of the rectifier 51 (about a maximum of 2 times) oscillatingly by resonance charging of the capacitors 3 and 4, respectively. Charge to V positive.

【0057】次にこのTbに続く上記導通期間Ta内の
火花時点t2で上記回転火花スイッチ56、57に火花
を発生せしめてこれらを導通させ、高圧パルス出力端子
22、25から負荷23の高圧側入力端子24と接地側
入力端子26の間に前者を正極性とする立ち上がりが急
峻でピーク電圧の極めて高い高圧パルス電圧を印加す
る。
Next, at the time t2 of sparks in the conduction period Ta following Tb, sparks are generated in the rotary spark switches 56, 57 to make them conductive, and the high voltage pulse output terminals 22, 25 cause the high voltage side of the load 23. A high-voltage pulse voltage having a steep rise and an extremely high peak voltage is applied between the input terminal 24 and the ground-side input terminal 26 with the former having a positive polarity.

【0058】次に再び回転位相角θがθoとなった時点
で光センサー79の出力端子81から光ファイバー82
を介して上記外部制御型交流電源47の制御部42の入
力端子83にトリガー信号が送られ、今度は上記Taに
続く非導通期間Tb(図4)内の時点T1’に該制御部
42の第2制御信号出力端子45から導線44を介して
制御信号が、ブリッジ36の外部制御型固体スイッチ素
子38、39の制御端子38a,39aに供給され、3
8、39をオンせしめる。
Next, when the rotation phase angle θ reaches θo again, the optical sensor 82 is connected to the optical fiber 82 from the output terminal 81 of the optical sensor 79.
A trigger signal is sent to the input terminal 83 of the control unit 42 of the external control type AC power source 47 via this, and this time at the time point T1 ′ within the non-conduction period Tb (FIG. 4) following the Ta, the control unit 42 A control signal is supplied from the second control signal output terminal 45 to the control terminals 38a and 39a of the external control type solid state switch elements 38 and 39 of the bridge 36 via the lead wire 44, and 3
Turn on 8, 39.

【0059】今度はタンク・コンデンサー33の端子3
4−固体スイッチ素子38−端子49−高圧変圧器同3
8の1次巻線−端子50−固体スイッチ素子39−タン
ク・コンデンサー33端子35を通って上記非導通期間
Tb内に該変圧器48の一次巻線に前と逆方向に負の半
周期電流I_(図4)が流れ、前回同様に高圧変圧器4
8の二次巻線より両波整流器51を介して高圧側出力端
子7、8および接地側出力端子11、11’からコンデ
ンサー3と高インピーダンス素子1の直列接続体、およ
びコンデンサー4と高インピーダンス素子2直列接続体
に充電電圧が印加さえ、該コンデンサー3、4はそれぞ
れ共振充電により振動的に該整流器51の出力電圧より
も十分高い(最大2倍付近)電圧Vまで再び正に充電さ
れる。
This time, terminal 3 of the tank condenser 33
4-solid switch element 38-terminal 49-high voltage transformer 3
8 through the primary winding-terminal 50-solid state switching element 39-tank capacitor 33 terminal 35 and within the non-conduction period Tb, the negative winding half-cycle current in the reverse direction to the primary winding of the transformer 48. I_ (Fig. 4) flows, and the high voltage transformer 4 as before
From the secondary winding of 8 through the double-wave rectifier 51 to the high-voltage side output terminals 7 and 8 and the ground-side output terminals 11 and 11 'from the series connection of the capacitor 3 and the high impedance element 1, and the capacitor 4 and the high impedance element. Even if the charging voltage is applied to the two series-connected bodies, the capacitors 3 and 4 are positively charged again to the voltage V sufficiently higher than the output voltage of the rectifier 51 (nearly twice the maximum) by the resonant charging.

【0060】次にこのTbに続く上記導通期間Ta内の
火花時点t2’で上記回転火花スイッチ56、57に再
び火花を発生せしめて再び負荷23の高圧側入力端子2
4と接地側入力端子26の間に再び前者を正極性とする
立ち上がりが急峻でピーク電圧の極めて高い高圧パルス
電圧を印加する。
Next, at the spark timing t2 'within the conduction period Ta following this Tb, the rotary spark switches 56 and 57 are caused to generate sparks again, and the high voltage side input terminal 2 of the load 23 is again generated.
4 and the ground-side input terminal 26 are applied again with a high-voltage pulse voltage having a steep rise and an extremely high peak voltage with the former having a positive polarity.

【0061】この場合必要に応じて、端子7、8と端子
10、11の接続を交換すると、負荷に印加する高圧パ
ルス電源の極性を逆にすることができて便利である。し
かし極性逆転の必要がないときは上記保護用インダクタ
ンス5’、6’を省略することができる。
In this case, if the connections of the terminals 7 and 8 and the terminals 10 and 11 are exchanged as needed, the polarity of the high-voltage pulse power supply applied to the load can be reversed, which is convenient. However, when it is not necessary to reverse the polarity, the protective inductances 5'and 6'can be omitted.

【0062】84は図1の負荷23に相当するパルス・
コロナ応用装置で、本例では汚染ガス処理装置である。
85はそのコロナ・リアクターで直径50−100cm
の接地された縦型円筒電極86と、その中心軸にそって
絶縁配設されたコロナ放電極87から成る。その下方に
ガス状汚染物を含む被処理ガスの入り口88、上方に清
浄になった処理済みガスの出口89、また底部にホッパ
ー90がありロータリー・バルブ91を介して気密に排
出管92に連通する。
84 is a pulse corresponding to the load 23 in FIG.
It is a corona application device, and is a pollutant gas treatment device in this example.
85 is the corona reactor with a diameter of 50-100 cm
The grounded vertical cylindrical electrode 86 and the corona discharge electrode 87 insulated along the central axis. There is an inlet 88 for the gas to be treated containing gaseous pollutants below it, an outlet 89 for the treated gas that has been cleaned above, and a hopper 90 at the bottom, which communicates airtightly through a rotary valve 91 to an exhaust pipe 92. To do.

【0063】該コロナ放電極87は導体パイプ93に一
定間隔で周縁が鋭い円板電極片94を多数串挿し状に配
設固定して構成され、93の上端は該コロナ・リアクタ
ー85の天井95に取り付けられた絶縁ブッシング96
を介してリアクター外部に突出し、高圧側入力端子24
を介して上記高圧パルス電源の高圧側出力端子22に接
続される。93の下端は支持碍子97によって支持固定
されている。また上記接地縦型円筒電極86はその接地
側入力端子26を介して上記高圧パルス電源の接地側出
力端子25に接続される。
The corona discharge electrode 87 is constructed by arranging and fixing a large number of disc electrode pieces 94 having sharp edges on a conductor pipe 93 in a skewered manner, and the upper end of 93 is the ceiling 95 of the corona reactor 85. Insulated bushing 96 mounted on
Projecting to the outside of the reactor via the
Is connected to the high-voltage side output terminal 22 of the high-voltage pulse power source. The lower end of 93 is supported and fixed by a support insulator 97. The grounded vertical cylindrical electrode 86 is connected to the grounded output terminal 25 of the high-voltage pulse power supply through the grounded input terminal 26.

【0064】98は該縦型円筒電極86の外壁に取り付
けられた機械的振動装置で、これに機械的振動を与えて
86の内壁に堆積したダストと微粒子状のプラズマ化学
反応生成物の層を剥離させ、下方のホッパー90に落下
させてここに捕集する。
Reference numeral 98 is a mechanical vibration device attached to the outer wall of the vertical cylindrical electrode 86, and mechanical vibration is applied to this to form a layer of dust and fine particles of plasma chemical reaction products deposited on the inner wall of 86. It is peeled off, dropped into the lower hopper 90 and collected there.

【0065】99は上記プラズマ化学反応を促進・補助
する作用をもった、アンモニア・石灰等のガス状ないし
粉体状の添加物質のタンクで、該添加物質をパイプ10
0及びノズル101を介して上記ガス入り口88でガス
中に注入する。
Reference numeral 99 denotes a tank of a gaseous or powdery additive substance such as ammonia or lime, which has a function of promoting and assisting the plasma chemical reaction, and the additive substance is piped into the pipe 10.
It is injected into the gas at the gas inlet 88 through the nozzle 0 and the nozzle 101.

【0066】該コロナ放電極87と該接地縦型円筒電極
86の間には、前者を性極性とする様に該高圧パルス電
源の出力端子22、25から本発明固有の立ち上がりが
極めて急峻でピーク電圧の著しく高い周期的パルス高電
圧が印加され、上記コロナ放電極87の多数の円板電極
片94の各周縁から該接地縦型円筒電極86の内壁10
2へ向かって強力な正のストリーマー・コロナ放電が進
展し、両電極間のコロナ・リアクター空間85を均一な
放電プラズマで充たし、ここに強力なプラズマ化学反応
を発生させる。
Between the corona discharge electrode 87 and the grounded vertical cylindrical electrode 86, the rising characteristic of the present invention from the output terminals 22 and 25 of the high-voltage pulse power source is extremely steep and peaks so that the former has a sex polarity. A periodic pulse high voltage having a remarkably high voltage is applied, and the inner wall 10 of the grounded vertical cylindrical electrode 86 is passed from each peripheral edge of the plurality of disc electrode pieces 94 of the corona discharge electrode 87.
A strong positive streamer corona discharge progresses toward 2 and fills the corona reactor space 85 between both electrodes with a uniform discharge plasma, where a strong plasma chemical reaction is generated.

【0067】いまダストとガス状汚染物質を含んだガス
を入り口88からコロナ・リアクター空間85内に導入
すると、該ガスは両電極間の上記の強力な正ストリーマ
ー・コロナ放電に交差して電極間を上昇し、その間に強
力なプラズマ化学反応の作用を受けて、該ガス状汚染物
質が分解処理され、該ノズル101から注入された添加
物の作用で微粒子状の反応生成物に転化する。
When a gas containing dust and gaseous pollutants is introduced into the corona reactor space 85 through the inlet 88, the gas intersects the above-mentioned strong positive streamer corona discharge between the electrodes and the space between the electrodes. , During which the gaseous pollutants are decomposed under the action of a strong plasma chemical reaction and converted into fine-particle reaction products by the action of the additive injected from the nozzle 101.

【0068】この微粒子状反応生成物は上記ダストと共
に上記正コロナによる正イオンにより正極性に荷電さ
れ、静電気力の作用で該接地縦型円筒電極86の内壁1
02へ駆動されてここに堆積し、上記機械的振動装置9
8によって剥離して下方に落下し、該ホッパー90内に
捕集され、該ロータリー・バルブ91と排出管92を介
して気密に外部に排出される。
The fine particle reaction product is positively charged by the positive ions from the positive corona along with the dust, and the inner wall 1 of the grounded vertical cylindrical electrode 86 is caused by the action of electrostatic force.
02, and the mechanical vibration device 9 is deposited there.
It is peeled off by 8 and falls downward, is collected in the hopper 90, and is airtightly discharged to the outside through the rotary valve 91 and the discharge pipe 92.

【0069】清浄になったガスは出口89より外部のス
タックまたは、バグフィルター、スクラッバー、触媒塔
等々の後段処理プラントに排出される。この場合該ガス
入り口88の上流部、あるいは該接地縦型円筒電極86
の下部ないし上部にスプレー・ノズルを設け、該コロナ
・リアクター空間85内に水、適当な添加剤(ソーダ、
石灰等)を入れた水を噴霧して上記のプラズマ化学作用
を促進し、また湿式電気集塵作用でダストと反応生成物
の除去を促進する事も可能である。
The cleaned gas is discharged from the outlet 89 to the outer stack or a post-treatment plant such as a bag filter, a scrubber, a catalyst tower and the like. In this case, the upstream portion of the gas inlet 88 or the grounded vertical cylindrical electrode 86
A spray nozzle is provided at the bottom or the top of the corona reactor space 85, and water, an appropriate additive (soda,
It is also possible to spray water containing lime or the like) to promote the plasma chemistry described above, and to promote removal of dust and reaction products by wet electrostatic precipitator.

【0070】[0070]

【発明の効果】この発明は、以上の様に少なくとも2個
以上のパルス成形コンデンサーそれぞれにインダクタン
ス性の高インピーダンス素子を接続して複数個の放電用
高速同期スイッチのスイッチ非導通期間に共振充電によ
りそれぞれの該コンデンサーを並列に充電してその充電
電圧を高め、次いでこれを該充電機能を阻止しつつ該放
電用高速同期スイッチで直列に接続して負荷に印加する
ので、極めて急峻でピーク電圧の著しく高いパルス高電
圧を容易に得る事ができる。
As described above, according to the present invention, at least two or more pulse shaping capacitors are respectively connected with high impedance elements having an inductance property, and a plurality of high-speed synchronous switches for discharge are charged by resonance during resonance. Each of the capacitors is charged in parallel to increase its charging voltage, and then the capacitors are connected in series with the discharging high-speed synchronous switch and applied to the load while blocking the charging function. A remarkably high pulse high voltage can be easily obtained.

【0071】また該コンデンサーそれぞれを別々の保護
用インダクタンスを介して充電するので、該放電用高速
同期スイッチのスイッチ導通時にもこれを介して該コン
デンサーが短絡することがなく、また発生したパルス高
電圧が保護用インダクタンスで阻止されて該コンデンサ
ーを充電するための高圧充電電源に逆印加されてこれを
破壊することがなく、さらに該高圧充電電源から該負荷
に短絡電流や続流を発生することがない。
Further, since each of the capacitors is charged through a separate protective inductance, the capacitors are not short-circuited even when the discharging high-speed synchronous switch is turned on, and the generated pulse high voltage is generated. Is not blocked by the protective inductance and is not reversely applied to the high-voltage charging power supply for charging the capacitor and destroys it, and further short-circuit current or follow-up current may be generated from the high-voltage charging power supply to the load. Absent.

【0072】本発明に固有の極めて急峻でピーク電圧の
著しく高い周期的パルス高電圧をパルス・コロナ応用装
置のコロナ放電極と対向電極間に印加するので、前者か
ら後者にむかって極めて強力なパルス・コロナ放電が周
期的に発生し、その格段に優れたプラズマ化学作用を利
用するので、極めて優れた性能の新しいで集塵、汚染ガ
ス処理、表面処理、気相合成等々のパルス・コロナ応用
装置が実現できる。
Since the periodic pulse high voltage, which is extremely steep and has a remarkably high peak voltage, which is unique to the present invention, is applied between the corona discharge electrode and the counter electrode of the pulse corona application device, an extremely strong pulse is applied from the former to the latter.・ Because corona discharge is generated periodically and the plasma chemistry that is remarkably excellent is used, a pulse corona application device such as dust collection, pollutant gas treatment, surface treatment, vapor phase synthesis etc. with extremely excellent performance Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高圧パルス電源の原理と構造を示す図
である。
FIG. 1 is a diagram showing the principle and structure of a high-voltage pulse power supply of the present invention.

【図2】本発明の高圧パルス電源の別の構成の原理と構
造を示す図である。
FIG. 2 is a diagram showing the principle and structure of another configuration of the high-voltage pulse power supply of the present invention.

【図3】本発明の高圧パルス電源とパルス・コロナ応用
装置の1実施例を示す図である。
FIG. 3 is a diagram showing one embodiment of a high voltage pulse power supply and a pulse corona application device of the present invention.

【図4】図3における高圧変圧器の一次巻線に流れる電
流と両コンデンサー両端の電圧の時間的変化を示す図で
ある。
FIG. 4 is a diagram showing a time change of a current flowing through a primary winding of the high voltage transformer in FIG. 3 and a voltage across both capacitors.

【符号の説明】[Explanation of symbols]

1、2 高インピーダンス素子 3、4 パルス成形用コンデンサー 5、6 保護用インダクタンス 9 高圧充電電源 12 共通接地導体 16、19、28 放電用高圧同期スイッチ 21 高圧パルス電源 23 負荷 27 充電制御機構 30 商用周波交流電源 31 電圧調整機構 32 両波整流器 33 タンク・コンデンサー 36 外部制御型固体スイッチ素子ブリッジ 37、38、39、40 外部制御型固体スイッチ素 42 制御部 48 高圧変圧器 51 両波整流器 56、57 回転火花スイッチ 58、59、65、66 固定電極 60、67 回転電極 61 絶縁回転軸 73、76 支持碍子 77 電動機 78 回転位相角検出用円板 79 光センサー 82 光ファイバー 84 汚染ガス処理装置 85 コロナリアクター 86 縦型円筒電極 87 コロナ放電極 88 被処理ガス入り口 89 処理済みガス出口 90 ホッパー 91 ロータリー・バルブ 93 導体パイプ 94 円板電極片 96 絶縁ブッシング 97 支持碍子 98 機械的振動装置 99 添加物質タンク 100 パイプ 101 ノズル 1, 2 High impedance element 3, 4 Pulse forming capacitor 5, 6 Protective inductance 9 High voltage charging power supply 12 Common ground conductor 16, 19, 28 Discharge high voltage synchronous switch 21 High voltage pulse power supply 23 Load 27 Charge control mechanism 30 Commercial frequency AC power supply 31 Voltage adjusting mechanism 32 Double wave rectifier 33 Tank condenser 36 External control type solid switching element bridge 37, 38, 39, 40 External control type solid switching element 42 Control unit 48 High voltage transformer 51 Double wave rectifier 56, 57 rotation Spark switch 58, 59, 65, 66 Fixed electrode 60, 67 Rotating electrode 61 Insulating rotary shaft 73, 76 Support insulator 77 Electric motor 78 Rotation phase angle detection disc 79 Optical sensor 82 Optical fiber 84 Pollutant gas treatment device 85 Corona reactor 86 Vertical Type Cylindrical Electrode 87 Corona Release Electrode 88 Treated gas inlet 89 Treated gas outlet 90 Hopper 91 Rotary valve 93 Conductor pipe 94 Disc electrode piece 96 Insulating bushing 97 Support insulator 98 Mechanical vibration device 99 Additive substance tank 100 Pipe 101 nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B03C 3/40 C 3/66 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B03C 3/40 C 3/66

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 インダクタンスまたはインダクタンスと
抵抗の直列接続体よりなる高インピーダンス素子を介し
てそれぞれ一端を接地せる少なくとも2個のパルス電圧
成形用コンデンサーを有し、該コンデンサー毎にそれぞ
れ別々の保護用インダクタンスと別々の出力端子を介し
て該コンデンサーを別個に充電するための高圧充電電源
を有し、その高圧側出力端子のそれぞれを該コンデンサ
ーそれぞれの非接地側端子に接続し、該高圧充電電源の
接地側出力端子を共通接地導体を介して該コンデンサー
それぞれの該高インピーダンス素子の接地側端子に接続
し、該パルス電圧成形用コンデンサーのうち第1コンデ
ンサーの非接地側端子と該共通接地導体の間に介入して
両者を周期的に短時間導通せしめた後ただちに非導通状
態に復帰するための高速オン・オフ機能を具備せる放電
用第1高圧同期スイッチ素子を有し、該第1コンデンサ
ーの接地側端子とその高インピーダンス素子間の接続点
と第2コンデンサーの非接地側端子との間に介入して上
記放電用第1高圧同期スイッチ素子と同じ機能を具備し
且つこれに同期して上記接続点と第2コンデンサーの非
接地側端子との間をオン・オフする放電用第2高圧同期
スイッチ素子を有し、以下該コンデンサーの数に応じて
順次第1番目以下のコンデンサーの接地側端子とその高
インピーダンス素子間の接続点と第2番目以下のコンデ
ンサーの非接地側端子との間に介入して上記放電用第1
高圧同期スイッチ素子と同じ機能を具備し且つこれに同
期して両者の間をオン・オフする第2番目以下の放電用
高圧同期スイッチ素子を有し、最後の番目のコンデンサ
ーの接地側端子とその高インピーダンス素子間の接続点
を高圧側出力端子としてこれを負荷の高圧側入力端子に
接続し、該最後の番目のコンデンサーの接地側の高イン
ピーダンス素子の接地端子を接地側出力端子として負荷
の接地側入力端子に接続し、且つ上記各放電用高圧同期
スイッチ素子のオン働作後、少なくともそのオフ機能が
回復するまでのスイッチ導通期間の間、該高圧充電電源
の各出力端子からの出力を阻止して上記パルス電圧成形
用コンデンサーそれぞれへの充電を阻止すると共に、該
各放電用高圧同期スイッチ素子のスイッチ非導通期間に
は上記出力阻止機能を解除して、該パルス電圧成形用コ
ンデンサーそれぞれへの充電を行わしめる所の充電制御
機構を該高圧充電電源に具備せしめ、これにより上記ス
イッチ非導通期間に該充電制御機構の上記出力阻止機能
を解除して上記各パルス電圧成形用コンデンサーそれぞ
れを振動的に該高圧充電電源の出力電圧の最大2倍付近
までの高い電圧値まで並列に高圧充電し、ついで上記ス
イッチ導通期間に該充電制御機構の該出力阻止機能を働
作せしめつつ、その間に上記各放電用高圧同期スイッチ
素子を同期してオン・オフせしめ各コンデンサーの充電
電圧を各放電用高圧同期スイッチを介して直列接続のう
え、その直列合成パルス高電圧を上記高圧パルス電源の
高圧側出力端子および接地側出力端子から負荷に印加
し、ついで該各放電用高スイッチ圧同期素子のスイッチ
非導通期間に再び上記出力阻止機能を解除して、上記パ
ルス電圧成形用コンデンサーそれぞれを再び振動的に並
列に高圧充電し、以後上記働作を周期的に繰り返して該
負荷に周期的にパルス高電圧を印加することを特徴とす
る高圧パルス電源。
1. At least two pulse voltage shaping capacitors each having one end grounded via a high-impedance element composed of an inductance or a series connection body of an inductance and a resistance, and each of the capacitors has a different protective inductance. And a high-voltage charging power supply for separately charging the capacitor through separate output terminals, and connecting each of the high-voltage side output terminals to the non-grounded side terminal of the capacitor, and grounding the high-voltage charging power supply. The side output terminal is connected to the ground side terminals of the high impedance elements of the capacitors via a common ground conductor, and between the non-ground side terminal of the first capacitor of the pulse voltage shaping capacitors and the common ground conductor. To intervene to make both of them conductive for a short period of time and then immediately return to the non-conductive state A first high-voltage synchronous switching device for discharging having a high-speed on / off function is provided, and between a connection point between the ground side terminal of the first capacitor and its high impedance element and a non-ground side terminal of the second capacitor. The second high-voltage synchronization for discharge, which intervenes to have the same function as that of the first high-voltage synchronous switching device for discharge and which turns on and off between the connection point and the non-ground side terminal of the second capacitor in synchronization with this. According to the number of capacitors, a switching element is provided between the grounding side terminal of the first or less capacitor and the connection point between the high impedance elements and the non-grounding side terminal of the second or less capacitor. First to intervene for the above discharge
It has the same function as the high-voltage synchronous switch element, and has a second or lower high-voltage synchronous switch element for discharge that turns on and off between the two synchronously with it, and the ground side terminal of the last capacitor and its Connect the connection point between the high impedance elements as the high voltage side output terminal and connect it to the high voltage side input terminal of the load, and use the ground terminal of the high impedance element on the ground side of the last capacitor as the ground side output terminal to ground the load. The output from each output terminal of the high-voltage charging power supply is blocked during the switch conduction period, which is connected to the side input terminal and after the above-mentioned high-voltage synchronous switching elements for discharge are turned on at least until the off function is restored. To prevent charging of each of the pulse voltage shaping capacitors, and to prevent the output blocking device during the non-conduction period of the discharging high voltage synchronous switching device. And the charging control mechanism for charging each of the pulse voltage shaping capacitors is provided in the high-voltage charging power source, whereby the output blocking function of the charging control mechanism is provided during the switch non-conduction period. Then, each of the pulse voltage shaping capacitors is oscillated and charged in parallel to a high voltage value up to about twice the output voltage of the high voltage charging power source in a vibrational manner, and then the charge control mechanism of the charge control mechanism is charged during the switch conduction period. While operating the output blocking function, the discharge high-voltage synchronous switch elements are synchronously turned on and off during that period, and the charging voltage of each capacitor is connected in series via each discharge high-voltage synchronous switch, and then the series. The combined pulse high voltage is applied to the load from the high-voltage side output terminal and the ground-side output terminal of the high-voltage pulse power source, and then the high switch voltage for each discharge is applied. The output blocking function is released again during the switch non-conduction period of the element, and each of the pulse voltage shaping capacitors is charged again in high voltage in an oscillating parallel manner, and thereafter the above operation is periodically repeated to periodically load the load. A high-voltage pulse power supply, characterized in that a pulsed high voltage is applied to.
【請求項2】 インダクタンスまたはインダクタンスと
抵抗の直列接続体よりなる高インピーダンス素子を介し
てそれぞれ一端を接地せる少なくとも2個のパルス電圧
成形用コンデンサーを有し、該コンデンサー毎にそれぞ
れ別々の保護用インダクタンスと別々の出力端子を介し
て該コンデンサー別々に充電するための高圧充電電源を
有し、その高圧側出力端子のそれぞれを該コンデンサー
それぞれの非接地側端子に接続し、該高圧充電電源の接
地側出力端子を共通接地導体を介して該コンデンサーそ
れぞれの該高インピーダンス素子の接地側端子に接続
し、該パルス電圧成形用コンデンサーのうち第1コンデ
ンサーの非接地側端子と、第2コンデンサーの接地側端
子およびその高インピーダンス素子間の接続点との間に
介入して両者を周期的に短時間導通せしめた後ただちに
非導通状態に復帰するための高速オン・オフ機能を具備
せる放電用第1高圧同期スイッチ素子を有し、以下上記
コンデンサーの数に応じて順次第1番目以下のコンデン
サーの非接地側端子と、第2番目以下のコンデンサーの
接地側端子とその高インピーダンス素子間の接続点との
間に介入して上記放電用第1高圧同期スイッチ素子と同
じ子能を具備し且つこれに同期して両者の間をオン・オ
フする第1番目以下の放電用高圧同期スイッチ素子を有
し、最後の番目のコンデンサーの非接地側端子と高圧パ
ルス電源の高圧側出力端子との間に介入して上記放電用
第1高圧同期スイッチ素子と同じ機能を具備し且つこれ
に同期して両者の間をオン・オフする最後の番目の放電
用高圧同期スイッチ素子を有し、該高圧パルス電源の高
圧側出力端子を負荷の高圧側入力端子に接続し、該最後
の番目のコンデンサーの接地側端子を高圧パルス電源の
接地側出力端子として負荷の接地側入力端子に接続し、
且つ上記各放電用高圧同期スイッチ素子のオン働作後、
少なくともそのオフ機能が回復するまでのスイッチ導通
期間の間、該高圧充電電源の各出力端子からの出力を阻
止して上記各パルス電圧成形用コンデンサーそれぞれへ
の充電を阻止すると共に、該各放電用高圧同期スイッチ
素子のスイッチ非導通期間には上記出力阻止機能を解除
して、該パルス電圧成形用コンデンサーそれぞれへの充
電を行わしめる所の充電制御機構を該高圧充電電源に具
備せしめ、これにより上記スイッチ非導通期間に該充電
制御機構の出力阻止機能を解除して上記パルス電圧成形
用コンデンサーそれぞれを振動的に該高圧充電電源の出
力電圧の最大2倍付近までの高い電圧値まで並列に高圧
充電し、ついで上記スイッチ導通期間には該充電制御機
構の該出力阻止機能を働作せしめつつ、その間に上記各
放電用高圧同期スイッチ素子を同期してオン・オフせし
めて各コンデンサーの充電電圧を各放電用高圧同期スイ
ッチを介して直列接続のうえ、その直列合成パルス高電
圧を上記高圧パルス電源の高圧側出力端子および接地側
出力端子から負荷に印加し、ついで該各放電用高圧同期
スイッチ素子のスイッチ非導通期間に再び上記出力阻止
機能を解除して、上記パルス電圧成形用コンデンサーそ
れぞれを再び振動的に高圧充電し、以後上記働作を周期
的に繰り返して該負荷に周期的にパルス高電圧を印加す
ることを特徴とする高圧パルス電源。
2. At least two pulse voltage shaping capacitors each having one end grounded via a high-impedance element composed of an inductance or a series connection body of an inductance and a resistance, and each of the capacitors has a different protection inductance. And a high-voltage charging power source for separately charging the capacitor via separate output terminals, and connecting each of the high-voltage side output terminals to the non-grounded side terminal of the capacitor, and the ground side of the high-voltage charging power source. The output terminal is connected to the ground side terminals of the high impedance elements of the capacitors via a common ground conductor, and the non-ground side terminal of the first capacitor and the ground side terminal of the second capacitor of the pulse voltage shaping capacitors And the connection point between the high impedance element and It has a first high-voltage synchronous switching device for discharge, which has a high-speed on / off function for immediately returning to a non-conducting state after conducting for a short time. By interposing between the non-grounded side terminal of the capacitor and the connection point between the grounded side terminals of the second and lower capacitors and their high impedance elements, the same function as the first high voltage synchronous switching element for discharging is provided. In addition, it has a first or lower high-voltage synchronous switching element for discharge that turns on and off between the two in synchronization with this, and connects the non-ground side terminal of the last capacitor and the high-voltage output terminal of the high-voltage pulse power supply. The first high-voltage synchronous switching device for discharging has the same function as that of the first discharging high-voltage synchronous switching device, and the last high-voltage synchronous switching device for discharging is turned on and off in synchronization with the first high-voltage synchronous switching device. Connect the high-voltage output terminal of the pulse power source to the high voltage side input terminal of the load, to connect the ground side terminal of the second capacitor after outermost to the ground-side input terminal of the load as a ground side output terminal of the high voltage pulse power supply,
And after the ON operation of the high-voltage synchronous switching element for each discharge,
At least during the switch conduction period until the off function is restored, the output from each output terminal of the high-voltage charging power supply is blocked to prevent charging to each of the pulse voltage shaping capacitors, and the discharging for each The high-voltage charging power supply is equipped with a charging control mechanism for releasing the output blocking function during the non-conduction period of the high-voltage synchronous switching device and charging each of the pulse voltage shaping capacitors. During the switch non-conduction period, the output blocking function of the charge control mechanism is released to vibrate each of the pulse voltage shaping capacitors in parallel to a high voltage value up to about twice the output voltage of the high voltage charging power source. Then, during the switch conduction period, the output blocking function of the charge control mechanism is activated, while the discharge high-voltage synchronous switches are activated. The switching elements are turned on and off synchronously, the charging voltage of each capacitor is connected in series via each discharging high-voltage synchronous switch, and the series synthesized pulse high voltage is output to the high-voltage output terminal of the high-voltage pulse power supply and ground. Applied to the load from the side output terminal, and then the output blocking function is released again during the switch non-conduction period of each of the discharge high voltage synchronous switch elements, and each of the pulse voltage shaping capacitors is charged with vibration again at high voltage, Thereafter, the above-mentioned operation is repeated cyclically to apply a pulsed high voltage to the load periodically.
【請求項3】 該高圧充電電源が、制御部からの制御信
号を制御端子に供給する毎に出力端子から交互に半サイ
クル以上の交流出力電圧を供給する外部制御型交流電源
と、該交流電源の上記出力端子に一次側を接続し且つ二
次側を両波整流器に接続のうえ該コンデンサー毎にそれ
ぞれ別々の保護用インダクタンスを介して別々の高圧側
出力端子に接続せる高圧変圧器より成り、該制御部がそ
の信号入力端子にトリガー信号を供給されることによっ
て、位相調整ののちその制御信号出力端子から上記制御
信号を該外部制御型交流電源の上記制御端子に供給する
機能を備えた外部トリガー型制御部であり、これが上記
の充電制御機構を構成し、該放電用高圧同期スイッチ素
子が固定電極と、回転電極より構成せる回転火花スイッ
チと該回転電極を回転する電動機より成り、該回転電極
の近傍に該固定電極と、該回転電極の回転位相角を検出
する回転位相角検出部を設け、該検出部の検出信号をト
リガー信号として該外部トリガー型制御部の信号入力端
子に供給し、これによって該固定電極と該回転電極の距
離が十分離隔して両者の間に火花を発生しない回転位相
角のスイッチ非導通期間期間に該外部制御型交流電源の
制御端子に制御信号を供給してその出力交流電圧を発生
のうえこれを該高圧変圧器の一次側に供給、その二次側
から該両波整流器、該別々の保護用インダクタンス、該
別々の高圧側出力端子を介して高圧直流充電電圧を該パ
ルス成形用コンデンサーとその高インピーダンス素子の
接続体それぞれの両端に供給してこれらコンデンサーを
振動的に充電し、次いで該固定電極と該回転電極の距離
が十分接近して両者の間に火花を発生する回転位相角の
スイッチ導通期間には該外部制御型交流電源の制御端子
に制御信号が供給されず、その出力電圧は発生せず、し
たがって該高圧充電電源の出力端子からのコンデンサー
充電の機能が阻止されることを特徴とする請求項1また
は2のいずれか1項に記載の高圧パルス電源。
3. An external control type AC power supply which alternately supplies an AC output voltage of half a cycle or more from an output terminal every time the high voltage charging power supply supplies a control signal from a control unit to the control terminal, and the AC power supply. A high-voltage transformer having a primary side connected to the output terminal of and a secondary side connected to a double-wave rectifier and connected to different high-voltage side output terminals via different protective inductances for each capacitor, An external device having a function of supplying the control signal from the control signal output terminal to the control terminal of the external control type AC power supply after phase adjustment by the control unit being supplied with a trigger signal to the signal input terminal. This is a trigger type control unit, which constitutes the above-mentioned charge control mechanism, and the discharge high-voltage synchronous switch element is a fixed electrode and a rotary spark switch composed of a rotary electrode and a rotary electrode. A rotating electric motor, a fixed electrode in the vicinity of the rotary electrode, and a rotary phase angle detector for detecting the rotary phase angle of the rotary electrode, and the external trigger type control using the detection signal of the detector as a trigger signal. Of the external control type AC power supply during the switch non-conduction period of the rotation phase angle where the fixed electrode and the rotating electrode are separated by a distance such that no spark is generated between them. The control signal is supplied to the control terminal to generate its output AC voltage, which is then supplied to the primary side of the high-voltage transformer, and from the secondary side thereof, the double-wave rectifier, the separate protective inductance, and the separate high-voltage. A high-voltage DC charging voltage is supplied to both ends of each of the pulse-forming capacitor and the connection body of the high-impedance element via the side output terminal to charge these capacitors in an oscillating manner, and then to the fixed electrode. The control signal is not supplied to the control terminal of the external control type AC power supply during the switch conduction period of the rotation phase angle at which the distance between the rotating electrodes is sufficiently close to generate a spark between them, and the output voltage is not generated. 3. Therefore, the high-voltage pulse power supply according to claim 1, wherein the function of charging the capacitor from the output terminal of the high-voltage charge power supply is blocked.
【請求項4】 該高圧充電電源が交流電源と、該交流電
源に一次側を接続し且つ二次側に半波整流器と該別々の
保護用インダクタンスを介して該別々の高圧側出力端子
を接続せる高圧変圧器より成り、該放電用高圧同期スイ
ッチ素子が固定電極と該交流電源の出力交流電圧の周波
数に同期して回転する回転電極より構成せる同期回転火
花スイッチおよび該回転電極を回転する電動機よりな
り、且つ該高圧変圧器の二次側電圧の極性が該整流器の
順方向をとる如き交流半周期区間には該固定電極と該回
転電極の距離が十分離隔して両者の間に火花を発生せ
ず、またこれと逆の極性となって該半波整流器がブロッ
ク状態となっている交流半周期区間には、両電極の距離
が十分接近して両者の間に火花を発生する如く、該固定
電極に対する該回転電極の回転位相角と交流電圧の間の
位相を設定する位相調整部を設けることにより、該充電
制御機構を実現せることを特徴とする請求項1または2
のいずれか1項に記載の高圧パルス電源。
4. The high-voltage charging power source is an alternating-current power source, the primary side is connected to the alternating-current power source, and the secondary side is connected to the separate high-voltage side output terminal via a half-wave rectifier and the separate protective inductance. And a synchronous rotary spark switch having a fixed electrode and a rotary electrode that rotates in synchronization with the frequency of the output AC voltage of the AC power supply, and a motor for rotating the rotary electrode. And in the AC half-cycle section such that the polarity of the secondary voltage of the high-voltage transformer is in the forward direction of the rectifier, the distance between the fixed electrode and the rotating electrode is sufficiently separated and a spark is generated between them. In the AC half-cycle section in which the half-wave rectifier is in the blocking state with no polarity and the opposite polarity, the distance between both electrodes is sufficiently close to generate a spark between them. The rotating electrode with respect to the fixed electrode 3. The charging control mechanism can be realized by providing a phase adjusting unit that sets a phase between the rotation phase angle of the battery and the AC voltage.
The high-voltage pulse power supply according to any one of 1.
【請求項5】 該高圧充電電源が交流電源と、該交流電
源の出力側に直並列接続の外部制御型スイッチ素子対を
介して一次側を接続し且つ二次側に両波整流器および該
別々の保護用インダクタンスを介して該別々の高圧側出
力端子を接続せる高圧変圧器より成り、該放電用高圧同
期スイッチが固定電極と該交流電源の周波数に同期して
回転する回転電極より構成せる同期回転火花スイッチお
よび該回転電極を回転する電動機よりなり、且つ該直並
列接続の外部制御型スイッチ素子対のそれぞれの制御端
子に導通用制御信号を供給する制御部を有し、該制御部
は該交流電源の出力交流電圧の周波数と同期してその出
力電圧の少なくとも半サイクルをへだてて少なくとも半
サイクル以上の期間内に該直並列接続の外部制御型スイ
ッチ素子を交互に導通せしめる制御信号をこれに交互に
供給し、これによって該固定電極と該回転電極の距離が
十分離隔して両者の間に火花を発生しないスイッチ非導
通期間には直並列接続の外部制御型スイッチ素子の片方
に制御信号を供給して、該高圧変圧器の入力側に半サイ
クルの交流電圧を供給、その出力側両波整流器に発生す
る充電用直流高電圧を該別々の保護用インダクタンスな
らびに該別々の高圧側出力端子を介して該パルス成形用
コンデンサーとその高インピーダンス素子の直列接続体
それぞれの両端に加えてこれらを充電し、また固定電極
と回転電極の距離が十分接近して両者の間に火花を発生
するスイッチ導通期間には直並列接続の外部制御型スイ
ッチ素子に制御信号を供給せず、該高圧変圧器の該別々
の高圧側出力端子には上記充電用直流高電圧が発生しな
い様に、該固定電極に対する該回転電極の回転位相角と
交流電圧の間の位相を設定する位相調整部を設けること
により、該充電制御機構を実現せることを特徴とする請
求項1または2のいずれか1項に記載の高圧パルス電
源。
5. The high-voltage charging power source is an AC power source, the output side of the AC power source is connected to the primary side via a series-parallel connected external control type switching element pair, and the secondary side is a dual-wave rectifier and the separate side. Of a high voltage transformer that connects the separate high voltage side output terminals via a protective inductance of the high voltage synchronous switch, and the high voltage synchronous switch for discharging is composed of a fixed electrode and a rotating electrode that rotates in synchronization with the frequency of the AC power supply. A rotary spark switch and an electric motor that rotates the rotary electrode, and has a control unit that supplies a conduction control signal to each control terminal of the series-parallel connected external control type switch element pair. In synchronization with the frequency of the output AC voltage of the AC power supply, at least half cycle of the output voltage is output, and the externally controlled switching elements connected in series and parallel are alternately guided within a period of at least half cycle or more. An external control type switch connected in series and parallel during the non-conduction period, in which a control signal for passing through is alternately supplied to the fixed electrode and the rotary electrode so that the distance between them is not enough to generate a spark between them. A control signal is supplied to one of the elements to supply a half-cycle AC voltage to the input side of the high-voltage transformer, and a DC high voltage for charging generated in a double-wave rectifier on the output side is supplied to the separate protective inductance and The pulse-forming capacitor and its high-impedance element are connected to both ends of each of them in series via separate high-voltage output terminals to charge them, and the fixed electrode and the rotating electrode are sufficiently close to each other so that they are charged. No control signal is supplied to the external control type switching elements connected in series and parallel during the switch conduction period for generating a spark, and the charging DC voltage is applied to the separate high voltage side output terminals of the high voltage transformer. The charging control mechanism can be realized by providing a phase adjusting unit that sets a phase between a rotation phase angle of the rotating electrode with respect to the fixed electrode and an AC voltage so that a voltage is not generated. The high-voltage pulse power supply according to any one of 1 or 2.
【請求項6】 該高圧充電電源が1次側を交流電源に接
続し2次側を整流器および該放電用高圧同期スイッチに
同期して回転する固定電極と回転電極で構成された回転
火花スイッチと該回転電極を回転する電動機よりなる充
電用高圧同期スイッチ、ならびにそれから該別々の保護
用インダクタンスを介して該別々の高圧側出力端子に接
続してなる高圧直流電源であり、該別々の高圧側出力端
子を上記パルス電圧成形用コンデンサーそれぞれの高圧
側端子に接続し、且つ上記充電用高圧同期スイッチの回
転電極の回転位相と該放電用高圧同期スイッチの回転電
極の回転位相を調整する位相調整部を設けて、上記各放
電用高圧同期スイッチ素子のオン働作後、少なくともそ
のオフ機能が回復するまでのスイッチ導通期間の間、該
充電用高圧同期スイッチの固定電極と回転電極の離隔距
離を両者の間に火花を発生せざるごとき十分大きな値と
なすことにより該高圧充電電源の該別々の高圧側出力端
子からの出力を阻止して上記パルス電圧成形用コンデン
サーそれぞれへの充電を阻止すると共に、該各放電用高
圧同期スイッチ素子のスイッチ非導通期間には上記充電
用高圧同期スイッチの固定電極と回転電極の離隔距離を
両者の間に火花を発生するごとき小さなきな値となすこ
とにより、該別々の高圧側出力端子から該パルス電圧成
形用コンデンサーそれぞれへの充電を行わしめる様にし
たことを特徴とする請求項1または2のいずれか1項に
記載の高圧パルス電源。
6. A rotary spark switch composed of a fixed electrode and a rotary electrode, wherein the high-voltage charging power source has a primary side connected to an AC power source and a secondary side rotating in synchronization with a rectifier and the discharging high-voltage synchronous switch. A high-voltage synchronous switch for charging composed of an electric motor that rotates the rotary electrode, and a high-voltage DC power source connected to the separate high-voltage side output terminals through the separate protective inductances, and the separate high-voltage side outputs. A terminal is connected to the high voltage side terminal of each of the pulse voltage shaping capacitors, and a phase adjusting unit for adjusting the rotation phase of the rotating electrode of the charging high voltage synchronous switch and the rotating phase of the rotating electrode of the discharging high voltage synchronous switch. The high-voltage synchronous switching device for charging is provided at least during the switch conduction period after the on-operation of each high-voltage synchronous switching device for discharging until the off function is restored. The fixed electrode and the rotary electrode of the switch are set to a sufficiently large value so that a spark is not generated between the fixed electrode and the rotary electrode, so that the output from the separate high voltage side output terminals of the high voltage charging power source is blocked and the pulse is generated. In addition to blocking charging to each of the voltage forming capacitors, during the switch non-conduction period of each discharging high voltage synchronous switch element, the fixed electrode and the rotating electrode of the above charging high voltage synchronous switch are separated from each other by sparks. 3. The pulse voltage shaping capacitors are respectively charged from the separate high-voltage side output terminals by setting a small value as generated. The high-voltage pulse power supply described in the item.
【請求項7】 該高圧充電電源が高圧直流電源であり、
該放電用高圧同期スイッチ素が固定電極と回転電極より
成る回転火花スイッチおよび該回転電極回転用電動機で
構成され、該充電制御機構が該高圧電源の高圧側出力端
子と該電圧成形用コンデンサーの高圧側端子との間に挿
入せる限流インピーダンスであることを特徴とする請求
項1または2のいずれか1項に記載の高圧パルス電源。
7. The high-voltage charging power source is a high-voltage DC power source,
The discharge high-voltage synchronous switch element is composed of a rotary spark switch composed of a fixed electrode and a rotary electrode and a rotary electrode rotating electric motor, and the charge control mechanism has a high-voltage side output terminal of the high-voltage power supply and a high voltage of the voltage forming capacitor. The high-voltage pulse power supply according to claim 1, wherein the high-voltage pulse power supply has a current limiting impedance to be inserted between the side terminal and the side terminal.
【請求項8】 該放電用第1高圧同期スイッチ素子、第
2高圧同期スイッチ素子、−−−および該充電用高圧火
花スイッチを構成する各回転火花スイッチがそれぞれ独
自の独立した固定電極を備え、且つ回転電極を共通とす
る回転火花スイッチであることを特徴とする請求項3か
ら7までのいずれか1項に記載の高圧パルス電源。
8. The first high-voltage synchronous switching device for discharge, the second high-voltage synchronous switching device, --- and each rotary spark switch constituting the high-voltage spark switch for charging are provided with their own independent fixed electrodes. The high-voltage pulse power source according to any one of claims 3 to 7, which is a rotary spark switch having a common rotary electrode.
【請求項9】 該放電用第1高圧同期スイッチ素子、第
2高圧同期スイッチ素子、−−−および該充電用高圧火
花スイッチを構成する各回転火花スイッチがそれぞれの
独自の固定電極と回転電極を備えた回転火花スイッチで
あるが、それぞれの回転電極の回転軸またはそれぞれの
回転電極を回転させる電動機のうちの少なくとも一方を
共通とする回転火花スイッチであることを特徴とする請
求項3から8までのいずれか1項に記載の高圧パルス電
源。
9. The first high-voltage synchronous switching device for discharging, the second high-voltage synchronous switching device, --- and each rotary spark switch constituting the high-voltage spark switch for charging has its own fixed electrode and rotary electrode. A rotary spark switch provided, wherein the rotary spark switch has at least one of a rotary shaft of each rotary electrode or an electric motor for rotating each rotary electrode in common. The high-voltage pulse power supply according to any one of 1.
【請求項10】 該回転電極が回転軸に支持された相隣
る相互の交角が等しい複数個の長さの等しい導体支持ア
ームの先端に固定せる電極片よりなることを特徴とする
請求項3から9までのいずれか1項に記載の高圧パルス
電源。
10. The rotating electrode is composed of an electrode piece fixed to the tip of a plurality of conductor supporting arms having the same length and having mutually equal angles of intersection supported by a rotating shaft. The high-voltage pulse power supply according to any one of 1 to 9.
【請求項11】 該回転電極が回転軸に支持された絶縁
物円板の周縁部付近の同一円上に、相隣る相互に等しい
間隔をもって該円板を貫通しかつ該円板の表裏両面より
突出する如く固定配設せる複数個のロッド状電極片より
なることを特徴とする請求項3から9までのいずれか1
項に記載の高圧パルス電源。
11. The front surface and the back surface of the disk, wherein the rotary electrode penetrates the disk on the same circle near the peripheral edge of the insulator disk supported by the rotary shaft at equal intervals to each other. 10. A plurality of rod-shaped electrode pieces fixedly arranged so as to project more, comprising a plurality of rod-shaped electrode pieces.
The high-voltage pulse power supply described in the item.
【請求項12】 該回転電極の回転軸が導体で構成さ
れ、その両端軸受けが絶縁碍子に支持されていることを
特徴とする請求項3から11までのいずれか1項に記載
の高圧パルス電源。
12. The high-voltage pulse power supply according to claim 3, wherein the rotary shaft of the rotary electrode is made of a conductor, and both end bearings are supported by an insulator. .
【請求項13】 該回転電極の回転軸が絶縁物で構成さ
れていることを特徴とする請求項3から11までのいず
れか1項に記載の高圧パルス電源。
13. The high-voltage pulse power source according to claim 3, wherein the rotary shaft of the rotary electrode is made of an insulating material.
【請求項14】 該回転電極の回転軸が絶縁物で構成さ
れ、その両端軸受けが絶縁硝子に支持されていることを
特徴とする請求項13に記載の高圧パルス電源。
14. The high-voltage pulse power supply according to claim 13, wherein the rotary shaft of the rotary electrode is made of an insulator, and both end bearings are supported by insulating glass.
【請求項15】 該回転電極が2枚の回転導体円板と、
その周縁部付近の円上で相隣る相互に等間隔にこれに支
持固定されて該回転導体板の回転軸と平行にケージ型に
相互に離隔配設された複数個の導体ロッドで構成され、
その回転導体円板の両端軸受けが絶縁碍子に支持されて
いることを特徴とする請求項3から9までと12から1
4までのいずれか1項に記載の高圧パルス電源。
15. The rotating electrode comprises two rotating conductor discs,
It is composed of a plurality of conductor rods which are adjacent to each other on the circle near the peripheral edge portion thereof and are supported and fixed to each other at equal intervals and are arranged in a cage shape in parallel with the rotation axis of the rotating conductor plate so as to be spaced apart from each other. ,
10. Both ends bearings of the rotating conductor disk are supported by an insulator, and the rotating conductor disk is supported by the insulator.
The high-voltage pulse power supply according to any one of 4 to 4.
【請求項16】 請求項1より15までのいずれか1項
に記載のパルス高圧電源の高圧側出力端子を、含塵ガス
入り口と清浄ガス出口とダストホッパーを備えたケーシ
ング中に収納配設された、絶縁せるコロナ放電極とこれ
に対向してガス通路を挟んで設けられた接地の集塵電極
よりなる集塵フィールドをガス流方向に少なくとも1フ
ィールド設けて成る電気集塵装置の、少なくとも1フィ
ールドの該コロナ放電極に接続し、該高圧パルス電源の
接地側出力端子をこのフィールドの集塵電極に接続し、
かつ必要に応じて集塵作用ないしパルス・コロナによる
プラズマ化学作用を促進するための気体または粉体状の
添加物質を適宜該含塵ガス入り口ないしその上流で該ガ
ス中に注入することを特徴とする式電気集塵装置。
16. The high-voltage side output terminal of the pulse high-voltage power supply according to claim 1 is housed in a casing equipped with a dust-containing gas inlet, a clean gas outlet and a dust hopper. In addition, at least one of the electrostatic precipitators comprising a corona discharge electrode to be insulated and at least one field in the gas flow direction, the dust collection field including a grounded dust collection electrode provided opposite to the corona discharge electrode with a gas passage interposed therebetween. Connected to the corona discharge electrode of the field, the ground side output terminal of the high-voltage pulse power supply is connected to the dust collection electrode of this field,
And, if necessary, a gas or a powdery additive substance for facilitating the dust collecting action or the plasma chemical action by the pulse corona is appropriately injected into the gas at the dust-containing gas inlet or the upstream thereof. Type electric dust collector.
【請求項17】 該集塵フィールドの少なくとも1フィ
ールドの、少なくとも集塵電極を常時または間欠的に水
洗する水洗機構を設けて湿式フィールドとしたことを特
徴とする請求項16に記載の電気集塵装置。
17. The electrostatic precipitator according to claim 16, wherein a water rinsing mechanism for rinsing at least one of the dust collecting electrodes of at least one of the dust collecting fields is constantly or intermittently provided as a wet field. apparatus.
【請求項18】 請求項1より15までのいずれか1項
に記載のパルス高圧電源の高圧側出力端子を、汚染ガス
成分を含むガスの入り口と清浄ガスの出口を備えたケー
シング中に収納配設された、絶縁せるコロナ放電極とこ
れに対向してガス通路を挟んで設けられた接地の対向電
極よりなるコロナ・リアクターの該コロナ放電極に接続
し、該高圧パルス電源の接地側出力端子を該接地対向電
極に接続して、該コロナ放電極から該接地対向電極に向
かってガス流を挟んで強力なパルス・コロナ放電を発生
せしめ、そのプラズマ化学作用で上記汚染ガス成分を分
解処理するとともに、必要に応じて該プラズマ化学分析
処理作用を助長・補助するための気体または粉体状の添
加物質を適宜該ガス入り口ないしその上流で該ガス中に
注入することを特徴とする汚染ガス処理装置。
18. The high-voltage side output terminal of the pulse high-voltage power supply according to any one of claims 1 to 15 is housed in a casing having an inlet for gas containing pollutant gas components and an outlet for clean gas. A ground side output terminal of the high-voltage pulse power source, which is connected to the corona discharge electrode of the corona reactor, which is composed of an insulated corona discharge electrode and a grounded counter electrode provided opposite to the insulated corona discharge electrode. Is connected to the grounded counter electrode to generate a strong pulsed corona discharge from the corona discharge electrode toward the grounded counter electrode by interposing a gas flow, and the plasma chemical action decomposes the polluted gas component. At the same time, if necessary, a gas or a powdery additive substance for promoting / assisting the plasma chemical analysis treatment action is appropriately injected into the gas at the gas inlet or upstream thereof. And pollution gas treatment equipment.
【請求項19】 コロナ放電極と該接地対向電極のう
ち、少なくとも該接地対向電極を常時または間欠的に水
洗する水洗機構を設けたことを特徴とする請求項18に
記載の汚染ガス処理装置。
19. The polluted gas treatment device according to claim 18, further comprising a water washing mechanism for washing at least the grounding counter electrode among the corona discharge electrode and the grounding counter electrode at all times or intermittently.
【請求項20】 該コロナ放電極が細長い支持導体の側
縁上にそって鋭い突起部を有する刺状ないし帯状導体を
配設してなることを特徴とする請求項16から19まで
のいずれか1項に記載の装置。
20. The corona discharge electrode comprises a strip-shaped or strip-shaped conductor having a sharp protrusion along a side edge of an elongated support conductor. The apparatus according to item 1.
【請求項21】 該コロナ放電極が細長い支持導体の上
にこれと直角に等間隔に配設固定せる周縁が鋭利な少な
くとも1枚の円形または多角形の導体板をもって構成し
たことを特徴とする請求項16または19までののいず
れか1項に記載の装置。
21. The corona discharge electrode is constituted by at least one circular or polygonal conductor plate having a sharp peripheral edge which is arranged and fixed at a right angle on the elongated support conductor at a right angle thereto. Device according to any one of claims 16 or 19.
【請求項22】 請求項1より15までのいずれか1
項記載のパルス高圧電源の高圧側出力端子を、絶縁せる
コロナ放電極とこれに対向して空間および被処理物体を
介して配設せる接地の対向電極よりなる表面処理用コロ
ナ電極系の該コロナ放電極に接続し、該高圧パルス電源
の接地側端子を、該接地対向電極に接続して該コロナ放
電極から該接地対向電極に向かって空間と該被処理物体
を介して強力なパルス・コロナ放電を発生せしめつつ、
両電極間に該被処理物体を静置または通過させることに
よって上記パルス・コロナ放電のプラズマ化学作用で上
記被処理物体の表面を化学的に処理するとともに、必要
に応じて適宜両電極間の空間に上記表面処理作用を助長
する適当な添加ガスまたは添加剤を供給することを特徴
とする物体表面処理装置。
22. Any one of claims 1 to 15
The corona of the corona electrode system for surface treatment, which comprises a corona discharge electrode for insulating the high-voltage side output terminal of the pulsed high-voltage power supply according to the paragraph, and a grounded counter electrode arranged opposite to this via a space and an object to be treated. A strong pulse corona connected to a discharge electrode, and a ground side terminal of the high-voltage pulse power supply is connected to the grounded counter electrode to form a space from the corona discharge electrode toward the grounded counter electrode and the object to be processed. While causing a discharge,
The surface of the object to be treated is chemically treated by the plasma chemistry of the pulsed corona discharge by leaving or passing the object to be treated between the electrodes, and a space between the electrodes is appropriately set as necessary. An object surface treatment apparatus, characterized in that a suitable additive gas or additive that promotes the above surface treatment action is supplied to.
【請求項23】 請求項1より15までのいずれか1
項記載のパルス高圧電源の高圧側出力端子を、原料ガス
入り口、ガス出口および生成物質出口を有するケーシン
グ中に絶縁配設せるコロナ放電極とこれに対向して原料
ガスを介して配設せる接地の対向電極よりなるパルス・
プラズマ気相合成用コロナ電極系の該コロナ放電極に接
続し、該高圧パルス電源の接地側端子を、該接地対向電
極に接続して該コロナ放電極から該接地対向電極に向か
って該原料ガスを介して強力なパルス・コロナ放電を発
生せしめ、そのプラズマ化学作用で上記原料ガスからセ
ラミック超微粒子等の特殊物質を気相合成することを特
徴とする気相合成装置。
23. Any one of claims 1 to 15
The high-voltage side output terminal of the pulse high-voltage power supply according to the paragraph (3) is a corona discharge electrode that is disposed in an insulating manner in a casing having a source gas inlet, a gas outlet, and a product outlet, and a ground that is disposed opposite to this via a source gas. Pulse consisting of the opposite electrodes of
The source gas is connected to the corona discharge electrode of the corona electrode system for plasma vapor phase synthesis, the ground side terminal of the high-voltage pulse power source is connected to the ground counter electrode, and the source gas is directed from the corona discharge electrode toward the ground counter electrode. A vapor phase synthesizer characterized in that a strong pulse corona discharge is generated via a gas and a special substance such as ultrafine ceramic particles is vapor-phase synthesized from the above-mentioned raw material gas by the plasma chemical action.
【請求項24】 該コロナ放電極と、該接地集塵電極な
いし接地対向電極間の距離を250mm以上としたこと
を特徴とする請求項16から23までのいずれか1項に
記載の装置。
24. The apparatus according to claim 16, wherein a distance between the corona discharge electrode and the ground dust collecting electrode or the ground counter electrode is 250 mm or more.
【請求項25】 該高圧パルス電源の高圧側出力端子と
接地側出力端子から供給するパルス高電圧の立ち上がり
時間を10μs以下とし、そのパルスピーク電圧を10
0kV以上とし、かつそのパルス繰り返し周波数を50
pps以上とすることにより、強力なストリーマー・コ
ロナを発生させて両電極間を進展させ、その間のガス空
間全体に一様なプラズマを発生させることを特徴とする
請求項16から24までのいずれか1項に記載の装置。
25. The rising time of the pulse high voltage supplied from the high voltage side output terminal and the ground side output terminal of the high voltage pulse power supply is set to 10 μs or less, and the pulse peak voltage thereof is set to 10 μs.
0 kV or more, and the pulse repetition frequency is 50
25. By setting the pps or more, a strong streamer corona is generated to propagate between both electrodes, and a uniform plasma is generated in the entire gas space between them, 25. The apparatus according to item 1.
【請求項26】 該高圧パルス電源の高圧側出力端子か
ら供給するパルス高電圧の極性をその接地側出力端子に
対して正極性としたことを特徴とする請求項16から2
5までのいずれか1項に記載の装置。
26. The high voltage pulse power supply of the high voltage side output terminal is provided with a high voltage side pulse having a positive polarity with respect to the ground side output terminal.
The apparatus according to any one of 5 to 5.
JP9907494A 1994-03-31 1994-03-31 High voltage pulse power source and pulse corona application device using same Pending JPH08164320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9907494A JPH08164320A (en) 1994-03-31 1994-03-31 High voltage pulse power source and pulse corona application device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9907494A JPH08164320A (en) 1994-03-31 1994-03-31 High voltage pulse power source and pulse corona application device using same

Publications (1)

Publication Number Publication Date
JPH08164320A true JPH08164320A (en) 1996-06-25

Family

ID=14237780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9907494A Pending JPH08164320A (en) 1994-03-31 1994-03-31 High voltage pulse power source and pulse corona application device using same

Country Status (1)

Country Link
JP (1) JPH08164320A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525321A (en) * 2004-02-27 2007-09-06 アン,ガン−ホ Ultrafine particle manufacturing apparatus and method using corona discharge
US7307362B1 (en) * 2002-02-06 2007-12-11 Joseph Yampolsky Solid-state microsecond capacitance charger for high voltage and pulsed power
JP2007326051A (en) * 2006-06-08 2007-12-20 Toshiba Corp Discharge type gas treatment apparatus and gas treatment method therefor
JP2011512248A (en) * 2008-02-19 2011-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrostatic filtering device with optimal emission area
CN106269259A (en) * 2015-06-29 2017-01-04 通用电器技术有限公司 For calculating method and the electrostatic precipitator of the pulse firing pattern of the transformator of electrostatic precipitator
CN113460998A (en) * 2021-06-24 2021-10-01 中国矿业大学 High-temperature thermal shock material continuous production equipment and method based on capacitance discharge
CN115210188A (en) * 2020-03-17 2022-10-18 日海有限公司 Apparatus for treating algae in a body of water of interest using high voltage micro-pulsed electrical discharge
CN117596762A (en) * 2024-01-18 2024-02-23 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307362B1 (en) * 2002-02-06 2007-12-11 Joseph Yampolsky Solid-state microsecond capacitance charger for high voltage and pulsed power
JP2007525321A (en) * 2004-02-27 2007-09-06 アン,ガン−ホ Ultrafine particle manufacturing apparatus and method using corona discharge
JP2007326051A (en) * 2006-06-08 2007-12-20 Toshiba Corp Discharge type gas treatment apparatus and gas treatment method therefor
JP2011512248A (en) * 2008-02-19 2011-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrostatic filtering device with optimal emission area
CN106269259A (en) * 2015-06-29 2017-01-04 通用电器技术有限公司 For calculating method and the electrostatic precipitator of the pulse firing pattern of the transformator of electrostatic precipitator
CN106269259B (en) * 2015-06-29 2020-08-11 通用电器技术有限公司 Method for calculating the pulse ignition pattern of a transformer of an electrostatic precipitator and electrostatic precipitator
CN115210188A (en) * 2020-03-17 2022-10-18 日海有限公司 Apparatus for treating algae in a body of water of interest using high voltage micro-pulsed electrical discharge
CN113460998A (en) * 2021-06-24 2021-10-01 中国矿业大学 High-temperature thermal shock material continuous production equipment and method based on capacitance discharge
CN113460998B (en) * 2021-06-24 2022-10-25 中国矿业大学 High-temperature thermal shock material continuous production equipment and method based on capacitance discharge
CN117596762A (en) * 2024-01-18 2024-02-23 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma
CN117596762B (en) * 2024-01-18 2024-04-05 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma

Similar Documents

Publication Publication Date Title
US4138233A (en) Pulse-charging type electric dust collecting apparatus
US6063168A (en) Electrostatic precipitator
US6362604B1 (en) Electrostatic precipitator slow pulse generating circuit
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
US5601633A (en) High voltage electrical method for removing ecologically noxious substances from gases
KR920700774A (en) Reactive Bad Plasma Air Purifier
JPS5861843A (en) High voltage generator for ultrashort pulse
US2440455A (en) Charging suspended particles
JPH08164320A (en) High voltage pulse power source and pulse corona application device using same
US3969225A (en) Differential separation of particulates by combined electro-static and radio frequency means
US3421291A (en) Electrostatic dust separator
US2049561A (en) Method and apparatus for electrical treatment of gases or liquids
CN110292999A (en) corona discharge device and air purifier
US2547573A (en) Rapper for electrical precipitation apparatus
KR100227128B1 (en) Plasma ionizing gas generation apparatus using streamer corona discharge
RU2008099C1 (en) Gas-cleaning electrostatic precipitator
JP3092192B2 (en) Freon gas treatment equipment
SU1212584A1 (en) Method of filtering dust-ridden gases
JPS6033543B2 (en) Pulse charging type two-stage electrostatic precipitator
JP2003020206A (en) Apparatus for generating ozone
SU1263348A1 (en) Versions of apparatus for controlling power supply unit of electric precipitator
JPH07265655A (en) Plasma-process waste gas purifying device
RU1838247C (en) Device to clean up waste water
JPH0221298B2 (en)
SU673302A1 (en) Apparatus for electric cleaning of gases from fine particles