JPH08162893A - Piezoelectric component and manufacture of piezoelectric component - Google Patents

Piezoelectric component and manufacture of piezoelectric component

Info

Publication number
JPH08162893A
JPH08162893A JP30178794A JP30178794A JPH08162893A JP H08162893 A JPH08162893 A JP H08162893A JP 30178794 A JP30178794 A JP 30178794A JP 30178794 A JP30178794 A JP 30178794A JP H08162893 A JPH08162893 A JP H08162893A
Authority
JP
Japan
Prior art keywords
plate
substrate
stress buffer
piezoelectric
piezoelectric plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30178794A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Ogura
哲義 小掠
Masaru Ikeda
勝 池田
Yoshihiro Tomita
佳宏 冨田
Kazuo Eda
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30178794A priority Critical patent/JPH08162893A/en
Publication of JPH08162893A publication Critical patent/JPH08162893A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a structure of a piezoelectric component with small size and high stability and its manufacture by applying direct bonding to a stress buffer plate having a Young's modulus smaller than that of a vibration piezoelectric plate or a base which has a smaller thermal expansion rate, the vibration piezoelectric plate and a base so as to fix them. CONSTITUTION: A stress buffer plate 3 has a Young's modulus smaller than that of a vibration piezoelectric plate 1 or a base 2 which has a smaller thermal expansion rate. Furthermore, part of the vibration piezoelectric plate 1 in the vicinity of its surrounding is fixed to the stress buffer plate 3 by direct bonding and part of the stress buffer plate 3 is fixed to the base 2 by direct bonding. Since the vibration piezoelectric plate 1 uses no adhesives but is fixed by direct bonding in this way, a stress due to contraction/expansion of the adhesives is not exerted to the piezoelectric plate 1 and no gas is generated from the adhesives. Furthermore, it is not required to take a difference between the thermal expansion rate of the adhesives and the piezoelectric plate 1 and heat resistance of the adhesives into account, then heat processing at a high temperature is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型で高安定な圧電部
品の構造及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-sized and highly stable piezoelectric component structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】各種圧電部品は、その高い安定性や電気
回路では実現できない高機能・特性により、各種フィル
タや振動子等に利用されている。特に、情報機器分野に
おいては重要なデバイスとして用いられ、近年衛星通信
や携帯電話等の発達にともない、素子の小型化及び高性
能化が一つの大きな目標とされている。
2. Description of the Related Art Various piezoelectric components are used in various filters, vibrators, etc. because of their high stability and high functions and characteristics that cannot be realized by electric circuits. In particular, it is used as an important device in the field of information equipment, and with the recent development of satellite communication, mobile phones, etc., miniaturization and high performance of elements have been one of the major goals.

【0003】例えば、水晶振動子の場合、厳しい周波数
安定性が要求される。水晶振動子の周波数は、振動用水
晶板に応力が加わることにより変化するので、振動用水
晶板に加わる応力を軽減する工夫が様々なされている。
従来の水晶振動子として、ATカット水晶板を金属製の
支持架により支持したものが知られている。図4に、こ
れら従来の水晶振動子の一例を示す。図4において、1
はATカット水晶板、4は水晶板1の両面に蒸着された
電極、11は水晶板1を保持する保持部、12は保持部
11と水晶板1を接着するための導電性接着剤である。
電極4は、導電性接着剤12を介してそれぞれ別の保持
部11に電気的に接続されている。
For example, in the case of a crystal oscillator, strict frequency stability is required. Since the frequency of the crystal unit changes when stress is applied to the vibrating crystal plate, various measures have been taken to reduce the stress applied to the vibrating crystal plate.
As a conventional crystal unit, a unit in which an AT-cut crystal plate is supported by a metal support frame is known. FIG. 4 shows an example of these conventional crystal oscillators. In FIG. 4, 1
Is an AT-cut quartz plate, 4 is an electrode deposited on both sides of the quartz plate 1, 11 is a holding portion for holding the quartz plate 1, and 12 is a conductive adhesive for bonding the holding portion 11 and the quartz plate 1. .
The electrodes 4 are electrically connected to different holding portions 11 via a conductive adhesive 12.

【0004】[0004]

【発明が解決しようとする課題】従来の水晶振動子にお
いては、水晶板1を保持するために、通常、金属の保持
部11と導電性接着剤12を用いる。しかしながら、金
属の保持部11を用いた場合、熱膨張率が水晶の熱膨張
率と異なるため、水晶振動子の温度が変化すると、保持
部11と水晶板1との間に熱応力が発生する。水晶板1
の発振周波数は水晶中の応力に大きく依存するために、
このような保持方法では温度変化に対し不安定な水晶振
動子となるという問題点を有していた。この問題を解決
するため、水晶板1における振動部分に応力がかからな
いように、電極部分4と保持部分11との間を大きくあ
ける構造がとられている。しかし、導電性接着剤12を
用いるために、接着時の接着剤の伸縮による応力が水晶
板1にかかる。また、接着剤12と水晶板1との熱膨張
率の差により熱応力が発生する。また、接着強度が十分
でなく大きな接着面積が必要である。導電性接着剤12
の耐熱性に問題があるため、半田付けにおいて低温での
処理しかできない。導電性接着剤12の硬化に伴うガス
の放出、機械的振動に対して十分安定でないこと、さら
には接着剤の劣化の問題等が存在する。そのため、水晶
振動子の安定性は悪化するという問題点を有していた。
導電性接着剤でなく他の種々の接着剤を用いる方法もあ
るが、接着剤を用いる限り基本的にこの問題は解決され
ない。
In the conventional crystal unit, a metal holder 11 and a conductive adhesive 12 are usually used to hold the crystal plate 1. However, when the metal holding unit 11 is used, the coefficient of thermal expansion is different from the coefficient of thermal expansion of the crystal, so that when the temperature of the crystal resonator changes, thermal stress is generated between the holding unit 11 and the crystal plate 1. . Crystal plate 1
Since the oscillation frequency of depends largely on the stress in the crystal,
Such a holding method has a problem that the crystal resonator becomes unstable with respect to temperature change. In order to solve this problem, a structure is adopted in which a large gap is provided between the electrode portion 4 and the holding portion 11 so that the vibrating portion of the crystal plate 1 is not stressed. However, since the conductive adhesive 12 is used, stress due to expansion and contraction of the adhesive at the time of bonding is applied to the crystal plate 1. Further, thermal stress is generated due to the difference in thermal expansion coefficient between the adhesive 12 and the crystal plate 1. Further, the adhesive strength is not sufficient and a large adhesive area is required. Conductive adhesive 12
Since there is a problem in the heat resistance of, the soldering can be performed only at a low temperature. There are problems such as release of gas accompanying curing of the conductive adhesive 12, insufficient stability against mechanical vibration, and deterioration of the adhesive. Therefore, there is a problem that the stability of the crystal unit deteriorates.
There is a method of using various other adhesives instead of the conductive adhesive, but this problem is basically not solved as long as the adhesive is used.

【0005】また、図5に示す水晶振動子の製造工程の
一例においては、水晶板の切断を先に行ない、この後、
個別に切り離された水晶板の研磨を行なう。そのため、
小型の水晶振動子を作成するために水晶板を小さく切断
すると、研磨工程において非常に小さな水晶板を扱わな
ければならない。この様な微小な水晶板を研磨するには
高度な研磨装置を使用しなければならず、さらに小さな
水晶振動子を精度良く作成するためにこの製法を用いる
ことは困難であるという問題点を有していた。
Further, in an example of the manufacturing process of the crystal unit shown in FIG. 5, the crystal plate is cut first, and thereafter,
Polishing the individually separated quartz plates. for that reason,
If the quartz plate is cut into small pieces to make a small quartz oscillator, a very small quartz plate must be handled in the polishing process. In order to polish such a minute quartz plate, it is necessary to use an advanced polishing device, and it is difficult to use this manufacturing method to accurately manufacture a smaller quartz oscillator. Was.

【0006】次に、切断された振動部に電極を蒸着し、
保持部11と結合する際、切断された水晶板を個別に取
り扱う必要性があり、また導電性接着剤を塗付するため
に、ある程度以上の大きさが必要とされる。その後、周
波数調整を行ない金属パッケージに気密封止されるが、
上記切断及び研磨に関する理由、導電性接着剤に関する
理由等により、通常このような構造の水晶振動子では、
水晶板は幅2ミリ以上、長さ5ミリ以上の大きさがない
と、高安定な水晶振動子を作成することが困難であっ
た。また、水晶板そのものが大きいと、気密封止のため
別途容器に実装しなければならず、水晶振動子全体では
かなりの大きさが必要とされる。
Next, an electrode is vapor-deposited on the cut vibration part,
It is necessary to handle the cut quartz plates individually when connecting with the holding portion 11, and a certain size or more is required to apply the conductive adhesive. After that, the frequency is adjusted and it is hermetically sealed in a metal package.
Due to the reasons for cutting and polishing, the reason for conductive adhesive, etc.
Unless the crystal plate has a width of 2 mm or more and a length of 5 mm or more, it is difficult to produce a highly stable crystal resonator. In addition, if the crystal plate itself is large, it must be mounted in a separate container for hermetic sealing, and a considerable size is required for the entire crystal resonator.

【0007】一方、保持部の熱応力の問題を解決するた
めに、例えば特開平02−261210号公報に、振動
用の水晶板を熱膨張のほぼ同じ水晶板で保持する構造が
示されている。図6にこの例を示す。図6において、1
3は振動用水晶片、14は振動用水晶片13の両面に蒸
着された励磁電極、15は振動用水晶片13を保持する
ための保持用水晶片、16は基台、17は振動用水晶片
13と保持用水晶片15を固着する導電性接着剤、18
は保持用水晶片15と基台16を接着する接着剤であ
る。
On the other hand, in order to solve the problem of the thermal stress of the holding portion, for example, Japanese Patent Laid-Open No. 02-261210 discloses a structure in which a vibrating crystal plate is held by a crystal plate having substantially the same thermal expansion. . This example is shown in FIG. In FIG. 6, 1
3 is a vibrating crystal piece, 14 is an exciting electrode deposited on both sides of the vibrating crystal piece 13, 15 is a holding crystal piece for holding the vibrating crystal piece 13, 16 is a base, 17 is a vibrating crystal piece 13 and holding water. Conductive adhesive for fixing crystal piece 15, 18
Is an adhesive for bonding the holding crystal piece 15 and the base 16.

【0008】振動用水晶片13と保持用水晶片15の固
着方向(X−X方向)と、保持用水晶片15と基台16
の固着方向(Z−Z)とを直交させる。このように構成
することにより、保持用水晶片15の長手方向は自由端
となり、熱に対して伸縮自在となり、ストレスは生じな
い。また、振動用水晶片13はその長手方向が水晶片1
5の長手方向に一致するように、その両端側が固着され
ている。従って、振動用水晶片13の長手方向の伸縮は
保持用水晶片15の影響を受けるが、これらは同一材料
であり、熱膨張係数が等しいため、熱によるストレスは
発生しない。このような構成により、熱膨張による周波
数変化を防止して良好な温度特性が得られる。
The fixing direction (XX direction) of the vibrating crystal piece 13 and the holding crystal piece 15, the holding crystal piece 15 and the base 16
The fixing direction (Z-Z) of is orthogonal to. With such a configuration, the holding crystal blank 15 has a free end in the longitudinal direction, can be expanded and contracted with respect to heat, and does not generate stress. Further, the vibrating crystal piece 13 has its longitudinal direction in the crystal piece 1
Both end sides are fixed so as to coincide with the longitudinal direction of 5. Therefore, the expansion and contraction of the vibrating crystal piece 13 in the longitudinal direction is affected by the holding crystal piece 15, but they are made of the same material and have the same coefficient of thermal expansion, so that thermal stress does not occur. With such a configuration, it is possible to prevent a frequency change due to thermal expansion and obtain good temperature characteristics.

【0009】しかし、振動用水晶片13と保持用水晶片
15との固定を導電性接着剤を用いて行なっているの
で、この導電性接着剤に起因する各種の様々な問題、例
えば、接着時の接着剤の伸縮により応力が水晶にかかる
問題、接着剤と水晶との熱膨張率の差により熱応力が発
生する問題、また接着強度が十分でなく大きな接着面積
が必要であること、導電性接着剤の耐熱性に問題がある
ために半田付けにおいて低温での処理しかできないこ
と、導電性接着剤の硬化に伴うガスの放出、機械的振動
に対して十分安定でないこと、さらには接着剤の劣化の
問題等は解決されない。そのため、本水晶振動子におい
ても温度特性および劣化の点で十分な安定性を持つこと
ができないという問題点を有していた。
However, since the vibrating crystal piece 13 and the holding crystal piece 15 are fixed by using the conductive adhesive, various problems caused by the conductive adhesive, such as adhesion at the time of bonding, are caused. The problem that the stress is applied to the crystal due to the expansion and contraction of the agent, the problem that thermal stress occurs due to the difference in the coefficient of thermal expansion between the adhesive and the crystal, that the adhesive strength is insufficient and a large adhesive area is required, and the conductive adhesive Since it has a problem with heat resistance of solder, it can only be processed at low temperature during soldering, gas is released due to hardening of the conductive adhesive, it is not sufficiently stable against mechanical vibration, and further deterioration of the adhesive Problems etc. are not solved. Therefore, the present quartz crystal resonator also has a problem that it cannot have sufficient stability in terms of temperature characteristics and deterioration.

【0010】さらに、導電性接着剤による応力・ガスの
発生等の問題点を解決するために、例えば、特開平6−
021745号公報に示すように、水晶振動子等の圧電
素子をガラス板を介してシリコン等の保持部材に直接接
合技術を用いて接合する方法が考えられている。図7に
この例を示す。図7において、1は振動用水晶板、2は
シリコン基板、22はガラス板、4は励起電極、5は電
極引出し部、6は端子である。直接接合を行なうには加
熱する必要性があり、水晶とシリコン等熱膨張率の大き
くことなるもの同士の接合においてはその一方が熱応力
により破壊される現象が起こりうる。そのために、低温
でしか熱処理できず、十分な接合強度を得ることが難し
いという問題点を有していた。また、特開平6−021
745号公報においては、水晶とシリコンの間に熱膨張
率が水晶とほぼ同じ値をもつガラス板をはさむことによ
り、水晶に与える影響を軽減している。しかし、ガラス
とシリコンの直接接合に関しては、ガラスが水晶とほぼ
等しい熱膨張率を有するために熱処理時に破壊される危
険性を有するという問題点を有していた。
Further, in order to solve the problems such as the generation of stress and gas due to the conductive adhesive, for example, JP-A-6-
As disclosed in Japanese Patent Publication No. 021745, there has been considered a method of joining a piezoelectric element such as a crystal oscillator to a holding member such as silicon via a glass plate by using a direct joining technique. FIG. 7 shows this example. In FIG. 7, 1 is a vibrating crystal plate, 2 is a silicon substrate, 22 is a glass plate, 4 is an excitation electrode, 5 is an electrode lead portion, and 6 is a terminal. It is necessary to heat in order to perform direct bonding, and in the bonding of quartz and silicon, which have different thermal expansion coefficients, one of them may be destroyed by thermal stress. Therefore, there is a problem that heat treatment can be performed only at a low temperature, and it is difficult to obtain sufficient bonding strength. In addition, JP-A-6-021
In Japanese Patent Publication No. 745, a glass plate having a coefficient of thermal expansion substantially equal to that of quartz is sandwiched between the quartz and silicon to reduce the influence on the quartz. However, with respect to the direct bonding of glass and silicon, there is a problem that glass has a coefficient of thermal expansion almost equal to that of quartz, so that there is a risk of breaking during heat treatment.

【0011】また、水晶振動子の応用製品として、水晶
発振器、温度補償水晶発振器(TCXO)、電圧制御水
晶発振器(VCXO)等の製品が作られているが、これ
らの製品も、その小型化が重要な開発目標となってい
る。図8に、一般的に得られているTCXOの外観図を
示す。なおここでは、理解しやすいように、ケースの一
部を取り除いた様子を示している。図8において、19
は水晶振動子、20は発振回路や電圧制御回路、温度セ
ンサー等を含む制御回路部、21はケースである。前記
水晶振動子19と、前記制御回路部20とは、各々別々
に作られたものが、組み合わされ、ケース21に納めら
れる。このため、全体としての大きさを小型化するのは
非常に困難であるという問題点を有していた。また、こ
れらの問題は水晶振動子に限らず各種圧電部品(圧電フ
ィルタやSAWフィルタ)においても、機械的振動を利
用する限りにおいて応力の影響を強く受けるために同様
の問題点が発生する。
Further, products such as crystal oscillators, temperature-compensated crystal oscillators (TCXO), and voltage-controlled crystal oscillators (VCXO) have been made as applied products of crystal oscillators, but these products are also downsized. It is an important development goal. FIG. 8 shows an external view of a generally obtained TCXO. Here, for ease of understanding, a state in which a part of the case is removed is shown. In FIG. 8, 19
Is a crystal oscillator, 20 is a control circuit unit including an oscillation circuit, a voltage control circuit, a temperature sensor, and the like, and 21 is a case. The crystal oscillator 19 and the control circuit unit 20 are separately made, and then combined and housed in a case 21. Therefore, there is a problem that it is very difficult to reduce the size as a whole. Further, these problems are not limited to crystal oscillators, and various piezoelectric components (piezoelectric filters and SAW filters) are strongly affected by stress as long as mechanical vibration is used, and therefore similar problems occur.

【0012】以上のように、従来の圧電部品において
は、水晶振動子等の圧電素子と保持部とを接着するため
に用いる導電性接着剤に起因する、接着時の接着剤の伸
縮による応力が圧電部品にかかる問題、振動等に対する
接着強度低下の問題、半田付けの際の加熱に対する信頼
性の問題、気体放出の問題さらには接着剤の劣化の問題
等が存在し、経時変化および機械的振動に対して特性が
不安定であった。更に圧電部品やそれを応用した製品の
小型化には、その構造に起因した基本的な問題が存在し
ていた。また、直接接合を応用した圧電部品においては
熱応力により部材が破壊され易く、高温で熱処理し難
く、十分な接合強度を得にくいという問題点を有してい
た。
As described above, in the conventional piezoelectric component, the stress due to the expansion and contraction of the adhesive at the time of bonding due to the conductive adhesive used for bonding the piezoelectric element such as the crystal resonator and the holding portion There are problems with piezoelectric components, deterioration of adhesive strength against vibration, etc., reliability problems with heating during soldering, problems of gas release, and problems of adhesive deterioration. The characteristics were unstable. Further, in miniaturization of piezoelectric components and products to which they are applied, there is a basic problem due to their structure. Further, in the piezoelectric component to which direct bonding is applied, the members are easily broken by thermal stress, and it is difficult to heat-treat at high temperature, and it is difficult to obtain sufficient bonding strength.

【0013】本発明は、以上のような従来の圧電部品の
問題点を解決するためになされたものであり、小型で高
安定の圧電部品及びその製造方法を提供することを目的
としている。
The present invention has been made in order to solve the problems of the conventional piezoelectric component as described above, and an object thereof is to provide a small-sized and highly stable piezoelectric component and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明の圧電部品は、振動用圧電板と、基板と、一
層以上の応力緩衝板とを具備し、前記応力緩衝板のうち
の少なくとも一層のヤング率は、前記振動用圧電板及び
前記基板のうち熱膨張率の小さな方のヤング率より小さ
な値を有し、前記振動用圧電板と、前記基板と、前記応
力緩衝板とが直接接合により固定されている。
In order to achieve the above object, a piezoelectric component of the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, one of the stress buffer plates. The Young's modulus of at least one layer has a smaller value than the Young's modulus of the one having the smaller thermal expansion coefficient among the vibration piezoelectric plate and the substrate, and the vibration piezoelectric plate, the substrate, and the stress buffer plate are It is fixed by direct bonding.

【0015】また、本発明の別の圧電部品は、振動用圧
電板と、基板と、一層以上の応力緩衝板とを具備し、前
記応力緩衝板のうちの少なくとも一層のヤング率は、前
記振動用圧電板及び前記基板のうち熱膨張率の大きな方
のヤング率より小さな値を有し、前記振動用圧電板と、
前記基板と、前記応力緩衝板とが陽極接合により固定さ
れている。
Further, another piezoelectric component of the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, and at least one Young's modulus of the stress buffer plate is the vibration. A piezoelectric plate for vibration and a substrate having a smaller value than the Young's modulus of the larger thermal expansion coefficient, and the piezoelectric plate for vibration,
The substrate and the stress buffer plate are fixed by anodic bonding.

【0016】また、本発明の更に別の圧電部品は、振動
用圧電板と、基板と、一層以上の応力緩衝板とを具備
し、前記応力緩衝板のうちの少なくとも一層のヤング率
は、前記振動用圧電板及び前記基板のそれぞれのヤング
率より小さな値を有し、前記振動用圧電板及び前記基板
のうち熱膨張率が小さな方と前記応力緩衝板とが直接接
合により固定され、前記振動用圧電板及び前記基板のう
ち熱膨張率が大きな方と前記応力緩衝板とが陽極接合に
より固定されている。
Still another piezoelectric component of the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one of the stress buffer plates has a Young's modulus as described above. The vibration piezoelectric plate and the substrate each have a smaller value than the Young's modulus, and the one of the vibration piezoelectric plate and the substrate having a smaller thermal expansion coefficient and the stress buffer plate are fixed by direct bonding, and the vibration One of the piezoelectric plate and the substrate having a larger coefficient of thermal expansion and the stress buffer plate are fixed by anodic bonding.

【0017】上記構成において、基板は、シリコン基板
及びガラス基板のうちいずれかであることが好ましい。
また、上記構成において、応力緩衝板はリチウムナイオ
ベイト基板であることが好ましい。また、上記構成にお
いて、振動用圧電板は少なくとも一対の励振用電極を有
する水晶であり、水晶振動子として用いられることが好
ましい。また、上記構成において、振動用圧電板は少な
くとも二対の励振用電極を有する水晶であり、水晶フィ
ルタとして用いられることが好ましい。
In the above structure, the substrate is preferably either a silicon substrate or a glass substrate.
Further, in the above structure, the stress buffer plate is preferably a lithium niobate substrate. In the above structure, the vibrating piezoelectric plate is a crystal having at least a pair of excitation electrodes, and is preferably used as a crystal oscillator. Further, in the above structure, the vibrating piezoelectric plate is a crystal having at least two pairs of excitation electrodes, and is preferably used as a crystal filter.

【0018】一方、本発明の圧電部品の製造方法は、振
動用圧電板と、基板と、一層以上の応力緩衝板とを具備
し、前記応力緩衝板のうちの少なくとも一層のヤング率
は、前記振動用圧電板及び前記基板のうち熱膨張率の小
さな方のヤング率より小さな値を有する圧電部品の製造
方法であって、前記振動用圧電板と、前記応力緩衝板
と、前記基板の表面を親水処理を施して接触させ、その
状態のまま、熱処理後においても圧電板が圧電性を示す
温度範囲内において熱処理し、前記振動用圧電板と、前
記応力緩衝板と、前記基板とを直接接合させる。
On the other hand, the method for manufacturing a piezoelectric component of the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, and at least one Young's modulus of the stress buffer plates is A method for manufacturing a piezoelectric component having a smaller value than a Young's modulus of a vibrating piezoelectric plate and the substrate having a smaller thermal expansion coefficient, wherein the vibrating piezoelectric plate, the stress buffer plate, and the surface of the substrate are Hydrophilic treatment is performed to bring them into contact, and in that state, the piezoelectric plate is heat-treated within a temperature range in which the piezoelectric plate shows piezoelectricity even after the heat treatment, and the vibration piezoelectric plate, the stress buffer plate, and the substrate are directly bonded. Let

【0019】また、本発明の別の圧電部品の製造方法
は、振動用圧電板と、基板と、一層以上の応力緩衝板と
を具備し、前記応力緩衝板のうちの少なくとも一層のヤ
ング率は、前記振動用圧電板及び前記基板のうち熱膨張
率の大きな方のヤング率より小さな値を有する圧電部品
の製造方法であって、前記振動用圧電板と、前記応力緩
衝板と、前記基板の表面を接触させ、前記振動用圧電板
と前記応力緩衝板及び前記応力緩衝板と前記基板の間に
それぞれ電圧を加えつつ、そのままの状態で、熱処理後
においても圧電板が圧電性を示す温度範囲内において熱
処理し、前記振動用圧電板と、前記応力緩衝板と、前記
基板を陽極接合させる。
Another method of manufacturing a piezoelectric component of the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, and at least one of the stress buffer plates has a Young's modulus A method of manufacturing a piezoelectric component having a smaller value than the Young's modulus of a larger thermal expansion coefficient of the vibration piezoelectric plate and the substrate, wherein the vibration piezoelectric plate, the stress buffer plate, and the substrate A temperature range in which the piezoelectric plates exhibit piezoelectricity even after heat treatment, with their surfaces being in contact with each other and applying voltages between the vibration piezoelectric plate and the stress buffer plate and between the stress buffer plate and the substrate, respectively. Heat treatment is performed in the inside to anodic bond the vibration piezoelectric plate, the stress buffer plate, and the substrate.

【0020】また、本発明のさらに別の圧電部品の製造
方法は、振動用圧電板と、基板と、一層以上の応力緩衝
板とを具備し、前記応力緩衝板のうちの少なくとも一層
のヤング率は、前記振動用圧電板及び前記基板のうち熱
膨張率の大きな方のヤング率より小さな値を有する圧電
部品の製造方法であって、前記振動用圧電板及び前記基
板のうち熱膨張率の大きな方と前記応力緩衝板との間に
電圧を加えつつ、そのままの状態で、熱処理後において
も圧電板が圧電性を示す温度範囲内において熱処理し、
前記振動用圧電板及び前記基板のうち熱膨張率の大きな
方と前記応力緩衝板とを陽極接合し、前記振動用圧電板
及び前記基板のうち熱膨張率の小さな方と前記応力緩衝
板の表面を親水処理を施して接触させ、そのままの状態
で、熱処理後においても圧電板が圧電性を示す温度範囲
内において熱処理し、前記振動用圧電板及び前記基板の
うち熱膨張率の小さな方と前記応力緩衝板とを直接接合
する。
Still another method of manufacturing a piezoelectric component according to the present invention comprises a vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, and at least one of the stress buffer plates has a Young's modulus. Is a method of manufacturing a piezoelectric component having a smaller value than the Young's modulus of the larger one of the vibrating piezoelectric plate and the substrate, the vibrating piezoelectric plate and the substrate having a larger thermal expansion coefficient. While applying a voltage between the one and the stress buffer plate, in that state, heat treatment is performed within a temperature range in which the piezoelectric plate shows piezoelectricity even after heat treatment,
One of the piezoelectric plate for vibration and the substrate having a larger thermal expansion coefficient and the stress buffer plate are anodically bonded, and the piezoelectric plate for vibration and the one having a smaller thermal expansion coefficient and the surface of the stress buffer plate. Are subjected to a hydrophilic treatment and brought into contact with each other, and in that state, they are heat-treated within a temperature range in which the piezoelectric plate shows piezoelectricity even after heat treatment, and one of the vibrating piezoelectric plate and the substrate having a smaller coefficient of thermal expansion is Directly joined to the stress buffer plate.

【0021】[0021]

【作用】以上のように構成された本発明の圧電部品及び
その製造方法によれば、振動用圧電板は接着剤を用い
ず、直接接合により固定されるので、接着剤の伸縮によ
る応力が圧電板に加わることはなく、接着剤からのガス
の発生もない。また、接着剤と圧電板との熱膨張率の差
に接着剤の耐熱性を考慮する必要がないので、高温で熱
処理が可能となる。その結果、接合強度は強固となり、
振動等に対する安定性が向上し、振動特性も劣化しな
い。また、半田付け等における熱に対しても安定であ
り、高熱によっても劣化しない。さらに、振動用圧電板
は、応力緩衝板と共に基板に正確な位置に固定されるの
で、封止の際の空間を小さくでき、圧電部品全体として
の小型化が容易である。さらに、振動用圧電板と応力緩
衝板とは基板に固定されており、基板としてシリコンを
用いることにより制御回路等を組み込み、一体化するこ
とができる。さらに、圧電板として水晶を用いることに
より非常に高安定で、かつ、ワンチップ化された水晶発
振器、温度補償水晶発振器、電圧制御水晶発振器等の作
製が可能になるため、これらの製品を容易に小型化でき
る。
According to the piezoelectric component and the method for manufacturing the same of the present invention configured as described above, since the vibrating piezoelectric plate is fixed by direct bonding without using an adhesive, the stress due to the expansion and contraction of the adhesive causes the piezoelectric element to move. It does not add to the plate and does not generate gas from the adhesive. Further, since it is not necessary to consider the heat resistance of the adhesive in the difference in coefficient of thermal expansion between the adhesive and the piezoelectric plate, heat treatment can be performed at a high temperature. As a result, the bonding strength becomes strong,
Stability against vibration is improved and vibration characteristics are not deteriorated. Further, it is stable against heat during soldering and the like, and does not deteriorate due to high heat. Further, the vibrating piezoelectric plate is fixed to the substrate at an accurate position together with the stress buffer plate, so that the space for sealing can be reduced and the piezoelectric component as a whole can be easily downsized. Further, the vibration piezoelectric plate and the stress buffer plate are fixed to the substrate, and by using silicon as the substrate, a control circuit and the like can be incorporated and integrated. Furthermore, by using a crystal as the piezoelectric plate, it is possible to fabricate a crystal oscillator, a temperature-compensated crystal oscillator, a voltage-controlled crystal oscillator, etc. that are extremely highly stable and integrated into a single chip. Can be miniaturized.

【0022】[0022]

【実施例】以下、本発明の圧電部品及びその製造方法の
実施例について、図面を参照しながら説明する。 (第1の実施例)本発明の圧電部品の第1の実施例に係
る圧電振動子の斜視図を図1に示す。図1において、圧
電振動子は、振動用圧電板1、基板2、応力緩衝板3、
励起電極4、電極引出し部5、端子6を具備する。応力
緩衝板3は、振動用圧電板1と基板2のうち熱膨張率の
小さな方のヤング率より小さなヤング率を有する。ま
た、振動用圧電板1の周辺近傍の一部は、応力緩衝板3
に直接接合により固定され、応力緩衝板3の一部は、基
板2に直接接合により固着されている。振動用圧電板1
としてATカット水晶振動子を、基板2としてシリコン
基板を、応力緩衝板3としてリチウムナイオベイト基板
をそれぞれ用い、シリコン基板上に水晶振動子を作成し
た。
Embodiments of the piezoelectric component and the method for manufacturing the same according to the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a perspective view of a piezoelectric vibrator according to a first embodiment of the piezoelectric component of the present invention. In FIG. 1, the piezoelectric vibrator includes a piezoelectric plate for vibration 1, a substrate 2, a stress buffer plate 3,
The excitation electrode 4, the electrode lead-out portion 5, and the terminal 6 are provided. The stress buffer plate 3 has a Young's modulus smaller than that of the vibrating piezoelectric plate 1 or the substrate 2 having the smaller thermal expansion coefficient. In addition, a part of the vibrating piezoelectric plate 1 in the vicinity of the periphery is a stress buffer plate 3.
Is directly fixed to the substrate 2, and a part of the stress buffer plate 3 is fixed to the substrate 2 by direct bonding. Vibration piezoelectric plate 1
An AT-cut crystal oscillator was used as the substrate, a silicon substrate was used as the substrate 2, and a lithium niobate substrate was used as the stress buffer plate 3, and a crystal oscillator was formed on the silicon substrate.

【0023】ここで、直接接合について説明する。直接
接合とは、シリコン基板同士、シリコン基板とガラス
板、ガラス板と水晶板等の単結晶、酸化物又は窒化物等
を、接着剤を介在させずに、基板の被固着面上の結晶表
面構成原子と他方の基板の結晶表面構成原子との間の共
有結合を用いて、直接的に固着させるという技術であ
る。研磨、洗浄、親水基形成処理を行なったシリコン基
板、ガラス板、水晶板等を清浄雰囲気中で接触させ、加
熱処理を行うことにより、強固な固着が得られる。固着
強度は、親水基形成処理後、接触させただけの初期段階
においても、数十kgw/cm2程度の値を示し、さら
に、加熱処理を施すことにより、その値は数百kgw/
cm2以上に上昇する。
Here, the direct joining will be described. The direct bonding is a crystal surface on the adhered surface of the substrates without interposing an adhesive between silicon substrates, a single crystal such as a silicon plate and a glass plate, a glass plate and a crystal plate, or an oxide or a nitride. This is a technique in which a direct bond is established by using a covalent bond between a constituent atom and a constituent atom on the crystal surface of the other substrate. Firm adhesion can be obtained by bringing a silicon substrate, a glass plate, a crystal plate, etc., which have been subjected to polishing, washing, and hydrophilic group formation treatment into contact with each other in a clean atmosphere, and performing heat treatment. The adhesion strength shows a value of about several tens of kgw / cm 2 even in the initial stage of just contacting after the hydrophilic group forming treatment, and further, by applying heat treatment, the value is several hundred kgw / cm 2.
It rises to cm 2 or more.

【0024】具体的には、このような結合は以下のよう
にして形成される。親水基形成処理後、接触させただけ
の初期段階において、被接着基板同士は、その表面に形
成される親水基と、被接着面間に存在する水分子との水
素結合を介して結合されている。この状態で加熱処理を
行なうことにより、界面に存在する水分子は界面から除
去され、水分子を介しての結合は、次第に結晶構成原子
間の強固な共有結合に変化する。このため、直接接合を
用いた固定においては、固着強度が高く、接着剤を一切
用いていないので熱処理、振動等に強く、不要な気体が
放出されることもない。
Specifically, such a bond is formed as follows. After the hydrophilic group formation treatment, in the initial stage of merely bringing them into contact with each other, the substrates to be bonded are bonded to each other through a hydrogen bond between a hydrophilic group formed on the surface and water molecules existing between the surfaces to be bonded. There is. By performing heat treatment in this state, the water molecules existing at the interface are removed from the interface, and the bond via the water molecule gradually changes to a strong covalent bond between the crystal constituent atoms. Therefore, in the fixing using direct bonding, the fixing strength is high, and since no adhesive is used at all, it is resistant to heat treatment, vibration, etc., and unnecessary gas is not emitted.

【0025】しかしながら、直接接合は熱処理を行なう
必要性があるため、熱膨張率の大きくことなるもの同士
を直接接合すると、熱応力で破壊される現象が起こり得
る。ATカット水晶板の熱膨張率は、最も大きい方向で
およそ9×10-6であるのに対し、シリコン基板の熱膨
張率はおよそ6×10-6である。そのため、高温で熱処
理を行なうと、シリコン基板に対して大きな張力が加わ
り、シリコン基板が張力に絶えられず破壊される。その
結果、シリコン基板、水晶板の厚さによっては、十分な
接合強度を与えるための熱処理温度を達成できない場合
がある。また、水晶板とシリコン基板の間に、熱膨張率
がそれらの中間の値をもつ緩衝板をはさんで直接接合す
る方法もあるが、この場合においてもそれらの部材間の
厚み、熱膨張率等の関係上、十分な熱処理を達成できな
い場合がある。
However, since the direct bonding requires heat treatment, the direct bonding of materials having different thermal expansion coefficients may cause a phenomenon of destruction due to thermal stress. The thermal expansion coefficient of the AT-cut quartz plate is approximately 9 × 10 −6 in the largest direction, whereas the thermal expansion coefficient of the silicon substrate is approximately 6 × 10 −6 . Therefore, when heat treatment is performed at a high temperature, a large tension is applied to the silicon substrate, and the silicon substrate is continuously broken by the tension and destroyed. As a result, depending on the thicknesses of the silicon substrate and the crystal plate, the heat treatment temperature for providing sufficient bonding strength may not be achieved. There is also a method of directly joining a quartz plate and a silicon substrate with a buffer plate having a coefficient of thermal expansion intermediate between them, but in this case as well, the thickness between these members and the coefficient of thermal expansion are In some cases, sufficient heat treatment cannot be achieved due to the above reasons.

【0026】一般的には、熱膨張率の小さな部材の接合
面近傍に大きな張力が加わる。本実施例の場合、水晶と
シリコンの直接接合ではシリコン側に大きな張力が加わ
る。ここで、ヤング率の小さい物質(応力緩衝板)を介
して直接接合すると、応力緩衝板は小さな応力で大きく
歪むため、両基板間の熱膨張率の違いによる歪は応力緩
衝板に集中し、小さな応力しか発生しない。このため、
この接合面近傍に、張力の加えられる部材より小さなヤ
ング率を持つ部材を応力緩衝板として挟むことにより、
より大きな張力に耐えることが可能になる。このこと
は、より高温での熱処理を可能とし、直接接合の強度を
増すことが可能になることを意味する。本実施例で用い
たATカット水晶、シリコン、リチウムナイオベイトの
結晶のヤング率は、それぞれ7.8×1010、20×1
10、17×1010である。また、ATカット水晶及び
シリコン熱膨張率は、それぞれ13.71×10-6
3.35×10-6であり、上記の条件を満たす。
Generally, a large tension is applied near the joint surface of the member having a small coefficient of thermal expansion. In the case of the present embodiment, a large amount of tension is applied to the silicon side in the direct bonding of quartz and silicon. Here, when directly bonded through a material having a small Young's modulus (stress buffer plate), the stress buffer plate is greatly distorted by a small stress, so the strain due to the difference in thermal expansion coefficient between the two substrates is concentrated on the stress buffer plate, Only small stress is generated. For this reason,
By sandwiching a member having a Young's modulus smaller than the member to which tension is applied as a stress buffer plate near the joint surface,
It becomes possible to withstand greater tension. This means that heat treatment at a higher temperature is possible and the strength of direct bonding can be increased. The Young's moduli of the AT-cut quartz, silicon, and lithium niobate crystals used in this example are 7.8 × 10 10 and 20 × 1, respectively.
0 10 and 17 × 10 10 . Further, the AT-cut quartz and the coefficient of thermal expansion of silicon are 13.71 × 10 −6 and
It is 3.35 × 10 −6 , which satisfies the above condition.

【0027】水晶振動子を作成した後、基板上に半田付
けするために、二百数十℃でリフローする必要性があ
る。しかしながら、従来例のように、導電性接着剤を用
いた場合、半田リフローに対する信頼性が乏しく、半田
リフローの前後において一般的に共振周波数が2〜3p
pm変動する。これに対し、本実施例の構造の水晶振動
子では導電性接着剤を用いないため、水晶振動子の特性
は大きく向上する。具体例として、振動用圧電板として
1mm×3mmの大きさのATカット水晶板、応力緩衝
板として1mm×1mmの大きさのリチウムナイオベイ
ト基板、基板として3mm×4.5mmの大きさのP型
シリコン単結晶板を用い、上記本発明の第1の実施例の
構造を有する水晶振動子を複数作製した。比較のため
に、1mm×3mmの大きさの振動用水晶板を従来の金
属保持部に導電性接着剤により接着した構造の比較用水
晶振動子も複数作製し、本発明の水晶振動子と比較用水
晶振動子の周波数の半田リフロー特性を測定した。この
結果、半田リフローにより共振周波数が2ppm以上変
動したものの数は、比較用水晶振動子のものと比べて半
分以下であった。
After the crystal unit is formed, it is necessary to reflow at 200 ° C. or more for soldering on the substrate. However, when a conductive adhesive is used as in the conventional example, the reliability against solder reflow is poor, and the resonance frequency is generally 2 to 3 p before and after solder reflow.
pm fluctuates. On the other hand, in the crystal unit having the structure of this embodiment, since the conductive adhesive is not used, the characteristics of the crystal unit are greatly improved. As a specific example, an AT-cut crystal plate having a size of 1 mm × 3 mm as a vibration piezoelectric plate, a lithium niobate substrate having a size of 1 mm × 1 mm as a stress buffer plate, and a P-type having a size of 3 mm × 4.5 mm as a substrate Using a silicon single crystal plate, a plurality of crystal resonators having the structure of the above-described first embodiment of the present invention were manufactured. For comparison, a plurality of comparative crystal oscillators having a structure in which a vibrating crystal plate having a size of 1 mm × 3 mm is adhered to a conventional metal holding portion by a conductive adhesive is also prepared and compared with the crystal oscillator of the present invention. The solder reflow characteristics of the frequency of the quartz crystal unit were measured. As a result, the number of resonance frequency fluctuations of 2 ppm or more due to the solder reflow was less than half that of the comparative crystal oscillator.

【0028】さらに、シリコン基板には振動用水晶板を
駆動及び制御するための回路を組み込むことができるの
で、ワンチップ化された水晶発振器、温度補償水晶発振
器、電圧制御水晶発振器の作製が可能になる。図2に、
ワンチップ化された温度補償水晶発振器の斜視図を示
す。図2において、温度補償水晶発振器は、振動用水晶
板1、シリコン基板2、応力緩衝板3、励起電極4、電
極引出し部5、及び制御回路7を具備する。
Furthermore, since a circuit for driving and controlling the vibrating crystal plate can be incorporated in the silicon substrate, it is possible to manufacture a crystal oscillator, a temperature-compensated crystal oscillator, and a voltage-controlled crystal oscillator that are integrated into one chip. Become. In Figure 2,
The perspective view of the temperature-compensated crystal oscillator integrated into one chip is shown. In FIG. 2, the temperature-compensated crystal oscillator includes a vibrating crystal plate 1, a silicon substrate 2, a stress buffer plate 3, an excitation electrode 4, an electrode lead-out portion 5, and a control circuit 7.

【0029】なお、本実施例においては直接接合をもち
いたが、圧電振動板1と応力緩衝板3、基板2と応力緩
衝板3の接合に陽極接合を用いることもできる。ここ
で、陽極接合について説明する。陽極接合とは、直接接
合と同様に、接着剤を使用しない接合方法であり、2枚
の基板間に電圧を加えながら加熱することにより接合す
る。両基板に電圧を加えるため、あらかじめ電極を蒸着
しておく必要性がある。例えば、シリコン基板とガラス
基板の場合はガラス基板に電極を蒸着し、シリコン基板
とガラス基板に蒸着された電極間に電圧を加えることに
なる。また、加熱前は、基板間に電流が流れるのは好ま
しくないため、あらかじめ酸化珪素等の絶縁物を蒸着し
ておく場合もある。一例として、シリコン基板同士を陽
極接合する場合があげられる。この場合、少なくとも片
方のシリコン基板に酸化珪素を蒸着し、シリコン基板同
士を絶縁する。加熱前においては、両基板は基板間に加
えられた電圧により密着しているものの、未接合の状態
である。この状態から、加熱すると、ある温度を越えた
時点で両基板間に電流が流れる。この時、両基板間の絶
縁は破壊され、基板同士が接合される。これは、昇温に
より基板間の絶縁が破壊されやすくなり、絶縁が破壊さ
れた瞬間、接合面において両基板の原子の移動が起こ
り、空隙が埋められると共に、原子間の再結合が起こる
ためと考えられている。陽極接合では高温時に接合され
るため、降温するにつれ応力が大きくなる。このため、
直接接合とは異なり、熱膨張率の大きな方に張力が加わ
ることになる。従って、圧電振動板1と基板2のうち熱
膨張率の大きな方のヤング率より、ヤング率が小さな値
を持つ材料を応力緩衝板3として用いることにより、高
温で陽極接合を行なうことができる。この場合、圧電板
の固定に導電性接着剤を使用しないため、非常に高安定
な振動子を作成できることはいうまでもない。
Although direct bonding is used in this embodiment, anodic bonding may be used for bonding the piezoelectric vibration plate 1 and the stress buffer plate 3 and the substrate 2 and the stress buffer plate 3. Here, the anodic bonding will be described. The anodic bonding is a bonding method that does not use an adhesive like the direct bonding, and the bonding is performed by heating while applying a voltage between the two substrates. In order to apply a voltage to both substrates, it is necessary to deposit electrodes in advance. For example, in the case of a silicon substrate and a glass substrate, electrodes are vapor-deposited on the glass substrate and a voltage is applied between the electrodes vapor-deposited on the silicon substrate and the glass substrate. In addition, before heating, it is not preferable that an electric current flows between the substrates, so an insulator such as silicon oxide may be vapor-deposited in advance. As an example, there is a case where silicon substrates are anodically bonded to each other. In this case, silicon oxide is deposited on at least one of the silicon substrates to insulate the silicon substrates from each other. Before heating, both substrates are in close contact with each other due to the voltage applied between the substrates, but are in a non-bonded state. When heating is performed from this state, a current flows between both substrates when the temperature exceeds a certain temperature. At this time, the insulation between the two substrates is destroyed and the substrates are joined together. This is because the insulation between the substrates is easily broken by the temperature rise, and at the moment when the insulation is broken, the atoms of both substrates move at the bonding surface, the voids are filled, and the recombination between the atoms occurs. It is considered. Since the anodic bonding is performed at a high temperature, the stress increases as the temperature decreases. For this reason,
Unlike direct bonding, tension is applied to the one with the higher coefficient of thermal expansion. Therefore, by using a material having a Young's modulus smaller than that of the piezoelectric vibrating plate 1 and the substrate 2 having a larger thermal expansion coefficient as the stress buffer plate 3, anodic bonding can be performed at a high temperature. In this case, it is needless to say that since a conductive adhesive is not used to fix the piezoelectric plate, a very highly stable vibrator can be produced.

【0030】(第2の実施例)以下、本発明の圧電部品
及びその製造方法の第2の実施例について、図3を用い
て詳しく説明する。図3において、(a)、(b)、
(c)、(d)、(e)及び(f)は、それぞれ第2の
実施例に係る圧電部品(圧電振動子)の製造方法の各工
程を示す。また、第2の実施例に係る圧電振動子は、振
動用水晶板1、シリコン基板2、応力緩衝板3、励起電
極4、電極引出し部5を具備する。また、図3中、8は
水晶素板、9はリチウムナイオベイト基板、10はシリ
コン素板である。なお、応力緩衝板3は、そのヤング率
が振動用水晶板1とシリコン基板2の熱膨張率の小さな
方、すなわちシリコン基板2のヤング率より小さな値を
有し、例えばリチウムナイオベイト等で形成されてい
る。水晶素板8には厚さ350μm、大きさ3インチの
ATカット水晶素板、リチウムナイオベイト基板9には
厚さ350μm、大きさ3インチのリチウムナイオベイ
ト基板、シリコン基板10には面方位(100)、厚さ
450μm、大きさ3インチのP型単結晶シリコン基板
を用いた。
(Second Embodiment) A second embodiment of the piezoelectric component and the manufacturing method thereof according to the present invention will be described in detail below with reference to FIG. In FIG. 3, (a), (b),
(C), (d), (e) and (f) show respective steps of the method for manufacturing the piezoelectric component (piezoelectric vibrator) according to the second embodiment. Further, the piezoelectric vibrator according to the second example includes a vibrating crystal plate 1, a silicon substrate 2, a stress buffer plate 3, an excitation electrode 4, and an electrode lead portion 5. Further, in FIG. 3, 8 is a crystal blank, 9 is a lithium niobate substrate, and 10 is a silicon blank. The stress buffer plate 3 has a Young's modulus smaller than the Young's modulus of the vibrating quartz plate 1 and the silicon substrate 2, that is, the Young's modulus of the silicon substrate 2, and is formed of, for example, lithium niobate. Has been done. The crystal blank 8 has a thickness of 350 μm and a size of 3 inches, an AT-cut crystal blank, the lithium niobate substrate 9 has a thickness of 350 μm, a size of 3 inches, a lithium niobate substrate, and the silicon substrate 10 has a plane orientation ( 100), a P-type single crystal silicon substrate having a thickness of 450 μm and a size of 3 inches was used.

【0031】図3(a)に示すように、あらかじめ水晶
素板8を、所定数及び所定パターンの振動用水晶板1の
形状を残すように、深さ80μmまでエッチングにより
削った。また、リチウムナイオベイト基板9にも、所定
数及び所定パターンの応力緩衝板3の形状を残すよう
に、深さ50μmの凹部を作成した。なお、水晶素板8
上に残っている全ての振動用水晶板1の部分と、リチウ
ムナイオベイト基板9上に残っている全ての応力緩衝板
3の部分とが、互いに所定の位置で接触するように、各
々の位置を決定した。次に、水晶素板8とリチウムナイ
オベイト基板9との表面を鏡面に研磨し、アンモニア水
と過酸化水素水と水の混合液を用いて表面を親水化処理
し、水洗いした。その後、注意深く洗浄し、振動用水晶
板1と応力緩衝板3とが接触する部分にはゴミが存在し
ないようにした。次に、水晶素板8とリチウムナイオベ
イト基板9とを、表面を清浄に保ったまま接触させた。
このままでもかなりの接着強度があるが、後に行なう研
磨ができるまでの強度以上にするために、加熱処理を施
した。なお、870℃に水晶の結晶転移温度があるの
で、水晶をこの温度以上に加熱処理すると室温に戻した
とき圧電性を示さなくなる。そのため、加熱処理温度は
870℃以上にすることはできない。なお、本実施例で
は、加熱処理温度を例えば500℃とした。
As shown in FIG. 3A, the quartz crystal plate 8 was previously etched to a depth of 80 μm so that a predetermined number and a predetermined pattern of the vibrating crystal plate 1 were left. In addition, a recess having a depth of 50 μm was formed on the lithium niobate substrate 9 so that a predetermined number and a predetermined pattern of the stress buffer plate 3 were left. The crystal blank 8
All the portions of the vibrating crystal plate 1 remaining on the top and all the portions of the stress buffer plate 3 remaining on the lithium niobate substrate 9 are in contact with each other at predetermined positions. It was determined. Next, the surfaces of the crystal blank 8 and the lithium niobate substrate 9 were mirror-polished, and the surfaces were hydrophilized with a mixed solution of ammonia water, hydrogen peroxide solution and water, and washed with water. After that, it was carefully washed so that dust was not present at the portion where the vibrating crystal plate 1 and the stress buffer plate 3 were in contact with each other. Next, the crystal blank 8 and the lithium niobate substrate 9 were brought into contact with each other while keeping their surfaces clean.
Although it has a considerable adhesive strength as it is, it was subjected to a heat treatment so as to have a strength not lower than the strength at which polishing can be performed later. Since the crystal transition temperature of the crystal is 870 ° C., if the crystal is heated above this temperature, it will not exhibit piezoelectricity when returned to room temperature. Therefore, the heat treatment temperature cannot be 870 ° C. or higher. In this example, the heat treatment temperature was set to 500 ° C, for example.

【0032】次に、図3(b)に示すように、応力緩衝
板3を一つ一つ分離するために、水晶素板8側を保持し
た状態で、水晶素板8に直接接合されたリチウムナイオ
ベイト基板9を研磨した。次に、シリコン基板10と水
晶素板8上に形成された応力緩衝板3とを直接接合させ
るために、これらの表面を鏡面に研磨し、更にアンモニ
ア水と過酸化水素水と水の混合液を用いて表面を親水化
処理し、水洗いした。その後、注意深く洗浄し、水晶素
板8上に形成された応力緩衝板3とシリコン基板10の
表面にはゴミが存在しないようにした。次に、図3
(c)に示すように、シリコン基板10と水晶素板8上
に形成された応力緩衝板3とを、表面を清浄に保ったま
ま接触させた。このままでもかなりの接着強度がある
が、後に行なう研磨ができるまでの強度以上にするため
に、加熱処理を施した。なお、上記と同様の理由から、
加熱処理温度を870℃以上に加熱することはできない
が、リチウムナイオベイトのヤング率がシリコンよりも
小さいために比較的高温まで加熱可能である。本実施例
では、加熱処理温度を例えば500℃とした。
Next, as shown in FIG. 3 (b), in order to separate the stress buffer plates 3 one by one, they were directly bonded to the crystal blank 8 while holding the crystal blank 8 side. The lithium niobate substrate 9 was polished. Next, in order to directly bond the silicon substrate 10 and the stress buffer plate 3 formed on the quartz crystal plate 8, the surfaces thereof are mirror-polished, and further, a mixed solution of ammonia water, hydrogen peroxide solution and water is added. The surface was hydrophilized with and washed with water. Then, it was washed carefully so that dust was not present on the surfaces of the stress buffer plate 3 and the silicon substrate 10 formed on the quartz crystal plate 8. Next, FIG.
As shown in (c), the silicon substrate 10 and the stress buffer plate 3 formed on the quartz crystal plate 8 were brought into contact with each other while keeping their surfaces clean. Although it has a considerable adhesive strength as it is, it was subjected to a heat treatment so as to have a strength not lower than the strength at which polishing can be performed later. For the same reason as above,
Although the heat treatment temperature cannot be raised to 870 ° C. or higher, since the Young's modulus of lithium niobate is smaller than that of silicon, it can be heated to a relatively high temperature. In this example, the heat treatment temperature was set to 500 ° C., for example.

【0033】次に、図3(d)に示すように、水晶素板
8側を保持した状態で、水晶素板8に直接接合された応
力緩衝板3により固定されたシリコン基板10を研磨
し、更にシリコン基板10の応力緩衝板3が直接接合さ
れていない側からエッチングをおこない、開口部を設け
た。その後、シリコン基板10側を保持した状態で、シ
リコン基板10に直接接合された応力緩衝板3により固
定された水晶素板8を研磨し、振動用水晶板1を個々に
分離した。その状態を図3(e)に示す。
Next, as shown in FIG. 3D, while holding the crystal element plate 8 side, the silicon substrate 10 fixed by the stress buffer plate 3 directly bonded to the crystal element plate 8 is polished. Further, etching was performed from the side of the silicon substrate 10 where the stress buffer plate 3 was not directly joined to form an opening. After that, while holding the silicon substrate 10 side, the crystal element plate 8 fixed by the stress buffer plate 3 directly bonded to the silicon substrate 10 was polished to separate the vibrating crystal plate 1 individually. The state is shown in FIG.

【0034】次に、図3(f)に示すように、水晶素板
8の振動用水晶板1のほぼ中央付近に対向するように、
一対の励起電極4を形成した。このとき、同時に電極引
出し部5も形成した。本実施例の場合、これらはクロム
を厚さ20nm(200オングストローム)、金を厚さ
50nm(500オングストローム)に真空蒸着して形
成した。最後に、シリコン基板10を一つ一つ切り離
し、水晶振動子を得た。
Next, as shown in FIG. 3 (f), the quartz crystal plate 8 is arranged so as to face the vibrating quartz crystal plate 1 at approximately the center thereof.
A pair of excitation electrodes 4 was formed. At this time, the electrode lead-out portion 5 was also formed at the same time. In the case of this example, these were formed by vacuum-depositing chromium to a thickness of 20 nm (200 Å) and gold to a thickness of 50 nm (500 Å). Finally, the silicon substrates 10 were separated one by one to obtain crystal oscillators.

【0035】なお、振動用水晶板1、応力緩衝板3及び
シリコン基板2は、フォトリソグラフィーやエッチング
等の半導体加工技術を応用することにより、その寸法を
非常に精密に加工しているために、非常に小型で精度が
よく、高性能な水晶振動子が得られる。また、本実施例
では基板としてシリコン基板、応力緩衝板としてリチウ
ムナイオベイト板を用いたが、これらの材料としては先
に述べた条件を満足するものであればよく、特にこれら
の材料には限定されない。さらに、応力緩衝板を少なく
とも1層以上使用することにより、同様に接合すること
が可能であり、同様の効果が得られることはいうまでも
ない。
Since the vibration crystal plate 1, the stress buffer plate 3 and the silicon substrate 2 are processed with very precise dimensions by applying semiconductor processing techniques such as photolithography and etching, A very small, highly accurate, and high-performance crystal unit can be obtained. Further, in the present embodiment, a silicon substrate was used as the substrate and a lithium niobate plate was used as the stress buffer plate, but any material may be used as long as it satisfies the above-mentioned conditions, and is particularly limited to these materials. Not done. Further, it is needless to say that by using at least one layer of the stress buffering plate, it is possible to join them in the same manner and the same effect can be obtained.

【0036】また、上記実施例においては、直接接合に
おける加熱処理温度として500℃とした例に付いて述
べたが、これに限定されるものではなく、100℃〜3
50℃、350℃〜500℃、500℃〜570℃、5
70℃〜860℃の範囲において加熱処理したサンプル
についても接着強度を調べたところ、高温になればなる
ほど接着強度は大きくなることを確認した。従って、熱
処理後においても圧電部品が圧電性を示し、圧電部品の
性質が著しく変化しないような温度範囲内において、実
施しやすい加熱処理温度を選べばよい。
Further, in the above embodiment, an example in which the heat treatment temperature in the direct bonding is 500 ° C. has been described, but the present invention is not limited to this, and 100 ° C. to 3 ° C.
50 ° C, 350 ° C to 500 ° C, 500 ° C to 570 ° C, 5
When the adhesive strength of the sample heat-treated in the range of 70 ° C. to 860 ° C. was examined, it was confirmed that the higher the temperature, the higher the adhesive strength. Therefore, it is only necessary to select a heat treatment temperature that is easy to carry out within a temperature range in which the piezoelectric component exhibits piezoelectricity even after the heat treatment and the properties of the piezoelectric component do not significantly change.

【0037】さらに、上記実施例においては、応力緩衝
板を1層とした例について述べたが、これに限定される
ものではなく、応力緩衝板を2層、3層さらにはより多
層にした場合でも、適当なヤング率を持つ材質を選ぶこ
とにより、直接接合を行なうことが可能になることはい
うまでもない。さらに、上記実施例では、応力緩衝板と
してリチウムナイオベイト板、圧電振動子として水晶振
動子を用いたが、これらの材料に限定されるものではな
く、先に述べた条件を満足するものであれば良く、応力
緩衝板を1層以上使用することにより同様に接着するこ
とが可能であり、同様の効果が得られることはいうまで
もない。
Further, in the above embodiment, the example in which the stress buffer plate is one layer has been described, but the present invention is not limited to this, and the case where the stress buffer plate is two layers, three layers, or more layers is used. However, it goes without saying that it becomes possible to perform direct bonding by selecting a material having an appropriate Young's modulus. Furthermore, in the above-mentioned examples, the lithium niobate plate was used as the stress buffer plate and the crystal oscillator was used as the piezoelectric oscillator. However, the material is not limited to these materials, and may satisfy the conditions described above. Needless to say, the same effect can be obtained by using one or more layers of stress buffering plates for the same adhesion.

【0038】また、上記実施例においては、直接接合を
用いたが、陽極接合を用いた場合でも、接着剤を使用し
ない利点を有すると共に、接合面内にヤング率の小さな
応力緩衝板をはさむことにより、熱処理時における応力
による破壊を防止することができ、より高温での熱処理
が可能になり、接合強度を増すことが可能である。その
結果、高安定な圧電部品の作製か可能になる。
Further, although direct bonding is used in the above embodiment, even when anodic bonding is used, there is an advantage that an adhesive is not used, and a stress buffer plate having a small Young's modulus is sandwiched in the bonding surface. As a result, it is possible to prevent damage due to stress during heat treatment, heat treatment at a higher temperature is possible, and it is possible to increase the bonding strength. As a result, highly stable piezoelectric components can be manufactured.

【0039】[0039]

【発明の効果】以上のように、本発明の圧電部品及びそ
の製造方法によれば、振動用圧電板は接着剤を用いず、
直接接合により固定されるので、接着剤の伸縮による応
力が圧電板に加わることはなく、接着剤からのガスの発
生もない。また、接着剤と圧電板との熱膨張率の差に接
着剤の耐熱性を考慮する必要がないので、高温で熱処理
が可能となる。一方、熱膨張率が大きく異なる基板同士
を接合するために、ヤング率の小さな応力緩衝板をはさ
んで接合することにより、より高温で熱処理可能とな
り、その結果、接合強度は強固なものとなり、振動等に
対する安定性が向上し、振動特性も劣化しない。また、
半田付け等における熱に対しても安定であり、高熱によ
っても劣化しない。さらに、振動用圧電板は、応力緩衝
板と共に基板に正確な位置に固定されるので、封止の際
の空間を小さくでき、圧電部品全体としての小型化が容
易である。さらに、振動用圧電板と応力緩衝板とは基板
に固定されており、基板としてシリコンを用いることに
より制御回路等を組み込み、一体化することができる。
さらに、圧電板として水晶を用いることにより非常に高
安定で、かつ、ワンチップ化された水晶発振器、温度補
償水晶発振器、電圧制御水晶発振器等の作製が可能にな
るため、これらの製品を容易に小型化できる。また、振
動用圧電板、応力緩衝板、蓋部及び基板部にシリコン基
板、水晶板、ガラス板等を用いることにより、半導体加
工技術を応用することが可能になり、その寸法を精密に
加工できるために、非常に小型で精度がよく、高性能な
圧電振動子が得られる。
As described above, according to the piezoelectric component and the method of manufacturing the same of the present invention, the vibrating piezoelectric plate does not use an adhesive,
Since it is fixed by direct bonding, stress due to expansion and contraction of the adhesive is not applied to the piezoelectric plate, and gas is not generated from the adhesive. Further, since it is not necessary to consider the heat resistance of the adhesive in the difference in coefficient of thermal expansion between the adhesive and the piezoelectric plate, heat treatment can be performed at a high temperature. On the other hand, in order to bond substrates having greatly different coefficients of thermal expansion, by sandwiching stress buffer plates with a small Young's modulus, it becomes possible to perform heat treatment at a higher temperature, and as a result, the bonding strength becomes stronger, Stability against vibration is improved and vibration characteristics are not deteriorated. Also,
It is stable against heat during soldering and does not deteriorate even when exposed to high heat. Further, the vibrating piezoelectric plate is fixed to the substrate at an accurate position together with the stress buffer plate, so that the space for sealing can be reduced and the piezoelectric component as a whole can be easily miniaturized. Further, the vibration piezoelectric plate and the stress buffer plate are fixed to the substrate, and by using silicon as the substrate, a control circuit and the like can be incorporated and integrated.
Furthermore, by using a crystal as the piezoelectric plate, it is possible to fabricate a crystal oscillator, a temperature-compensated crystal oscillator, a voltage-controlled crystal oscillator, etc. that are extremely highly stable and integrated into a single chip. Can be miniaturized. Further, by using a silicon substrate, a crystal plate, a glass plate or the like for the vibration piezoelectric plate, the stress buffer plate, the lid portion and the substrate portion, it becomes possible to apply the semiconductor processing technology, and the dimensions can be precisely processed. Therefore, a very small, highly accurate, and high-performance piezoelectric vibrator can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧電部品の第1の実施例に係る水晶振
動子の構成を示す斜視図
FIG. 1 is a perspective view showing a configuration of a crystal resonator according to a first embodiment of a piezoelectric component of the present invention.

【図2】第1の実施例におけるワンチップ化された温度
補償水晶発振器(TCXO)の構成を示す斜視図
FIG. 2 is a perspective view showing a configuration of a temperature-compensated crystal oscillator (TCXO) which is made into one chip in the first embodiment.

【図3】(a)〜(f)は、それぞれ本発明の圧電部品
及びその製造方法の第2の実施例の各工程を示す断面図
3 (a) to 3 (f) are cross-sectional views showing the respective steps of the second embodiment of the piezoelectric component and the manufacturing method thereof according to the present invention.

【図4】従来の水晶振動子の構成を示す斜視図FIG. 4 is a perspective view showing a configuration of a conventional crystal unit.

【図5】従来の水晶振動子の製造方法を示す工程図FIG. 5 is a process diagram showing a conventional method for manufacturing a crystal unit.

【図6】従来の他の水晶振動子の構成を示す斜視図FIG. 6 is a perspective view showing the configuration of another conventional crystal resonator.

【図7】従来のさらに他の水晶振動子の構成を示す斜視
FIG. 7 is a perspective view showing the configuration of still another conventional crystal resonator.

【図8】従来の温度補償水晶発振器の外観を示す斜視図FIG. 8 is a perspective view showing the appearance of a conventional temperature-compensated crystal oscillator.

【符号の説明】[Explanation of symbols]

1 :振動用水晶板 2 :シリコン基板 3 :応力緩衝板 4 :励起電極 5 :電極引出し部 6 :端子 7 :制御回路 8 :水晶素板 9 :リチウムナイオベイト基板 10 :シリコン素板 11 :保持部 12 :導電性接着剤 13 :振動用水晶片 14 :励磁電極 15 :保持用水晶片 16 :基台 17 :導電性接着剤 18 :接着剤 19 :水晶振動子 20 :制御回路 21 :ケース 22 :緩衝板 1: Quartz plate for vibration 2: Silicon substrate 3: Stress buffer plate 4: Excitation electrode 5: Electrode extraction part 6: Terminal 7: Control circuit 8: Crystal blank plate 9: Lithium niobate substrate 10: Silicon blank plate 11: Hold Part 12: Conductive adhesive 13: Vibration crystal piece 14: Excitation electrode 15: Holding crystal piece 16: Base 17: Conductive adhesive 18: Adhesive 19: Crystal oscillator 20: Control circuit 21: Case 22: Buffer Board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 振動用圧電板と、基板と、一層以上の応
力緩衝板とを具備し、前記応力緩衝板のうちの少なくと
も一層のヤング率は、前記振動用圧電板及び前記基板の
うち熱膨張率の小さな方のヤング率より小さな値を有
し、前記振動用圧電板と、前記基板と、前記応力緩衝板
とが直接接合により固定されている圧電部品。
1. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one of the stress buffer plates has a Young's modulus which is higher than that of the vibrating piezoelectric plate and the substrate. A piezoelectric component having a smaller expansion coefficient than that of Young's modulus and in which the vibration piezoelectric plate, the substrate, and the stress buffer plate are fixed by direct bonding.
【請求項2】 振動用圧電板と、基板と、一層以上の応
力緩衝板とを具備し、前記応力緩衝板のうちの少なくと
も一層のヤング率は、前記振動用圧電板及び前記基板の
うち熱膨張率の大きな方のヤング率より小さな値を有
し、前記振動用圧電板と、前記基板と、前記応力緩衝板
とが陽極接合により固定されている圧電部品。
2. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one of the stress buffer plates has a Young's modulus which is higher than that of the vibrating piezoelectric plate and the substrate. A piezoelectric component having a smaller expansion coefficient than the Young's modulus, and in which the vibration piezoelectric plate, the substrate, and the stress buffer plate are fixed by anodic bonding.
【請求項3】 振動用圧電板と、基板と、一層以上の応
力緩衝板とを具備し、前記応力緩衝板のうちの少なくと
も一層のヤング率は、前記振動用圧電板及び前記基板の
それぞれのヤング率より小さな値を有し、前記振動用圧
電板及び前記基板のうち熱膨張率が小さな方と前記応力
緩衝板とが直接接合により固定され、前記振動用圧電板
及び前記基板のうち熱膨張率が大きな方と前記応力緩衝
板とが陽極接合により固定されている圧電部品。
3. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one of the stress buffer plates has a Young's modulus greater than that of each of the vibration piezoelectric plate and the substrate. The vibrating piezoelectric plate and the substrate having a smaller thermal expansion coefficient and the stress buffer plate having a smaller value than the Young's modulus are fixed by direct bonding, and the vibrating piezoelectric plate and the substrate have a thermal expansion coefficient. A piezoelectric component in which the one having a higher rate and the stress buffer plate are fixed by anodic bonding.
【請求項4】 基板は、シリコン基板及びガラス基板の
うちいずれかである請求項1から3のいずれかに記載の
圧電部品。
4. The piezoelectric component according to claim 1, wherein the substrate is one of a silicon substrate and a glass substrate.
【請求項5】 応力緩衝板は酸化リチウムナイオベイト
基板である請求項1から4のいずれかに記載の圧電部
品。
5. The piezoelectric component according to claim 1, wherein the stress buffer plate is a lithium oxide niobate substrate.
【請求項6】 振動用圧電板は少なくとも一対の励振用
電極を有する水晶であり、水晶振動子として用いられる
請求項1から5のいずれかに記載の圧電部品。
6. The piezoelectric component according to claim 1, wherein the vibrating piezoelectric plate is a crystal having at least a pair of excitation electrodes and is used as a crystal resonator.
【請求項7】 振動用圧電板は少なくとも二対の励振用
電極を有する水晶であり、水晶フィルタとして用いられ
る請求項1から5のいずれかに記載の圧電部品。
7. The piezoelectric component according to claim 1, wherein the vibrating piezoelectric plate is a crystal having at least two pairs of excitation electrodes and is used as a crystal filter.
【請求項8】 振動用圧電板と、基板と、一層以上の応
力緩衝板とを具備し、前記応力緩衝板のうちの少なくと
も一層のヤング率は、前記振動用圧電板及び前記基板の
うち熱膨張率の小さな方のヤング率より小さな値を有す
る圧電部品の製造方法であって、前記振動用圧電板と、
前記応力緩衝板と、前記基板の表面を親水処理を施して
接触させ、その状態のまま、熱処理後においても圧電板
が圧電性を示す温度範囲内において熱処理し、前記振動
用圧電板と、前記応力緩衝板と、前記基板とを直接接合
させる圧電部品の製造方法。
8. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one Young's modulus of the stress buffer plate is equal to that of the vibration piezoelectric plate and the substrate. A method for manufacturing a piezoelectric component having a smaller expansion coefficient than the Young's modulus, which comprises the vibration piezoelectric plate,
The stress buffer plate and the surface of the substrate are brought into contact with each other by hydrophilic treatment, and in that state, heat treatment is performed within a temperature range in which the piezoelectric plate exhibits piezoelectricity even after heat treatment, the vibration piezoelectric plate, and A method for manufacturing a piezoelectric component, in which a stress buffer plate and the substrate are directly bonded.
【請求項9】 振動用圧電板と、基板と、一層以上の応
力緩衝板とを具備し、前記応力緩衝板のうちの少なくと
も一層のヤング率は、前記振動用圧電板及び前記基板の
うち熱膨張率の大きな方のヤング率より小さな値を有す
る圧電部品の製造方法であって、前記振動用圧電板と、
前記応力緩衝板と、前記基板の表面を接触させ、前記振
動用圧電板と前記応力緩衝板及び前記応力緩衝板と前記
基板の間にそれぞれ電圧を加えつつ、そのままの状態
で、熱処理後においても圧電板が圧電性を示す温度範囲
内において熱処理し、前記振動用圧電板と、前記応力緩
衝板と、前記基板を陽極接合させる圧電部品の製造方
法。
9. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one Young's modulus of the stress buffer plate is equal to that of the vibration piezoelectric plate and the substrate. A method of manufacturing a piezoelectric component having a smaller expansion coefficient than the Young's modulus, the vibration piezoelectric plate comprising:
The stress buffer plate and the surface of the substrate are brought into contact with each other, and a voltage is applied between the vibration piezoelectric plate and the stress buffer plate and between the stress buffer plate and the substrate, and in that state, even after the heat treatment. A method of manufacturing a piezoelectric component, wherein a heat treatment is performed within a temperature range in which a piezoelectric plate exhibits piezoelectricity, and the vibration piezoelectric plate, the stress buffer plate, and the substrate are anodically bonded.
【請求項10】 振動用圧電板と、基板と、一層以上の
応力緩衝板とを具備し、前記応力緩衝板のうちの少なく
とも一層のヤング率は、前記振動用圧電板及び前記基板
のうち熱膨張率の大きな方のヤング率より小さな値を有
する圧電部品の製造方法であって、前記振動用圧電板及
び前記基板のうち熱膨張率の大きな方と前記応力緩衝板
との間に電圧を加えつつ、そのままの状態で、熱処理後
においても圧電板が圧電性を示す温度範囲内において熱
処理し、前記振動用圧電板及び前記基板のうち熱膨張率
の大きな方と前記応力緩衝板とを陽極接合し、前記振動
用圧電板及び前記基板のうち熱膨張率の小さな方と前記
応力緩衝板の表面を親水処理を施して接触させ、そのま
まの状態で、熱処理後においても圧電板が圧電性を示す
温度範囲内において熱処理し、前記振動用圧電板及び前
記基板のうち熱膨張率の小さな方と前記応力緩衝板とを
直接接合する圧電部品の製造方法。
10. A vibrating piezoelectric plate, a substrate, and one or more stress buffer plates, wherein at least one of the stress buffer plates has a Young's modulus which is higher than that of the vibrating piezoelectric plate and the substrate. A method for manufacturing a piezoelectric component having a smaller Young's modulus having a larger expansion coefficient, wherein a voltage is applied between the vibration damping piezoelectric plate and the substrate having a larger thermal expansion coefficient and the stress buffer plate. In the same state, the piezoelectric plate is heat-treated within a temperature range in which the piezoelectric plate shows piezoelectricity even after the heat treatment, and one of the vibration-use piezoelectric plate and the substrate having a larger thermal expansion coefficient and the stress buffer plate are anodically bonded. Then, one of the piezoelectric plate for vibration and the substrate having a smaller coefficient of thermal expansion is brought into contact with the surface of the stress buffer plate by applying a hydrophilic treatment, and in that state, the piezoelectric plate shows piezoelectricity even after heat treatment. Within temperature range A method of manufacturing a piezoelectric component, which comprises heat-treating and directly joining one of the vibration piezoelectric plate and the substrate having a smaller coefficient of thermal expansion and the stress buffer plate.
JP30178794A 1994-12-06 1994-12-06 Piezoelectric component and manufacture of piezoelectric component Pending JPH08162893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30178794A JPH08162893A (en) 1994-12-06 1994-12-06 Piezoelectric component and manufacture of piezoelectric component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30178794A JPH08162893A (en) 1994-12-06 1994-12-06 Piezoelectric component and manufacture of piezoelectric component

Publications (1)

Publication Number Publication Date
JPH08162893A true JPH08162893A (en) 1996-06-21

Family

ID=17901175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30178794A Pending JPH08162893A (en) 1994-12-06 1994-12-06 Piezoelectric component and manufacture of piezoelectric component

Country Status (1)

Country Link
JP (1) JPH08162893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306643A1 (en) * 2009-09-30 2011-04-06 Seiko Instruments Inc. Piezoelectric resonator, oscillator and oscillator package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306643A1 (en) * 2009-09-30 2011-04-06 Seiko Instruments Inc. Piezoelectric resonator, oscillator and oscillator package
JP2011097553A (en) * 2009-09-30 2011-05-12 Seiko Instruments Inc Piezoelectric resonator, oscillator and oscillator package

Similar Documents

Publication Publication Date Title
US7518291B2 (en) Piezoelectric device
US20110146041A1 (en) Method of manufacturing piezoelectric device
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
KR20120135058A (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric vibrator, electronic device and electronic apparatus
JP2007258917A (en) Piezoelectric device
US20020089261A1 (en) Surface mount quartz crystal resonators and methods for making same
JP2000341065A (en) Manufacture of piezoelectric vibrator
WO2013027381A1 (en) Vibrating element, resonator, electronic device, and electronic apparatus
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JPH0746072A (en) Manufacture of crystal resonator
US8624470B2 (en) Piezoelectric devices including electrode-less vibrating portions
JPH07249957A (en) Electronic parts and their formation
JP3709113B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP3164890B2 (en) Quartz crystal resonator and its manufacturing method
JP3164891B2 (en) Quartz crystal resonator and its manufacturing method
JP5526665B2 (en) Manufacturing method of surface acoustic wave device
JP2004201211A (en) Joining structure of piezoelectric vibrating piece, piezoelectric device, its manufacturing method, and cellular phone unit and electronic equipment using the device
JPH06314947A (en) Crystal vibrator and its manufacture
JPH08162893A (en) Piezoelectric component and manufacture of piezoelectric component
JPH08162892A (en) Piezoelectric component and manufacture of piezoelectric component
JP2976704B2 (en) Quartz crystal resonator and its manufacturing method
JPH07111435A (en) Production of crystal piezoelectric device
KR0157331B1 (en) Quartz device and manufacturing method thereof
JP3164893B2 (en) Quartz crystal resonator and its manufacturing method