JP3164890B2 - Quartz crystal resonator and its manufacturing method - Google Patents

Quartz crystal resonator and its manufacturing method

Info

Publication number
JP3164890B2
JP3164890B2 JP16445192A JP16445192A JP3164890B2 JP 3164890 B2 JP3164890 B2 JP 3164890B2 JP 16445192 A JP16445192 A JP 16445192A JP 16445192 A JP16445192 A JP 16445192A JP 3164890 B2 JP3164890 B2 JP 3164890B2
Authority
JP
Japan
Prior art keywords
crystal
quartz
quartz plate
plate
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16445192A
Other languages
Japanese (ja)
Other versions
JPH066167A (en
Inventor
哲義 小掠
章大 金星
豊 田口
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16445192A priority Critical patent/JP3164890B2/en
Priority to EP93109905A priority patent/EP0575948B1/en
Priority to KR1019930011384A priority patent/KR0157331B1/en
Priority to DE69310031T priority patent/DE69310031T2/en
Publication of JPH066167A publication Critical patent/JPH066167A/en
Priority to US08/182,561 priority patent/US5747857A/en
Priority to US08/473,932 priority patent/US5668057A/en
Application granted granted Critical
Publication of JP3164890B2 publication Critical patent/JP3164890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は小型高安定な水晶振動子
の構造および製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a small and highly stable crystal unit.

【0002】[0002]

【従来の技術】水晶振動子は、その高い安定性により、
情報通信に欠かせない重要なデバイスとして用いられて
いる。近年衛星通信や携帯電話などの発達にともない、
各デバイスの小型化、高性能化が一つの大きな目標とさ
れているが、水晶振動子も例外ではない。
2. Description of the Related Art Quartz resonators have high stability
It is used as an important device indispensable for information communication. With the recent development of satellite communications and mobile phones,
One of the major goals is miniaturization and high performance of each device, but crystal oscillators are no exception.

【0003】従来の水晶振動子としては、ATカット水晶
板を金属性の支持架により支持したものがある。図7に
これらの水晶振動子の一例を示す。図7において、18
はATカット水晶板であり、3は水晶板1の両面に蒸着さ
れた電極であり、19は水晶板18を保持する保持部で
あり、20は保持部19と水晶板18を接着するための
導電性接着剤である。電極3は導電性接着剤を介してそ
れぞれ別の保持部に電気的に接続されている。
As a conventional quartz oscillator, there is one in which an AT-cut quartz plate is supported by a metal supporting frame. FIG. 7 shows an example of these crystal units. In FIG. 7, 18
Denotes an AT-cut quartz plate, 3 denotes electrodes deposited on both sides of the quartz plate 1, 19 denotes a holding portion for holding the quartz plate 18, and 20 denotes a holding portion for bonding the holding portion 19 and the quartz plate 18. It is a conductive adhesive. The electrodes 3 are electrically connected to different holding portions via a conductive adhesive.

【0004】従来の水晶振動子においては、水晶板を保
持するために、通常、金属の保持部19と導電性接着剤
20を用いる。しかしながら、金属の保持部を用いた場
合、熱膨張率が水晶の熱膨張率と異なるため水晶振動子
の温度が変化すると、保持部と水晶との間に熱応力が発
生する。水晶板の発振周波数は水晶中の応力に大きく依
存するために、このような保持方法では温度変化に対し
不安定な水晶振動子となる。そのため、水晶板における
振動部分に応力がかからないように、電極部分と保持部
分との間を大きくあける構造がとられている。また、導
電性接着剤を用いるために、接着時の接着剤の伸縮によ
る応力が水晶にかかる問題、接着剤と水晶との熱膨張率
の差により熱応力が発生する問題、また接着強度が十分
でなく大きな接着面積が必要であること、導電性接着剤
の耐熱性に問題があるために半田付けにおいて低温での
処理しかできないこと、導電性接着剤の硬化に伴うガス
の放出、機械的振動に対して十分安定でないこと、さら
には接着剤の劣化の問題などにより、水晶振動子の安定
性は悪化することになる。導電性接着剤でなく他の種々
の接着剤を用いる方法もあるが、接着剤を用いる限り基
本的にこの問題は解決されない。
In a conventional quartz oscillator, a metal holding portion 19 and a conductive adhesive 20 are usually used to hold a quartz plate. However, when a metal holding part is used, the thermal expansion coefficient is different from the thermal expansion coefficient of quartz, so that when the temperature of the crystal unit changes, thermal stress is generated between the holding part and the crystal. Since the oscillation frequency of the crystal plate greatly depends on the stress in the crystal, such a holding method results in a crystal resonator that is unstable with respect to temperature changes. Therefore, a structure is adopted in which a large space is provided between the electrode portion and the holding portion so that no stress is applied to the vibrating portion of the quartz plate. In addition, since conductive adhesive is used, stress due to the expansion and contraction of the adhesive during bonding is applied to the crystal, thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal, and the bonding strength is sufficient. Required that a large bonding area be used, the conductive adhesive has a problem with the heat resistance, so that only low-temperature processing can be performed during soldering, the release of gas accompanying the curing of the conductive adhesive, and mechanical vibration However, the stability of the crystal unit is degraded due to the fact that the crystal unit is not sufficiently stable and the problem of the deterioration of the adhesive. Although there is a method of using other various adhesives instead of the conductive adhesive, this problem is basically not solved as long as the adhesive is used.

【0005】図8にこの水晶振動子の製造工程例を示
す。この製造工程においては水晶板の切断を先に行な
い、この後、個別に切り離された水晶板の研磨を行な
う。そのため、小型の水晶振動子を作成するために水晶
板を小さく切断すると研磨工程において非常に小さな水
晶板を扱うことになる。この様な微小な水晶板を研磨す
るには高度な研磨装置を使用しなければならない。その
ため、さらに小さな水晶振動子を精度良く作成するため
にこの製法を用いることは困難である。次に、切断され
た振動部に電極を蒸着し保持部19と結合することにな
る。この時、切断された水晶板を個別に取り扱う必要性
があり、また導電性接着剤を塗付するために、ある程度
以上の大きさが必要とされる。さらにその後、周波数調
整を行ない金属パッケージにて気密封止することにな
る。上記の切断、研磨に関する理由、導電性接着剤に関
する理由により、通常このような構造の水晶振動子で
は、水晶板は幅2ミリ以上、長さ5ミリ以上の大きさが
ないと、高安定な水晶振動子を作成することが困難であ
った。また、水晶板そのものが大きいこと気密封止のた
め別途容器に実装しなければならないことから、水晶振
動子全体ではかなりの大きさが必要とされる。
FIG. 8 shows an example of a manufacturing process of the quartz oscillator. In this manufacturing process, the quartz plate is cut first, and then the individually cut quartz plate is polished. For this reason, when a quartz plate is cut into small pieces in order to produce a small quartz oscillator, a very small quartz plate is handled in the polishing step. In order to polish such a minute quartz plate, an advanced polishing apparatus must be used. For this reason, it is difficult to use this manufacturing method to accurately produce a smaller crystal resonator. Next, an electrode is vapor-deposited on the cut vibrating part and is connected to the holding part 19. At this time, it is necessary to handle the cut quartz plates individually, and to apply a conductive adhesive, a certain size or more is required. After that, the frequency is adjusted and hermetically sealed with a metal package. Due to the above-mentioned reasons relating to cutting and polishing, and the reason relating to the conductive adhesive, a crystal plate having such a structure usually has a high stability unless the quartz plate has a width of 2 mm or more and a length of 5 mm or more. It was difficult to make a crystal oscillator. In addition, since the quartz plate itself is large and must be separately mounted in a container for hermetic sealing, a considerable size is required for the entire quartz resonator.

【0006】保持部の熱応力の問題を解決するために、
例えば特許公開公報(平02−261210号)に振動
用の水晶板を熱膨張のほぼ同じ水晶板で保持する構造が
述べられている。図9にこの例を示す。
In order to solve the problem of the thermal stress of the holding portion,
For example, Japanese Patent Laid-Open Publication No. 02-261210 describes a structure in which a quartz plate for vibration is held by a quartz plate having substantially the same thermal expansion. FIG. 9 shows this example.

【0007】図9において、21は振動用水晶片、22
は振動用水晶片21の両面に蒸着された励磁電極、23
は振動用水晶片21を保持するための保持用水晶片、2
4は基台、25は振動用水晶片21と保持用水晶片23
を固着する導電性接着剤、26は保持用水晶片23と基
台24を接着する接着剤である。振動用水晶片21と保
持用水晶片23の固着方向(X−X方向)と、保持用水
晶片23と基台24の固着方向(Z−Z)とを直交する
方向にする。こうすると保持用水晶片23の長手方向は
自由端となり、熱に対して伸縮自在でストレスは生じな
い。また振動用水晶片21は長手方向を水晶片23の同
方向に一致してその両端側を固着する。したがって振動
用水晶片21の長手方向の伸縮は保持用水晶片23の影
響を受けるが同一材料で熱膨張係数が等しく熱によるス
トレスは発生しない。こうすることにより、熱膨張によ
る周波数変化を防止して良好な温度特性が得られる。し
かし、振動用水晶片21と保持用水晶片23との固定を
導電性接着剤を用いて行なっているので、この導電性接
着剤に起因する各種の様々な問題、接着時の接着剤の伸
縮による応力が水晶にかかる問題、接着剤と水晶との熱
膨張率の差により熱応力が発生する問題、また接着強度
が十分でなく大きな接着面積が必要であること、導電性
接着剤の耐熱性に問題があるために半田付けにおいて低
温での処理しかできないこと、導電性接着剤の硬化に伴
うガスの放出、機械的振動に対して十分安定でないこ
と、さらには接着剤の劣化の問題は解決されない。その
ため、本水晶振動子においても温度特性および劣化の点
で十分な安定性を持つことができない。
In FIG. 9, reference numeral 21 denotes a vibrating crystal blank;
Are excitation electrodes deposited on both sides of the vibrating quartz piece 21;
Denotes a holding crystal piece for holding the vibration crystal piece 21;
4 is a base, 25 is a vibrating crystal blank 21 and a holding crystal blank 23
Is an adhesive for bonding the holding crystal piece 23 and the base 24. The direction in which the vibrating crystal blank 21 and the holding crystal blank 23 are fixed (the XX direction) is perpendicular to the direction in which the holding crystal blank 23 and the base 24 are fixed (ZZ). In this case, the longitudinal direction of the holding crystal piece 23 becomes a free end, and is free of stress due to expansion and contraction with respect to heat. Further, the vibrating crystal blank 21 is fixed at both ends so that the longitudinal direction coincides with the same direction of the crystal blank 23. Therefore, the expansion and contraction of the vibrating crystal piece 21 in the longitudinal direction is affected by the holding crystal piece 23, but the same material has the same thermal expansion coefficient and no thermal stress occurs. By doing so, a frequency change due to thermal expansion is prevented, and good temperature characteristics are obtained. However, since the vibration crystal piece 21 and the holding crystal piece 23 are fixed using a conductive adhesive, various problems caused by the conductive adhesive, stress due to expansion and contraction of the adhesive at the time of bonding, and the like. Problems with quartz, the problem of thermal stress due to the difference in the coefficient of thermal expansion between the adhesive and the quartz, the problem of insufficient bonding strength and the need for a large bonding area, and the problem of heat resistance of the conductive adhesive Therefore, the problems of only being able to be processed at a low temperature in soldering, release of gas due to hardening of the conductive adhesive, not being sufficiently stable against mechanical vibration, and deterioration of the adhesive are not solved. Therefore, this crystal resonator cannot have sufficient stability in terms of temperature characteristics and deterioration.

【0008】[0008]

【発明が解決しようとする課題】従来の水晶振動子にお
いては、水晶板と保持部の熱膨張率の差に起因する熱応
力が発振周波数を不安定にするとともに、水晶板と保持
部を接着するための導電性接着剤に起因する、接着時の
接着剤の伸縮による応力が水晶にかかる問題、接着剤と
水晶との熱膨張率の差により熱応力が発生する問題、ま
た十分な接着強度が十分でなく大きな接着面積が必要で
あること、導電性接着剤の耐熱性に問題があるために半
田付けにおいて低温での処理しかできないこと、導電性
接着剤の硬化に伴うガスの放出、機械的振動に対して十
分安定でないこと、さらには接着剤の劣化の問題が存在
し、温度および機械的振動に対して特性が不安定であっ
た。
In the conventional crystal unit, the thermal stress caused by the difference in the coefficient of thermal expansion between the quartz plate and the holding portion makes the oscillation frequency unstable and bonds the quartz plate and the holding portion. The problem is that the stress caused by the expansion and contraction of the adhesive during bonding is applied to the crystal due to the conductive adhesive used for bonding, the thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal, and the bonding strength is sufficient. Is not sufficient, a large bonding area is required, only heat treatment at low temperature is possible due to the problem of heat resistance of the conductive adhesive, gas release accompanying curing of the conductive adhesive, mechanical However, there is a problem that the adhesive is not sufficiently stable against mechanical vibration, and further, there is a problem of deterioration of the adhesive, and the characteristics are unstable with respect to temperature and mechanical vibration.

【0009】また、保持部と水晶の振動部との相互作用
を避けるためと、接着時の製造工程における作業性を確
保するために、水晶板が数ミリ角以上の大きさを持つ必
要があった。さらに、水晶板を気密封止することを考慮
すると水晶振動子全体の大きさはさらに大きなものとな
っている。
Further, in order to avoid interaction between the holding portion and the vibrating portion of the crystal and to ensure workability in the manufacturing process at the time of bonding, the crystal plate needs to have a size of several mm square or more. Was. Further, in consideration of hermetically sealing the quartz plate, the size of the whole quartz oscillator is further increased.

【0010】本発明は、水晶振動子の上記欠点を克服す
るものであり、小型、高安定の水晶振動子の製造を可能
にする。
The present invention overcomes the above-mentioned drawbacks of the quartz oscillator, and enables the manufacture of a small, highly stable quartz oscillator.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の第1の水晶振動子は、励振電極が対向する主
面に形成された振動用水晶板と、前記振動用水晶板に適
切な振動空間を与えるための保持用水晶板とを備え、前
振動用水晶板の片端が前記保持用水晶板の表面に直接
接合されて保持されており、前記直接接合が、それぞれ
の水晶板の表面に付着した水酸基や水素の分子間力、も
しくは、それぞれの水晶板の構成元素である珪素と酸素
の直接結合のうち少なくとも一方による接合であること
を特徴とする。また、本発明の第2の水晶振動子は、
らに水晶からなる水晶振動子ベース部と水晶からなる水
晶振動子蓋部とを、それぞれの水晶板の表面に付着した
水酸基や水素の分子間力、もしくは、それぞれの水晶板
の構成元素である珪素と酸素の直接結合のうち少なくと
も一方により直接接合することで、前記ベース部と蓋部
の内部に水晶振動子を封止したことを特徴とする。ま
た、本発明の第1の水晶振動子の製造方法は、あらかじ
め一方の面に電極が形成された振動用水晶板と保持用水
晶板の表面を親水処理することで表面に水酸基を付着さ
せ、接触させ、熱処理後においても水晶が圧電性を示す
温度範囲内で熱処理することにより、前記振動用水晶板
を前記保持用水晶板に直接接合し、次いで、前記電極が
形成された振動用水晶板の他方の面に電極を形成するこ
とを特徴とする
In order to solve the above-mentioned problems, a first quartz-crystal vibrator of the present invention comprises a main unit in which excitation electrodes face each other.
A quartz crystal plate for vibration formed on the
And a holding quartz plate to provide a sharp vibration space.
Serial one end of the vibrating quartz plate directly on the surface of the holding quartz plate
The direct bonding is at least one of the intermolecular force of hydroxyl group and hydrogen attached to the surface of each quartz plate, or the direct bond between silicon and oxygen which are constituent elements of each quartz plate. It is characterized by joining by one side. The second crystal oscillator of the present invention, are
In addition, the crystal unit base made of quartz and the crystal unit cover made of quartz are used as the intermolecular force of hydroxyl group and hydrogen attached to the surface of each quartz plate, or a constituent element of each quartz plate. The crystal unit is sealed inside the base and the lid by directly bonding at least one of a direct bond between silicon and oxygen. The manufacturing method of the first crystal oscillator of the present invention, beforehand
The surface of the vibrating quartz plate with electrodes formed on one side and the surface of the holding quartz plate are subjected to hydrophilic treatment to attach hydroxyl groups to the surfaces and contact them. By heat treatment, the vibration quartz plate is directly joined to the holding quartz plate, and then the electrode is
An electrode is formed on the other surface of the formed quartz plate for vibration .

【0012】[0012]

【作用】直接接合を用いることにより、機械的に強固
で、劣化しない結合方法を提供するとともに、水晶板を
水晶板を用いて保持することにより振動部分と保持部分
の熱膨張率の差を最小にすることができ、この熱膨張率
の差に起因する熱応力の発生をおさえ、水晶振動子の発
振周波数が変化することを避け、簡略且つ小型化に適し
た製造工程を用い水晶振動子を安価に製造することがで
きる。
[Function] By using direct bonding, a mechanically strong and non-deteriorating bonding method is provided, and the difference in the coefficient of thermal expansion between the vibrating part and the holding part is minimized by holding the quartz plate using the quartz plate. The generation of thermal stress due to the difference in the coefficient of thermal expansion is suppressed, the oscillation frequency of the crystal resonator is prevented from being changed, and the crystal resonator is manufactured using a simple and suitable manufacturing process for miniaturization. It can be manufactured at low cost.

【0013】[0013]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図1に本発明の第1の実施例
の水晶振動子の構造を示す。図1において、1は振動用
水晶板、2は保持用水晶板、3は振動用水晶板1の両面
に蒸着された一対の励振用電極であり、4は励振用電極
3と外部との電気的接続のための電極取り出し部であ
る。振動用水晶板1と保持用水晶板2は直接接合技術に
より接着されている。直接接合は水晶同士を接着剤を用
いずに直接張り合わせたものである。従来の水晶振動子
においては、水晶と保持部との熱膨張率が異なるため熱
応力が発生し、水晶振動子の安定性を損なっていたが、
本実施例においては保持部、振動部ともに熱膨張率の同
じ水晶を用いるために従来のような振動部と保持部の熱
膨張率の違いによる熱応力の問題は発生しない。さら
に、保持部と振動部の結合に接着剤を使用せずに直接接
合を行なうために、水晶振動子の接着剤と水晶との熱膨
張率の差に起因する熱応力の発生や、長期安定性につい
ても優れたものとなる。
(Embodiment 1) FIG. 1 shows the structure of a quartz oscillator according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vibrating quartz plate, 2 denotes a holding quartz plate, 3 denotes a pair of excitation electrodes deposited on both surfaces of the vibrating quartz plate 1, and 4 denotes an electric connection between the excitation electrode 3 and the outside. It is an electrode take-out part for electrical connection. The vibrating quartz plate 1 and the holding quartz plate 2 are bonded by a direct joining technique. In direct bonding, crystals are directly bonded to each other without using an adhesive. In the conventional crystal unit, thermal stress was generated due to the difference in the thermal expansion coefficient between the crystal and the holding unit, and the stability of the crystal unit was impaired.
In this embodiment, since the quartz crystal having the same thermal expansion coefficient is used for both the holding section and the vibrating section, the problem of thermal stress due to the difference in the thermal expansion coefficient between the vibrating section and the holding section does not occur. Furthermore, since the bonding between the holding part and the vibrating part is performed directly without using an adhesive, the generation of thermal stress due to the difference in the coefficient of thermal expansion between the adhesive of the crystal unit and the crystal, and long-term stability It also has excellent properties.

【0015】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、長辺3ミリ、短辺1ミリの水
晶板に励振用電極を蒸着したものを振動用水晶板として
用いた。この振動用水晶板を用いて従来の構造で保持し
た場合と、本実施例の構造を用い直接接着技術を使用し
て保持した場合とで水晶振動子の安定性を測定したとこ
ろ、本実施例の構造の水晶振動子では温度特性で15p
pmの改善が見られた。これは、保持部に熱膨張率の等
しい水晶を用いたこと、接着剤を使用しないため接着剤
と水晶との熱膨張率の差に起因する熱応力が発生しない
ためである。また、長期安定性においても接着剤を使用
しない本実施例においては非常に高安定な結果を示し、
接着時の接着剤の伸縮による応力が水晶にかかる問題、
導電性接着剤の硬化に伴うガスの放出、機械的振動に対
して十分安定でないこと、さらには接着剤の劣化の問題
が発生しなかったことがわかる。また今回は長辺3ミ
リ、短辺1ミリの水晶板を用いたが、より小型の水晶振
動子においても本実施例の構造を用いると従来の保持方
法を用いた水晶振動子よりも高安定な水晶振動子ができ
ることは明らかである。さらに、接着剤を用いないため
に、従来の振動子に存在した、接着剤の耐熱温度の問題
は全く発生しないため、半田リフローも可能となってい
る。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In the present embodiment, a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as a vibrating quartz plate. When the stability of the crystal unit was measured using the vibration quartz plate in the conventional structure and the case using the structure of the present embodiment and using the direct bonding technology, the stability of the quartz oscillator was measured. In the case of a quartz oscillator with the structure of
An improvement in pm was seen. This is because the holding portion is made of quartz having the same coefficient of thermal expansion and no adhesive is used, so that no thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the quartz. In addition, in the present example that does not use an adhesive even in long-term stability, it shows a very high stability result,
The problem of stress on the crystal due to the expansion and contraction of the adhesive during bonding,
It can be seen that the conductive adhesive is not sufficiently stable against gas release and mechanical vibration accompanying the curing of the conductive adhesive, and furthermore, the problem of deterioration of the adhesive did not occur. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible.

【0016】また、本実施例において振動用水晶板1と
保持用水晶板2のカット角度と接合面の等しいもの同士
を接合することにより保持部と振動部の熱膨張率の差は
最小になる。特にカット角度と接合面が完全に一致した
場合、熱応力は発生しないことになる。このとき、水晶
振動子の温度特性が最良のものになることは本実施例の
効果より明らかである。
Also, in this embodiment, the difference between the thermal expansion coefficients of the holding portion and the vibrating portion is minimized by joining the quartz crystal plate for vibration 1 and the quartz crystal plate for holding 2 having the same cut angle and the same joint surface. . In particular, when the cut angle and the joining surface completely match, no thermal stress is generated. At this time, it is clear from the effect of the present embodiment that the temperature characteristics of the crystal resonator become the best.

【0017】(実施例2)図2に本発明の第2の実施例
の水晶振動子の構造を示す。図2(a)はその断面図、
(b)は匡体内部、(c)は全体の斜視図である。図2
において、1は振動用水晶板、3は振動用水晶板1の両
面に蒸着された励振用電極、4は励振用電極の引出し
部、5は水晶で作られた水晶振動子ベース部、6は水晶
で作られた水晶振動子蓋部、7は外部電極、8は外部電
極を水晶振動子外部に引き出すための低融点ガラスであ
る。本実施例においては振動用水晶板1と中央部に凹部
を設けた水晶振動子ベース部5、および水晶振動子ベー
ス部5と中央部に凹部を設けた水晶振動子蓋部6とをそ
れぞれ直接接着した後、水晶振動子内部を気密封止する
ために電極引き出し部分7を低融点ガラスにより封止し
ている。このため、振動用水晶板1が水晶以外の他の材
質と接着され、振動用水晶板1に熱応力がかかることの
ない構造になっている。また、低融点ガラス8の部分を
通して励振用電極を外部に引き出すことにより水晶振動
子内部に接着剤の存在しない構造となっている。
(Embodiment 2) FIG. 2 shows the structure of a quartz oscillator according to a second embodiment of the present invention. FIG. 2A is a sectional view thereof,
(B) is a perspective view of the inside of the housing, and (c) is an overall perspective view. FIG.
In the figures, 1 is a vibrating quartz plate, 3 is an exciting electrode deposited on both sides of the vibrating quartz plate 1, 4 is a lead portion of the exciting electrode, 5 is a quartz oscillator base made of quartz, and 6 is A quartz oscillator lid portion made of quartz, 7 is an external electrode, and 8 is a low-melting glass for drawing the external electrode out of the quartz oscillator. In this embodiment, the vibrating quartz plate 1 and the crystal resonator base 5 having a concave portion at the center, and the crystal resonator base 5 and the crystal resonator lid 6 having a concave portion at the center are directly connected to each other. After bonding, the electrode lead-out portion 7 is sealed with low-melting glass to hermetically seal the inside of the crystal unit. For this reason, the vibrating quartz plate 1 is adhered to a material other than quartz, so that the vibrating quartz plate 1 is not subjected to thermal stress. In addition, by drawing out the excitation electrode to the outside through the low melting point glass 8, a structure in which no adhesive is present inside the crystal unit is obtained.

【0018】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。長辺3ミリ、短辺1ミリの振動用水晶板に励振用電
極を蒸着した従来の水晶振動子の場合と、同じ寸法の振
動用水晶板を用いた本実施例の水晶振動子を比較すると
温度特性で15ppmの改善が見られた。これは、保持
部として熱膨張率の等しい水晶を用いた水晶振動子ベー
ス部を使用したこと、接着剤を使用しないため接着剤と
水晶との熱膨張率の差に起因する熱応力が発生しないた
めである。また、長期安定性においても接着剤を使用し
ない本実施例においては非常に高安定な結果を示し、接
着時の接着剤の伸縮による応力が水晶にかかる問題、導
電性接着剤の硬化に伴うガスの放出、機械的振動に対し
て十分安定でないこと、さらには接着剤の劣化の問題が
発生しなかったことがわかる。さらに、水晶振動子全体
の寸法も、従来の水晶振動子においては保持部および匡
体を含めて長辺6ミリ、短辺4ミリの大きさであるのに
対し本実施例における水晶振動子においては長辺4.5
ミリ、短辺2.5ミリと同じ大きさの振動用水晶板を用
いたにもかかわらず小型の水晶振動子になっている。こ
れは従来接着剤を塗付するために必要であったスペース
が直接接着を用いることにより、小さなスペースで済む
ようになったこと、また、従来は熱膨張率の差による熱
応力の発生に伴う発振周波数の変化を軽減するために接
着部分と振動部分の間に間隙が必要であったが、本実施
例の水晶振動子においては水晶同士の直接接合であるた
め熱応力が発生せず、この間隙が必要でなくなったため
である。また今回は長辺3ミリ、短辺1ミリの水晶板を
用いたが、より小型の水晶振動子においても本実施例の
構造を用いると従来の保持方法を用いた水晶振動子より
も高安定な水晶振動子ができることは明らかである。さ
らに、接着剤を用いないために、従来の振動子に存在し
た、接着剤の耐熱温度の問題は全く発生しないため、半
田リフローも可能となっている。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. A comparison is made between the case of a conventional crystal unit in which excitation electrodes are deposited on a vibration crystal plate having a long side of 3 mm and a short side of 1 mm, and the crystal unit of the present embodiment using a vibration crystal plate of the same dimensions. A 15 ppm improvement in temperature characteristics was observed. This is because a quartz oscillator base using quartz having the same coefficient of thermal expansion is used as the holding part, and no thermal stress is generated due to a difference in coefficient of thermal expansion between the adhesive and the crystal because no adhesive is used. That's why. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding is applied to the crystal, and the gas accompanying the curing of the conductive adhesive It can be seen that there is no problem that the adhesive is not sufficiently stable against the release and mechanical vibration, and that the adhesive does not deteriorate. Further, the dimensions of the entire crystal unit are 6 mm long and 4 mm short sides including the holding unit and the housing in the conventional crystal unit, whereas the size of the crystal unit in this embodiment is Is long side 4.5
Although a quartz crystal plate for vibration having the same size as a millimeter and a short side of 2.5 mm is used, the crystal resonator is small. This is because the space required for applying the adhesive was reduced to a small space by using direct bonding, and the conventional method was accompanied by the occurrence of thermal stress due to the difference in coefficient of thermal expansion. A gap was required between the bonded part and the vibrating part to reduce the change in the oscillation frequency.However, in the crystal resonator of this embodiment, thermal stress was not generated because the crystal was directly bonded to each other. This is because a gap is no longer necessary. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible.

【0019】(実施例3)図3に、本発明の構造の水晶
振動子の製造方法の実施例を示す。図3において、1は
振動用水晶板、2は保持用水晶板、3は励振用電極、4
は引き出し電極、9は振動用水晶素板、10は振動用水
晶板1の下面に蒸着された励振用電極、11は保持用水
晶素板、12は振動用水晶板1の下面に蒸着された励振
用電極および同時に蒸着される引き出し電極である。ま
た、図3(a)に本実施例により製造される水晶振動子
の構造を、図3(b)から(g)にその製造工程を示
す。
(Embodiment 3) FIG. 3 shows an embodiment of a method of manufacturing a quartz oscillator having the structure of the present invention. In FIG. 3, 1 is a quartz plate for vibration, 2 is a quartz plate for holding, 3 is an excitation electrode,
Is an extraction electrode, 9 is a vibrating quartz plate, 10 is an exciting electrode deposited on the lower surface of the vibrating quartz plate 1, 11 is a holding quartz plate, and 12 is a deposited on the lower surface of the vibrating quartz plate 1. An excitation electrode and a lead electrode that is simultaneously deposited. FIG. 3A shows the structure of the crystal resonator manufactured according to this embodiment, and FIGS. 3B to 3G show the manufacturing steps.

【0020】本実施例では、前記水晶素板9、11には
厚さ350μm、大きさ3インチのATカット水晶板を
用いた。
In this embodiment, the quartz plates 9 and 11 are AT-cut quartz plates having a thickness of 350 μm and a size of 3 inches.

【0021】前記振動用水晶素板9は、振動用水晶板1
の形状を多数残して深さ80μmまでエッチングによっ
て削り、振動用水晶素板9に一方の励振用電極10を真
空蒸着によって形成する。本実施例の場合、クロムを厚
さ0.1ミクロン、金を厚さ2ミクロンに真空蒸着して
形成した。その様子を図3(b)に示す。また、保持用
水晶素板11の状態を図3(c)に示す。前記水晶素板
11と前記水晶素板9の接触部分を鏡面に研磨し、アン
モニア水と過酸化水素水と水の混合液を60℃に加熱し
た溶液を用いて表面を親水化処理し、水洗いした。その
後注意深く洗浄して前記振動用水晶板1と前記保持用水
晶板2とが接触する部分にはゴミが存在しないようにし
た。次に、前記水晶素板9と前記水晶素板11とを、表
面を清浄に保ったまま接触させた。この状態を図3
(d)に示す。このままでもかなりの接着強度がある
が、後に行なう研磨ができるまでの強度以上にするため
に、加熱処理を施した。なお、水晶の結晶転移温度が8
70℃であるために、前記加熱処理温度はこの温度以上
に加熱することはできない。このため本実施例では、前
記加熱処理温度を500℃とした。
The vibrating quartz plate 9 is a vibrating quartz plate 1.
Is etched away to a depth of 80 μm while leaving a large number of shapes, and one excitation electrode 10 is formed on the vibrating crystal plate 9 by vacuum evaporation. In this embodiment, chromium was formed to a thickness of 0.1 μm and gold was formed to a thickness of 2 μm by vacuum deposition. This is shown in FIG. FIG. 3C shows the state of the holding crystal element plate 11. The contact portion between the quartz crystal plate 11 and the quartz crystal plate 9 is polished to a mirror surface, the surface is hydrophilized using a solution obtained by heating a mixed solution of ammonia water, hydrogen peroxide water and water at 60 ° C., and washed with water. did. Thereafter, the plate was carefully washed so that no dust was present in a portion where the vibrating quartz plate 1 and the holding quartz plate 2 were in contact with each other. Next, the quartz plate 9 and the quartz plate 11 were brought into contact with each other while keeping the surface clean. This state is shown in FIG.
(D). Although there is considerable adhesive strength even in this state, a heat treatment was performed to increase the adhesive strength to a level at which polishing can be performed later. In addition, the crystal transition temperature of quartz is 8
Since the temperature is 70 ° C., the heat treatment temperature cannot be increased above this temperature. Therefore, in the present embodiment, the heat treatment temperature was set to 500 ° C.

【0022】直接接合は、親水処理によって、それぞれ
の基板表面に付着した水酸基や水素などの分子間力によ
って基板同士が吸着し、その後の熱処理によって、接合
界面から次第に水酸基などが抜けていき、それに伴い、
それぞれの水晶の構成元素である珪素と酸素の結合が強
まった結合と考えられる。したがって接合強度は熱処理
温度が高いほど強くなる。実際には100℃の熱処理で
も有効であった。高温側は、水晶の結晶転移温度が限界
であった。本実施例では、500℃で熱処理を実施した
が、この結晶転移温度よりも低い温度であれば、さらに
高温で熱処理することもできた。
In direct bonding, the substrates are adsorbed to each other by an intermolecular force such as a hydroxyl group or hydrogen attached to the surface of each substrate by a hydrophilic treatment, and a hydroxyl group or the like is gradually removed from the bonding interface by a subsequent heat treatment. Accompanying
It is considered that the bond between silicon and oxygen, which are constituent elements of each crystal, is strengthened. Therefore, the bonding strength increases as the heat treatment temperature increases. Actually, heat treatment at 100 ° C. was effective. On the high temperature side, the crystal transition temperature of quartz was the limit. In this example, the heat treatment was performed at 500 ° C., but the heat treatment could be performed at a higher temperature as long as the temperature was lower than the crystal transition temperature.

【0023】前記振動用水晶板1を一つ一つ分離するた
めに、前記水晶素板11に直接接合された前記水晶素板
9を、前記水晶素板11を保持して研磨した。この状態
を図3(e)に示す。
In order to separate the vibrating quartz plates 1 one by one, the quartz plate 9 directly joined to the quartz plate 11 was polished while holding the quartz plate 11. This state is shown in FIG.

【0024】前記振動用水晶板1が接合されている側か
ら、前記水晶素板9の前記振動用水晶板1のほぼ中央付
近に前記励振用電極12を真空蒸着によって形成する。
この状態を図3(f)に示す。
The excitation electrode 12 is formed by vacuum evaporation from the side where the vibration crystal plate 1 is joined to the quartz crystal plate 9 substantially at the center of the vibration crystal plate 1.
This state is shown in FIG.

【0025】最後に、前記水晶素板11を一つ一つ切り
離し、水晶振動子を得た。この状態を図3(g)に示
す。
Finally, the quartz crystal plates 11 were cut off one by one to obtain a quartz oscillator. This state is shown in FIG.

【0026】前記振動用水晶板1には熱による応力がほ
とんど加わらず、温度変化に起因する応力による周波数
の変化を非常に小さく抑えることができ、周波数安定性
が向上する。また、固定には接着剤を必要としないの
で、熱や振動に対する安定性、信頼性が向上する。更に
前記振動用水晶板1、前記水晶保持部2は、フォトリソ
グラフィーやエッチングなどの半導体加工技術を応用す
ることによってその寸法を非常に精密に加工しているた
めに、非常に小型で精度がよく、高性能な水晶振動子が
得られる。
The vibrating quartz plate 1 is hardly subjected to stress due to heat, so that a change in frequency due to a stress caused by a temperature change can be suppressed very small, and the frequency stability is improved. Further, since an adhesive is not required for fixing, stability and reliability against heat and vibration are improved. Further, since the dimensions of the vibrating quartz plate 1 and the quartz holder 2 are very precisely processed by applying a semiconductor processing technique such as photolithography or etching, the size is very small and the precision is high. , And a high-performance quartz oscillator can be obtained.

【0027】(実施例4)図4に本発明の水晶振動子の
第3の実施例を示す。図4において、1は振動用水晶
板、2は保持用水晶板、3は励振用電極、4は励振用電
極の引出し部、13は水晶振動子の匡体もしくは基板、
14は励振用電極を励振するための外部電極である。ま
た、振動用水晶板1と保持用水晶板2は直接接合により
接合されている。また、保持用水晶板2は細長い棒状で
あり、基板5からの応力が振動用水晶板1に伝わりにく
い構造になっている。基板5の材質にはセラミック基板
等が用いられる。しかしながら、水晶とセラミック基板
とでは熱膨張率が異なるため、温度が変化すると、基板
5と保持用水晶板2との接合部分で、熱応力が発生す
る。この熱応力が振動用水晶板1に加わると、発振周波
数が変化し安定した発振ができない。当実施例において
は振動用水晶板1を保持用水晶板2を用いて保持してい
るため、振動用水晶板1と保持用水晶板2の間には熱応
力は発生しない。また、保持用水晶板2と基板5の間に
は熱応力が発生するものの、保持用水晶板2が細長い棒
状になっているために振動用水晶板1にはこの応力は加
わらない、このため振動用水晶板1は熱応力の影響を受
けずに安定に発振することが可能となる。また、振動用
水晶板1と保持用水晶板2は直接接合により接合されて
いるため、機械的強固性や長期安定性についても優れた
ものであり、さらに、小型かつ安易な加工が可能となっ
ている。
(Embodiment 4) FIG. 4 shows a third embodiment of the crystal unit according to the present invention. In FIG. 4, 1 is a quartz crystal plate for oscillation, 2 is a quartz crystal plate for holding, 3 is an excitation electrode, 4 is a lead-out portion of the excitation electrode, 13 is a housing or substrate of the quartz oscillator,
Reference numeral 14 denotes an external electrode for exciting the excitation electrode. The vibrating quartz plate 1 and the holding quartz plate 2 are joined by direct joining. Further, the holding quartz plate 2 has a long and thin rod shape, and has a structure in which stress from the substrate 5 is not easily transmitted to the vibrating quartz plate 1. As a material of the substrate 5, a ceramic substrate or the like is used. However, since the coefficient of thermal expansion differs between the quartz and the ceramic substrate, when the temperature changes, thermal stress is generated at the joint between the substrate 5 and the holding quartz plate 2. When this thermal stress is applied to the vibrating quartz plate 1, the oscillation frequency changes and stable oscillation cannot be performed. In this embodiment, since the vibrating quartz plate 1 is held by using the holding quartz plate 2, no thermal stress is generated between the vibrating quartz plate 1 and the holding quartz plate 2. Although thermal stress is generated between the holding quartz plate 2 and the substrate 5, the stress is not applied to the vibrating quartz plate 1 because the holding quartz plate 2 has an elongated rod shape. The vibrating quartz plate 1 can stably oscillate without being affected by thermal stress. Further, since the vibrating quartz plate 1 and the holding quartz plate 2 are joined by direct joining, they are excellent in mechanical rigidity and long-term stability, and can be processed in a small size and easily. ing.

【0028】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、基板5としてセラミック基板
を用い、長辺3ミリ、短辺1ミリの水晶板に励振用電極
を蒸着したものを振動用水晶板として用いた。この振動
用水晶板を用いて従来の構造の水晶振動子を作成した場
合と、本実施例の構造を用い直接接着技術を使用して作
成した水晶振動子の場合とで水晶振動子の安定性を測定
したところ、本実施例の構造の水晶振動子では温度特性
で10ppmの改善が見られた。これは、保持部に熱膨
張率の等しい水晶を用いたこと、接着剤を使用しないた
め接着剤と水晶との熱膨張率の差に起因する熱応力が発
生しないためである。また、長期安定性においても接着
剤を使用しない本実施例においては非常に高安定な結果
を示し、接着時の接着剤の伸縮による応力が水晶にかか
る問題、導電性接着剤の硬化に伴うガスの放出、機械的
振動に対して十分安定でないこと、さらには接着剤の劣
化の問題が発生しなかったことがわかる。また今回は長
辺3ミリ、短辺1ミリの水晶板を用いたが、より小型の
水晶振動子においても本実施例の構造を用いると従来の
保持方法を用いた水晶振動子よりも高安定な水晶振動子
ができることは明らかである。さらに、接着剤を用いな
いために、従来の振動子に存在した、接着剤の耐熱温度
の問題は全く発生しないため、半田リフローも可能とな
っている。
The temperature characteristic of the crystal resonator is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In this example, a ceramic substrate was used as the substrate 5 and a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as the vibrating quartz plate. The stability of the crystal unit between the case where a crystal unit with the conventional structure is made using this crystal plate for vibration and the case where the crystal unit with the structure of this embodiment is made using the direct bonding technology As a result, the temperature characteristic of the quartz resonator having the structure of the present example was improved by 10 ppm. This is because the holding portion is made of quartz having the same coefficient of thermal expansion and no adhesive is used, so that no thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the quartz. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding is applied to the crystal, and the gas accompanying the curing of the conductive adhesive It can be seen that there is no problem that the adhesive is not sufficiently stable against the release and mechanical vibration, and that the adhesive does not deteriorate. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible.

【0029】また、本実施例において保持用水晶板2は
細長い棒状としたが、保持用水晶板2と基板5との間に
発生する熱応力が振動用水晶板1に伝わりにくい構造の
水晶板であれば同様の効果が得られることは明らかであ
る。また、基板5としてセラミック基板を用いたが、セ
ラミック基板に限らず、他のどのような基板であっても
本実施例における効果が損なわれないことは明らかであ
る。
In the present embodiment, the holding quartz plate 2 is formed in an elongated rod shape. However, a quartz plate having a structure in which the thermal stress generated between the holding quartz plate 2 and the substrate 5 is hardly transmitted to the vibrating quartz plate 1. Clearly, the same effect can be obtained. Further, although the ceramic substrate is used as the substrate 5, it is apparent that the effect of the present embodiment is not impaired by not only the ceramic substrate but also any other substrate.

【0030】また、本実施例において振動用水晶板1と
保持用水晶板2のカット角度と接合面の等しいもの同士
を接合することにより保持部と振動部の熱膨張率の差は
最小になる。特にカット角度と接合面が完全に一致した
場合、熱応力は発生しないことになる。このとき、水晶
振動子の温度特性が最良のものになることは本実施例の
効果より明らかである。
Further, in this embodiment, the difference between the thermal expansion coefficients of the holding portion and the vibrating portion is minimized by joining the quartz crystal plate for vibration 1 and the quartz crystal plate for holding 2 having the same cut angle and the same joint surface. . In particular, when the cut angle and the joining surface completely match, no thermal stress is generated. At this time, it is clear from the effect of the present embodiment that the temperature characteristics of the crystal resonator become the best.

【0031】(実施例5)図5に本発明の実施例4にお
ける水晶振動子を示す断面図である。図5において、1
は振動用水晶板、2は保持用水晶板、3は励振用電極、
4は励振用電極引き出し部分、15は水晶振動子匡体の
ベース部分、16は水晶振動子匡体のカバー部分、17
は匡体のカバーとベースを接合する低融点ガラスであ
る。振動用水晶板1と保持用水晶板2は直接接合されて
いる。また、振動用水晶板1の両面に蒸着された励振用
電極3は引出し部4を通じ、低融点ガラス7の部分を通
して、水晶振動子の外部に引き出されている。本実施例
では振動用水晶板1と保持用水晶板2が直接接合技術を
用いて作成されているため、安価に小型の振動用水晶板
を作成することができる。そのため、水晶板を密閉する
匡体についても非常に小型の匡体を用いることが可能で
あり、水晶振動子全体の大きさは従来の数ミリ角に対
し、2ミリ以下の非常に小型の水晶振動子を作成するこ
とができる。さらに、振動用水晶板1とそれを保持する
保持用水晶板2とが同じ材料からなり立っているため、
この2つの間に熱応力は発生しない、そのため非常に高
安定な水晶振動子を作成することが可能となる。
(Embodiment 5) FIG. 5 is a sectional view showing a crystal resonator according to Embodiment 4 of the present invention. In FIG. 5, 1
Is a quartz plate for vibration, 2 is a quartz plate for holding, 3 is an electrode for excitation,
Reference numeral 4 denotes an excitation electrode lead portion, reference numeral 15 denotes a base portion of the crystal resonator housing, reference numeral 16 denotes a cover portion of the crystal resonator housing,
Is a low-melting glass that joins the cover and base of the housing. The vibrating quartz plate 1 and the holding quartz plate 2 are directly joined. The excitation electrodes 3 deposited on both surfaces of the vibrating quartz plate 1 are drawn out of the quartz resonator through the drawer 4 and the low melting point glass 7. In this embodiment, since the vibration crystal plate 1 and the holding crystal plate 2 are formed using the direct bonding technique, a small-sized vibration crystal plate can be manufactured at low cost. For this reason, it is possible to use a very small case for the case that encloses the crystal plate, and the overall size of the crystal unit is 2 mm or less compared to the conventional several mm square. A vibrator can be created. Further, since the vibrating quartz plate 1 and the holding quartz plate 2 for holding the same are made of the same material,
No thermal stress is generated between the two, so that a very stable crystal resonator can be manufactured.

【0032】図6に、従来のセラミック基板に直接水晶
を接着した水晶振動子の断面図を示す。1は振動用水晶
板、3は励振用電極、4は引き出し電極、15は水晶振
動子匡体ベース部、16は水晶振動子匡体カバー部、1
7は匡体のカバーとベースを接合する低融点ガラス、1
8は振動用水晶板1と匡体ベース部とを接合する導電性
接着剤である。振動用水晶板1の両面に蒸着された励振
用電極3は引出し部4と導電性接着剤18を通じ、低融
点ガラス7の部分を通して、水晶振動子の外部に引き出
されている。
FIG. 6 is a sectional view of a conventional crystal unit in which crystal is directly bonded to a ceramic substrate. 1 is a quartz crystal plate for vibration, 3 is an electrode for excitation, 4 is a lead electrode, 15 is a base portion of the quartz oscillator housing, 16 is a cover portion of the quartz oscillator housing, 1
7 is a low-melting glass for joining the cover and the base of the housing, 1
Reference numeral 8 denotes a conductive adhesive for joining the vibration crystal plate 1 and the housing base. The excitation electrodes 3 deposited on both surfaces of the vibrating quartz plate 1 are drawn out of the quartz resonator through the lead portion 4 and the conductive adhesive 18, and through the low melting point glass 7.

【0033】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、長辺3ミリ、短辺1ミリの水
晶板に励振用電極を蒸着したものを振動用水晶板として
用いた。この振動用水晶板を用いて従来の構造の水晶振
動子を作成した場合と、本実施例の構造を用い直接接着
技術を使用して作成した水晶振動子の場合とで水晶振動
子の安定性を測定したところ、本実施例の構造の水晶振
動子では温度特性で10ppmの改善が見られた。これ
は、保持部に熱膨張率の等しい水晶を用いたこと、接着
剤を使用しないため接着剤と水晶との熱膨張率の差に起
因する熱応力が発生しないためである。また、長期安定
性においても接着剤を使用しない本実施例においては非
常に高安定な結果を示し、接着時の接着剤の伸縮による
応力が水晶にかかる問題、導電性接着剤の硬化に伴うガ
スの放出、機械的振動に対して十分安定でないこと、さ
らには接着剤の劣化の問題が発生しなかったことがわか
る。また今回は長辺3ミリ、短辺1ミリの水晶板を用い
たが、より小型の水晶振動子においても本実施例の構造
を用いると従来の保持方法を用いた水晶振動子よりも高
安定な水晶振動子ができることは明らかである。さら
に、接着剤を用いないために、従来の振動子に存在し
た、接着剤の耐熱温度の問題は全く発生しないため、半
田リフローも可能となっている。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In the present embodiment, a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as a vibrating quartz plate. The stability of the crystal unit between the case where a crystal unit with the conventional structure is made using this crystal plate for vibration and the case where the crystal unit with the structure of this embodiment is made using the direct bonding technology As a result, the temperature characteristic of the quartz resonator having the structure of the present example was improved by 10 ppm. This is because the holding portion is made of quartz having the same coefficient of thermal expansion and no adhesive is used, so that no thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the quartz. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding is applied to the crystal, and the gas accompanying the curing of the conductive adhesive It can be seen that there is no problem that the adhesive is not sufficiently stable against the release and mechanical vibration, and that the adhesive does not deteriorate. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible.

【0034】さらに、本実施例においては長辺3ミリ、
短辺1ミリの水晶板を用いたが、直接接着技術を用いる
ことによりより小型の水晶振動子の作成が可能であり、
従来の水晶振動子の構造よりもより小型化に適した構造
であることは明らかである。
Further, in this embodiment, the long side is 3 mm,
Although a quartz plate with a short side of 1 mm was used, it is possible to create a smaller crystal unit by using the direct bonding technology.
It is clear that the structure is more suitable for miniaturization than the structure of a conventional crystal unit.

【0035】また、本実施例においては電極材料として
金とクロムの2層構造としたが、どちらか片方の単層構
造でも同様の効果があることは明らかである。さらに
は、金やクロム以外の材質であっても、それらの多層構
造の電極であっても全く同じ効果があることは本実施例
の効果より明らかである。
In the present embodiment, the electrode material has a two-layer structure of gold and chromium. However, it is apparent that the same effect can be obtained by using either one of the single-layer structures. Further, it is clear from the effect of the present embodiment that the same effect is obtained even if the material is other than gold or chromium, or if the electrode has a multilayer structure.

【0036】また、本実施例において振動用水晶板1と
保持用水晶板2のカット角度と接合面の等しいもの同士
を接合することにより保持部と振動部の熱膨張率の差は
最小になる。特にカット角度と接合面が完全に一致した
場合、熱応力は発生しないことになる。このとき、水晶
振動子の温度特性が最良のものになることは本実施例の
効果より明らかである。
In this embodiment, the difference between the thermal expansion coefficients of the holding portion and the vibrating portion is minimized by joining the quartz crystal plate for vibration 1 and the quartz crystal plate for holding 2 having the same cut angle and the same joint surface. . In particular, when the cut angle and the joining surface completely match, no thermal stress is generated. At this time, it is clear from the effect of the present embodiment that the temperature characteristics of the crystal resonator become the best.

【0037】最後に、上記の実施例における各効果は振
動用水晶板と保持用水晶板の間に無機、有機の接着剤が
関与しないこと、つまり直接接合により接合されている
ことに起因するものであり、水晶板の大きさおよびカッ
ト角、どのような大きさ、またどのような振動の水晶振
動子であろうとも、さらには電極構造にも全く関係なく
上記の効果があることは明らかである。
Finally, the effects in the above embodiment are attributable to the fact that no inorganic or organic adhesive is involved between the vibrating quartz plate and the holding quartz plate, that is, they are joined by direct joining. It is clear that the above-mentioned effects are obtained regardless of the size and cut angle of the quartz plate, the size of the quartz plate, and the type of the vibrating quartz resonator, and irrespective of the electrode structure.

【0038】[0038]

【発明の効果】以上の実施例から明らかなように本発明
は、水晶板と保持部の熱膨張率の差に起因する熱応力が
発振周波数を不安定にすることのない、水晶板と保持部
を接着するための導電性接着剤に起因する、接着時の接
着剤の伸縮による応力が水晶にかかる問題、接着剤と水
晶との熱膨張率の差により熱応力が発生する問題、また
十分な接着強度が十分でなく大きな接着面積が必要であ
ること、導電性接着剤の耐熱性に問題があるために半田
付けにおいて低温での処理しかできないこと、導電性接
着剤の硬化に伴うガスの放出、機械的振動に対して十分
安定でないこと、さらには接着剤の劣化の問題、温度お
よび機械的振動に対して特性が不安定になるなどの問題
が存在しない、その上より小型化に適した高安定な水晶
振動子の製造が可能となるものである。
As is clear from the above embodiments, the present invention provides a method for manufacturing a crystal plate and a holding plate in which the thermal stress caused by the difference in the thermal expansion coefficient between the quartz plate and the holding portion does not make the oscillation frequency unstable. The problem of stress caused by the expansion and contraction of the adhesive during bonding due to the conductive adhesive used to bond the parts to the crystal, and the problem of thermal stress being generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal. That the adhesive strength is not sufficient and that a large bonding area is required, that the conductive adhesive has a problem with the heat resistance, and that only soldering can be performed at a low temperature, It is not sufficiently stable against release and mechanical vibration, and there is no problem such as adhesive deterioration, unstable characteristics against temperature and mechanical vibration, and more suitable for miniaturization Highly stable crystal oscillator can be manufactured And it serves as a.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における水晶振動子の斜
視図
FIG. 1 is a perspective view of a crystal unit according to a first embodiment of the present invention.

【図2】(a)は本発明の第2の実施例における水晶振
動子の断面図 (b)は同水晶振動子の匡体内部を示す図 (c)は同水晶振動子の斜視図
2A is a cross-sectional view of a crystal unit according to a second embodiment of the present invention. FIG. 2B is a diagram showing the inside of a housing of the crystal unit. FIG. 2C is a perspective view of the crystal unit.

【図3】(a)は本発明の第3の実施例における水晶振
動子の斜視図 (b)は同水晶振動子の製造方法を示す図 (c)は同水晶振動子の製造方法を示す図 (d)は同水晶振動子の製造方法を示す図 (e)は同水晶振動子の製造方法を示す図 (f)は同水晶振動子の製造方法を示す図 (g)は同水晶振動子の製造方法を示す図
3A is a perspective view of a crystal unit according to a third embodiment of the present invention, FIG. 3B is a diagram illustrating a method of manufacturing the crystal unit, and FIG. 3C is a diagram illustrating a method of manufacturing the crystal unit. FIG. 4D shows a method for manufacturing the same crystal resonator. FIG. 6E shows a method for manufacturing the same crystal resonator. FIG. 6F shows a method for manufacturing the same crystal resonator. Diagram showing child manufacturing method

【図4】本発明の第4の実施例における水晶振動子の斜
視図
FIG. 4 is a perspective view of a crystal resonator according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における水晶振動子の断
面図
FIG. 5 is a sectional view of a crystal unit according to a fifth embodiment of the present invention.

【図6】従来の水晶振動子を示す断面図FIG. 6 is a cross-sectional view showing a conventional crystal unit.

【図7】従来の水晶振動子の斜視図FIG. 7 is a perspective view of a conventional crystal unit.

【図8】従来の水晶振動子の製造工程図FIG. 8 is a manufacturing process diagram of a conventional crystal unit.

【図9】従来の水晶振動子の斜視図FIG. 9 is a perspective view of a conventional crystal unit.

【符号の説明】[Explanation of symbols]

1 振動用水晶板 2 保持用水晶板 3 励振用電極 4 電極取り出し部 5 水晶振動子ベース部 6 水晶振動子蓋部 7 外部電極 8 低融点ガラス 9 振動用水晶素板 10 励振用電極 11 保持用水晶素板 12 励振用電極および引き出し電極 13 水晶振動子匡体もしくは基板 14 外部電極 15 水晶振動子匡体ベース部 16 水晶振動子匡体カバー部 17 低融点ガラス 18 ATカット水晶板 19 保持部 20 導電性接着剤 21 振動用水晶片 22 励磁電極 23 保持用水晶片 24 基台 25 導電性接着剤 26 接着剤 REFERENCE SIGNS LIST 1 vibrating crystal plate 2 holding crystal plate 3 excitation electrode 4 electrode take-out part 5 crystal resonator base 6 crystal resonator lid 7 external electrode 8 low melting point glass 9 vibration crystal plate 10 excitation electrode 11 holding Quartz blank 12 Electrode for excitation and extraction electrode 13 Quartz resonator housing or substrate 14 External electrode 15 Quartz resonator housing base 16 Quartz resonator housing cover 17 Low melting point glass 18 AT cut quartz plate 19 Holder 20 Conductive adhesive 21 Quartz piece for vibration 22 Excitation electrode 23 Quartz piece for holding 24 Base 25 Conductive adhesive 26 Adhesive

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 豊 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−285195(JP,A) 特開 昭63−82116(JP,A) 特開 平2−183510(JP,A) 特開 平1−246820(JP,A) 特開 昭62−122148(JP,A) 特公 昭57−46034(JP,B2) 特表 平4−502984(JP,A) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yutaka Taguchi 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-63-285195 (JP, A) JP-A-63-82116 (JP, A) JP-A-2-183510 (JP, A) JP-A-1-246820 (JP, A) JP-A-62-122148 (JP, A) JP-B-57-46034 (JP, B2) JP-T4-502984 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励振電極が対向する主面に形成された振
動用水晶板と、前記振動用水晶板に適切な振動空間を与
えるための保持用水晶板とを備え、前記振動用水晶板の
片端が前記保持用水晶板の表面に直接接合されて保持さ
れており、前記直接接合が、それぞれの水晶板の表面に
付着した水酸基や水素の分子間力、もしくは、それぞれ
の水晶板の構成元素である珪素と酸素の直接結合のうち
少なくとも一方による接合であることを特徴とする水晶
振動子。
An excitation electrode formed on a main surface facing an excitation electrode.
Provide an appropriate vibration space to the working quartz plate and the vibrating quartz plate.
And a holding quartz plate for obtaining the vibration quartz plate.
One end is directly bonded and held to the surface of the holding quartz plate.
The direct bonding is performed by at least one of the intermolecular force of hydroxyl groups and hydrogen attached to the surface of each quartz plate, or the direct bond between silicon and oxygen, which are constituent elements of each quartz plate. A quartz oscillator characterized by being provided.
【請求項2】 請求項1記載の水晶振動子を水晶からな
る水晶振動子のベース部上に配置し、水晶からなる水晶
振動子蓋部を前記水晶振動子のベース部と、それぞれの
水晶板の表面に付着した水酸基や水素の分子間力、もし
くは、それぞれの水晶板の構成元素である珪素と酸素の
直接結合のうち少なくとも一方により直接接合すること
で、前記ベース部と蓋部の内部に水晶振動子を封止した
ことを特徴とする水晶振動子。
2. The quartz resonator according to claim 1, which is made of quartz.
Crystal on the base of the crystal unit
The vibrator lid is formed from the base part of the crystal unit and the intermolecular force of hydroxyl group or hydrogen attached to the surface of each crystal plate, or the direct bond between silicon and oxygen which are constituent elements of each crystal plate. A crystal unit, wherein the crystal unit is sealed inside the base unit and the lid unit by directly bonding at least one of the units.
【請求項3】 あらかじめ一方の面に電極が形成された
振動用水晶板と保持用水晶板の表面を親水処理すること
で表面に水酸基を付着させ、接触させ、熱処理後におい
ても水晶が圧電性を示す温度範囲内で熱処理することに
より、前記振動用水晶板を前記保持用水晶板に直接接合
し、次いで、前記電極が形成された振動用水晶板の他方
の面に電極を形成することを特徴とする水晶振動子の製
造方法。
3. The surface of the vibrating quartz plate and the holding quartz plate having electrodes formed on one surface in advance is subjected to hydrophilic treatment so that hydroxyl groups are adhered to the surfaces and brought into contact with each other. By performing a heat treatment within a temperature range in which the quartz crystal exhibits piezoelectricity, the vibrating quartz plate is directly joined to the holding quartz plate, and then the other of the vibrating quartz plate on which the electrodes are formed.
Forming an electrode on the surface of the crystal resonator.
JP16445192A 1991-03-13 1992-06-23 Quartz crystal resonator and its manufacturing method Expired - Fee Related JP3164890B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16445192A JP3164890B2 (en) 1992-06-23 1992-06-23 Quartz crystal resonator and its manufacturing method
EP93109905A EP0575948B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
KR1019930011384A KR0157331B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
DE69310031T DE69310031T2 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method
US08/182,561 US5747857A (en) 1991-03-13 1994-01-18 Electronic components having high-frequency elements and methods of manufacture therefor
US08/473,932 US5668057A (en) 1991-03-13 1995-06-07 Methods of manufacture for electronic components having high-frequency elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16445192A JP3164890B2 (en) 1992-06-23 1992-06-23 Quartz crystal resonator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH066167A JPH066167A (en) 1994-01-14
JP3164890B2 true JP3164890B2 (en) 2001-05-14

Family

ID=15793426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16445192A Expired - Fee Related JP3164890B2 (en) 1991-03-13 1992-06-23 Quartz crystal resonator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3164890B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041870A (en) * 2000-11-29 2002-06-05 이형도 Crystal oscillatot of having a shock resistance
KR100431556B1 (en) * 2001-11-20 2004-05-12 엘지전선 주식회사 Surface-mount type temperature compensated crystal oscillator
JP2004037181A (en) * 2002-07-02 2004-02-05 Hitachi Maxell Ltd Vibration sensor
JP5162675B2 (en) 2008-11-28 2013-03-13 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133381A (en) * 1978-04-07 1979-10-17 Seiko Epson Corp Crystal vibrator
CH625372A5 (en) * 1979-07-06 1981-09-15 Ebauchesfabrik Eta Ag
JPH0770474B2 (en) * 1985-02-08 1995-07-31 株式会社東芝 Method for manufacturing compound semiconductor device
JPS6227040A (en) * 1985-07-26 1987-02-05 Sapporo Breweries Ltd Method for adsorbing or including material to or into starch
JPS62122148A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor substrate
JPS63285195A (en) * 1987-05-19 1988-11-22 Yokogawa Electric Corp Bonding of quartz single crystal
JPH01246820A (en) * 1988-03-29 1989-10-02 Seiko Epson Corp Semiconductor substrate
JPH02183510A (en) * 1989-01-10 1990-07-18 Sony Corp Manufacture of substrate for semiconductor
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate

Also Published As

Publication number Publication date
JPH066167A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
TWI496415B (en) A piezoelectric vibrator, a piezoelectric vibrator, an oscillator, an electronic device, a radio wave, and a method of manufacturing the piezoelectric vibrating plate
US20090015106A1 (en) Piezoelectric device
JP3887137B2 (en) Method for manufacturing piezoelectric vibrator
JP2007258918A (en) Piezoelectric device
JPH06291587A (en) Piezoelectric vibrator
KR100699586B1 (en) Crystal Oscillator
JP2010147953A (en) Piezoelectric frame and piezoelectric device
WO2013027381A1 (en) Vibrating element, resonator, electronic device, and electronic apparatus
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP3164890B2 (en) Quartz crystal resonator and its manufacturing method
JP3709113B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP3164891B2 (en) Quartz crystal resonator and its manufacturing method
JPH07249957A (en) Electronic parts and their formation
WO2000076066A1 (en) Piezoelectric vibrator
JPS6141215A (en) Crystal resonator
JPS6144408B2 (en)
JP2004222053A (en) Piezoelectric device, mobile telephone unit, and electronic equipment
KR0157331B1 (en) Quartz device and manufacturing method thereof
JP3164893B2 (en) Quartz crystal resonator and its manufacturing method
JP2005333658A (en) Piezoelectric vibrator
JP2976704B2 (en) Quartz crystal resonator and its manufacturing method
JP2003060472A (en) Piezoelectric vibrator
JPH06314947A (en) Crystal vibrator and its manufacture
WO2022158028A1 (en) Piezoelectric vibrator
JP7307397B2 (en) Vibrating element, vibrator, and method for manufacturing vibrating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees