JP3164891B2 - Quartz crystal resonator and its manufacturing method - Google Patents

Quartz crystal resonator and its manufacturing method

Info

Publication number
JP3164891B2
JP3164891B2 JP16445292A JP16445292A JP3164891B2 JP 3164891 B2 JP3164891 B2 JP 3164891B2 JP 16445292 A JP16445292 A JP 16445292A JP 16445292 A JP16445292 A JP 16445292A JP 3164891 B2 JP3164891 B2 JP 3164891B2
Authority
JP
Japan
Prior art keywords
quartz
crystal
plate
glass
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16445292A
Other languages
Japanese (ja)
Other versions
JPH066168A (en
Inventor
哲義 小掠
章大 金星
豊 田口
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16445292A priority Critical patent/JP3164891B2/en
Priority to DE69310031T priority patent/DE69310031T2/en
Priority to EP93109905A priority patent/EP0575948B1/en
Priority to KR1019930011384A priority patent/KR0157331B1/en
Publication of JPH066168A publication Critical patent/JPH066168A/en
Priority to US08/182,561 priority patent/US5747857A/en
Priority to US08/473,932 priority patent/US5668057A/en
Application granted granted Critical
Publication of JP3164891B2 publication Critical patent/JP3164891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は小型高安定な水晶振動子
の構造および製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a small and highly stable crystal unit.

【0002】[0002]

【従来の技術】水晶振動子は、その高い安定性により、
情報通信に欠かせない重要なデバイスとして用いられて
いる。近年衛星通信や携帯電話などの発達にともない、
各デバイスの小型化、高性能化が一つの大きな目標とさ
れているが、水晶振動子も例外ではない。
2. Description of the Related Art Quartz resonators have high stability
It is used as an important device indispensable for information communication. With the recent development of satellite communications and mobile phones,
One of the major goals is miniaturization and high performance of each device, but crystal oscillators are no exception.

【0003】従来の水晶振動子としては、ATカット水晶
板を金属性の支持架により支持したものがある。図7に
これらの水晶振動子の一例を示す。図7において、18
はATカット水晶板であり、3は水晶板1の両面に蒸着さ
れた電極であり、19は水晶板18を保持する保持部で
あり、20は保持部19と水晶板18を接着するための
導電性接着剤である。電極3は導電性接着剤を介してそ
れぞれ別の保持部に電気的に接続されている。
As a conventional quartz oscillator, there is one in which an AT-cut quartz plate is supported by a metal supporting frame. FIG. 7 shows an example of these crystal units. In FIG. 7, 18
Denotes an AT-cut quartz plate, 3 denotes electrodes deposited on both sides of the quartz plate 1, 19 denotes a holding portion for holding the quartz plate 18, and 20 denotes a holding portion for bonding the holding portion 19 and the quartz plate 18. It is a conductive adhesive. The electrodes 3 are electrically connected to different holding portions via a conductive adhesive.

【0004】従来の水晶振動子においては、水晶板を保
持するために、通常、金属の保持部19と導電性接着剤
20を用いる。しかしながら、金属の保持部を用いた場
合、熱膨張率が水晶の熱膨張率と異なるため水晶振動子
の温度が変化すると、保持部と水晶との間に熱応力が発
生する。水晶板の発振周波数は水晶中の応力に大きく依
存するために、このような保持方法では温度変化に対し
不安定な水晶振動子となる。そのため、水晶板における
振動部分に応力がかからないように、電極部分と保持部
分との間を大きくあける構造がとられている。また、導
電性接着剤を用いるために、接着時の接着剤の伸縮によ
る応力が水晶にかかる問題、接着剤と水晶との熱膨張率
の差により熱応力が発生する問題、また接着強度が十分
でなく大きな接着面積が必要であること、導電性接着剤
の耐熱性に問題があるために半田付けにおいて低温での
処理しかできないこと、導電性接着剤の硬化に伴うガス
の放出、機械的振動に対して十分安定でないこと、さら
には接着剤の劣化の問題などにより、水晶振動子の安定
性は悪化することになる。導電性接着剤でなく他の種々
の接着剤を用いる方法もあるが、接着剤を用いる限り基
本的にこの問題は解決されない。
In a conventional quartz oscillator, a metal holding portion 19 and a conductive adhesive 20 are usually used to hold a quartz plate. However, when a metal holding part is used, the thermal expansion coefficient is different from the thermal expansion coefficient of quartz, so that when the temperature of the crystal unit changes, thermal stress is generated between the holding part and the crystal. Since the oscillation frequency of the crystal plate greatly depends on the stress in the crystal, such a holding method results in a crystal resonator that is unstable with respect to temperature changes. Therefore, a structure is adopted in which a large space is provided between the electrode portion and the holding portion so that no stress is applied to the vibrating portion of the quartz plate. In addition, since conductive adhesive is used, stress due to the expansion and contraction of the adhesive during bonding is applied to the crystal, thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal, and the bonding strength is sufficient. Required that a large bonding area be used, the conductive adhesive has a problem with the heat resistance, so that only low-temperature processing can be performed during soldering, the release of gas accompanying the curing of the conductive adhesive, and mechanical vibration However, the stability of the crystal unit is degraded due to the fact that the crystal unit is not sufficiently stable and the problem of the deterioration of the adhesive. Although there is a method of using other various adhesives instead of the conductive adhesive, this problem is basically not solved as long as the adhesive is used.

【0005】図8にこの水晶振動子の製造工程例を示
す。この製造工程においては水晶板の切断を先に行な
い、この後、個別に切り離された水晶板の研磨を行な
う。そのため、小型の水晶振動子を作成するために水晶
板を小さく切断すると研磨工程において非常に小さな水
晶板を扱うことになる。この様な微小な水晶板を研磨す
るには高度な研磨装置を使用しなければならない。その
ため、さらに小さな水晶振動子を精度良く作成するため
にこの製法を用いることは困難である。次に、切断され
た振動部に電極を蒸着し保持部19と結合することにな
る。この時、切断された水晶板を個別に取り扱う必要性
があり、また導電性接着剤を塗付するために、ある程度
以上の大きさが必要とされる。さらにその後、周波数調
整を行ない金属パッケージにて気密封止することにな
る。上記の切断、研磨に関する理由、導電性接着剤に関
する理由により、通常このような構造の水晶振動子で
は、水晶板は幅2ミリ以上、長さ5ミリ以上の大きさが
ないと、高安定な水晶振動子を作成することが困難であ
った。また、水晶板そのものが大きいこと気密封止のた
め別途容器に実装しなければならないことから、水晶振
動子全体ではかなりの大きさが必要とされる。
FIG. 8 shows an example of a manufacturing process of the quartz oscillator. In this manufacturing process, the quartz plate is cut first, and then the individually cut quartz plate is polished. For this reason, when a quartz plate is cut into small pieces in order to produce a small quartz oscillator, a very small quartz plate is handled in the polishing step. In order to polish such a minute quartz plate, an advanced polishing apparatus must be used. For this reason, it is difficult to use this manufacturing method to accurately produce a smaller crystal resonator. Next, an electrode is vapor-deposited on the cut vibrating part and is connected to the holding part 19. At this time, it is necessary to handle the cut quartz plates individually, and to apply a conductive adhesive, a certain size or more is required. After that, the frequency is adjusted and hermetically sealed with a metal package. Due to the above-mentioned reasons relating to cutting and polishing, and the reason relating to the conductive adhesive, a crystal plate having such a structure usually has a high stability unless the quartz plate has a width of 2 mm or more and a length of 5 mm or more. It was difficult to make a crystal oscillator. In addition, since the quartz plate itself is large and must be separately mounted in a container for hermetic sealing, a considerable size is required for the entire quartz resonator.

【0006】保持部の熱応力の問題を解決するために、
例えば特許公開公報(平02−261210号)に振動
用の水晶板を熱膨張のほぼ同じ水晶板で保持する構造が
述べられている。図9にこの例を示す。図9において、
21は振動用水晶片、22は振動用水晶片21の両面に
蒸着された励磁電極、23は振動用水晶片21を保持す
るための保持用水晶片、24は基台、25は振動用水晶
片21と保持用水晶片23を固着する導電性接着剤、2
6は保持用水晶片23と基台24を接着する接着剤であ
る。振動用水晶片21と保持用水晶片23の固着方向
(X−X方向)と、保持用水晶片23と基台24の固着
方向(Z−Z)とを直交する方向にする。こうすると保
持用水晶片23の長手方向は自由端となり、熱に対して
伸縮自在でストレスは生じない。また振動用水晶片21
は長手方向を水晶片23の同方向に一致してその両端側
を固着する。したがって振動用水晶片21の長手方向の
伸縮は保持用水晶片23の影響を受けるが同一材料で熱
膨張係数が等しく熱によるストレスは発生しない。こう
することにより、熱膨張による周波数変化を防止して良
好な温度特性が得られる。しかし、振動用水晶片21と
保持用水晶片23との固定を導電性接着剤を用いて行な
っているので、この導電性接着剤に起因する各種の様々
な問題、接着時の接着剤の伸縮による応力が水晶にかか
る問題、接着剤と水晶との熱膨張率の差により熱応力が
発生する問題、また接着強度が十分でなく大きな接着面
積が必要であること、導電性接着剤の耐熱性に問題があ
るために半田付けにおいて低温での処理しかできないこ
と、導電性接着剤の硬化に伴うガスの放出、機械的振動
に対して十分安定でないこと、さらには接着剤の劣化の
問題は解決されない。そのため、本水晶振動子において
も温度特性および劣化の点で十分な安定性を持つことが
できない。
In order to solve the problem of the thermal stress of the holding portion,
For example, Japanese Patent Laid-Open Publication No. 02-261210 describes a structure in which a quartz plate for vibration is held by a quartz plate having substantially the same thermal expansion. FIG. 9 shows this example. In FIG.
Reference numeral 21 denotes a vibrating crystal blank, 22 denotes an excitation electrode deposited on both sides of the vibrating crystal blank 21, 23 denotes a holding crystal blank for holding the vibrating crystal blank 21, 24 denotes a base, and 25 denotes the vibrating crystal blank 21 and holding water. Conductive adhesive for fixing crystal piece 23, 2
Reference numeral 6 denotes an adhesive for bonding the holding crystal piece 23 and the base 24. The direction in which the vibrating crystal blank 21 and the holding crystal blank 23 are fixed (the XX direction) is perpendicular to the direction in which the holding crystal blank 23 and the base 24 are fixed (ZZ). In this case, the longitudinal direction of the holding crystal piece 23 becomes a free end, and is free of stress due to expansion and contraction with respect to heat. In addition, the crystal blank 21 for vibration
Is fixed to both ends of the crystal piece 23 with its longitudinal direction coinciding with the same direction. Therefore, the expansion and contraction of the vibrating crystal piece 21 in the longitudinal direction is affected by the holding crystal piece 23, but the same material has the same thermal expansion coefficient and no thermal stress occurs. By doing so, a frequency change due to thermal expansion is prevented, and good temperature characteristics are obtained. However, since the vibration crystal piece 21 and the holding crystal piece 23 are fixed using a conductive adhesive, various problems caused by the conductive adhesive, stress due to expansion and contraction of the adhesive at the time of bonding, and the like. Problems with quartz, the problem of thermal stress due to the difference in the coefficient of thermal expansion between the adhesive and the quartz, the problem of insufficient bonding strength and the need for a large bonding area, and the problem of heat resistance of the conductive adhesive Therefore, the problems of only being able to be processed at a low temperature in soldering, release of gas due to hardening of the conductive adhesive, not being sufficiently stable against mechanical vibration, and deterioration of the adhesive are not solved. Therefore, this crystal resonator cannot have sufficient stability in terms of temperature characteristics and deterioration.

【0007】[0007]

【発明が解決しようとする課題】従来の水晶振動子にお
いては、水晶板と保持部の熱膨張率の差に起因する熱応
力が発振周波数を不安定にするとともに、水晶板と保持
部を接着するための導電性接着剤に起因する、接着時の
接着剤の伸縮による応力が水晶にかかる問題、接着剤と
水晶との熱膨張率の差により熱応力が発生する問題、ま
た十分な接着強度が十分でなく大きな接着面積が必要で
あること、導電性接着剤の耐熱性に問題があるために半
田付けにおいて低温での処理しかできないこと、導電性
接着剤の硬化に伴うガスの放出、機械的振動に対して十
分安定でないこと、さらには接着剤の劣化の問題が存在
し、温度および機械的振動に対して特性が不安定であっ
た。
In the conventional crystal unit, the thermal stress caused by the difference in the coefficient of thermal expansion between the quartz plate and the holding portion makes the oscillation frequency unstable and bonds the quartz plate and the holding portion. The problem is that the stress caused by the expansion and contraction of the adhesive during bonding is applied to the crystal due to the conductive adhesive used for bonding, the thermal stress is generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal, and the bonding strength is sufficient. Is not sufficient, a large bonding area is required, only heat treatment at low temperature is possible due to the problem of heat resistance of the conductive adhesive, gas release accompanying curing of the conductive adhesive, mechanical However, there is a problem that the adhesive is not sufficiently stable against mechanical vibration, and further, there is a problem of deterioration of the adhesive, and the characteristics are unstable with respect to temperature and mechanical vibration.

【0008】また、保持部と水晶の振動部との相互作用
を避けるためと、接着時の製造工程における作業性を確
保するために、水晶板が数ミリ角以上の大きさを持つ必
要があった。さらに、水晶板を気密封止することを考慮
すると水晶振動子全体の大きさはさらに大きなものとな
っている。
Further, in order to avoid the interaction between the holding portion and the vibrating portion of the quartz crystal and to secure the workability in the manufacturing process at the time of bonding, the quartz plate needs to have a size of several mm square or more. Was. Further, in consideration of hermetically sealing the quartz plate, the size of the whole quartz oscillator is further increased.

【0009】本発明は、水晶振動子の上記欠点を克服す
るものであり、小型、高安定の水晶振動子の製造を可能
にする。
The present invention overcomes the above-mentioned drawbacks of the quartz oscillator, and enables the manufacture of a small, highly stable quartz oscillator.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の第1の水晶振動子は、励振電極が対向する主
面に形成された振動用水晶板と、前記振動用水晶板に適
切な振動空間を与えるための保持用ガラス板とを備え、
前記振動用水晶板の片端が前記保持用ガラス板の表面に
直接接合されて保持されており、前記直接接合が、それ
ぞれの水晶板とガラス板の表面に付着した水酸基や水素
の分子間力、もしくは、それぞれの水晶板とガラス板の
構成元素である珪素と酸素の直接結合のうち少なくとも
一方による接合であることを特徴とする。また、本発明
の第2の水晶振動子は、さらにガラスからなる水晶振動
子ベース部とガラスからなる水晶振動子蓋部とを、それ
ぞれのガラス板の表面に付着した水酸基や水素の分子間
力、もしくは、それぞれのガラス板の構成元素である珪
素と酸素の直接結合のうち少なくとも一方により直接接
合することで、前記ベース部と蓋部の内部に水晶振動子
を封止したことを特徴とする。また、本発明の第1の水
晶振動子の製造方法は、あらかじめ一方の面に電極が形
成された振動用水晶板と保持用ガラス板の表面を親水処
理することで表面に水酸基を付着させ、接触させ、熱処
理後においても水晶が圧電性を示す温度もしくは前記保
持用ガラス板の軟化温度のうちいずれか低い方の温度以
下で熱処理することにより、前記振動用水晶板を前記保
持用ガラス板に直接接合し、次いで、前記電極が形成さ
れた振動用水晶板の他方の面に電極を形成することを特
徴とする
In order to solve the above-mentioned problems, a first quartz-crystal vibrator of the present invention comprises a main unit in which excitation electrodes face each other.
A quartz crystal plate for vibration formed on the
With a holding glass plate to give a sharp vibration space,
At one end of the vibrating quartz crystal plate surface of the holding glass plate
Direct bonding is held, and the direct bonding is performed with the intermolecular force of hydroxyl group or hydrogen attached to the surface of each quartz plate and glass plate, or silicon which is a constituent element of each quartz plate and glass plate. The bonding is characterized by at least one of direct bonding of oxygen. Further, the second crystal unit of the present invention further comprises a crystal unit base unit made of glass and a crystal unit cover unit made of glass, and the intermolecular force of hydroxyl group and hydrogen attached to the surface of each glass plate. Alternatively, the crystal unit is sealed inside the base portion and the lid portion by directly bonding by at least one of direct bonding between silicon and oxygen, which are constituent elements of each glass plate. . Further, in the first method for manufacturing a crystal resonator according to the present invention , an electrode is formed on one surface in advance.
The made the surface of the vibrating quartz plate and holding the glass plate to adhere the hydroxyl groups on the surface by hydrophilic treatment, the contacted, the softening temperature of the temperature or the holding glass plate showing a quartz piezoelectric resistance even after heat treatment The vibration crystal plate is directly joined to the holding glass plate by performing a heat treatment at a temperature equal to or lower than the lower one of the two, and then the electrode is formed.
An electrode is formed on the other surface of the vibrating quartz plate .

【0011】[0011]

【作用】直接接合を用いることにより、機械的に強固
で、劣化しない結合方法を提供するとともに、水晶板を
ガラスを用いて保持することにより、保持部の形状を任
意にしかも安価に加工することが可能となり、又、ガラ
スの熱膨張率が水晶の熱膨張率とほぼ等しくなる成分の
ガラスを保持部として用いることにより、熱膨張率の違
いに起因する熱応力の発生をおさえ、水晶振動子の発振
周波数が変化することを避け、簡略且つ小型化に適した
製造工程を用い水晶振動子を安価に製造することができ
る。
[Function] By using direct bonding, it is possible to provide a mechanically strong and non-deteriorating bonding method, and to hold the quartz plate using glass, thereby processing the shape of the holding portion arbitrarily and at low cost. In addition, by using a glass having a component in which the coefficient of thermal expansion of glass is substantially equal to the coefficient of thermal expansion of quartz as a holding portion, the generation of thermal stress due to the difference in coefficient of thermal expansion can be suppressed, and the crystal unit The oscillation frequency of the crystal resonator can be prevented from changing, and the crystal resonator can be manufactured at low cost by using a manufacturing process that is simple and suitable for miniaturization.

【0012】[0012]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)図1に本発明の第1の実施例
の水晶振動子の構造を示す。図1において、1は振動用
水晶板、2は保持用ガラス板、3は振動用水晶板1の両
面に蒸着された一対の励振用電極であり、4は励振用電
極3と外部との電気的接続のための電極取り出し部であ
る。振動用水晶板1と保持用ガラス板2は直接接合技術
により接着されている。直接接合は水晶とガラスを接着
剤を用いずに直接張り合わせたものである。従来の水晶
振動子においては、水晶と保持部との熱膨張率が異なる
ため熱応力が発生し、水晶振動子の安定性を損なってい
たが、本実施例においては、保持用ガラス板に水晶と熱
膨張率がほぼ同じガラス板を用いることにより熱膨張率
の違いに基づく熱応力はほとんど発生しない。このよう
なガラスとして例えば、フリントガラスがあげられる。
水晶の熱膨張率は異方性を持つために方向により異なる
が、ATカット水晶板における熱膨張率はもっとも大き
な方向でおよそ9×10^(−6)、本実施例のガラス
の熱膨張率は8〜9×10^(−6)でありほぼ同じで
ある。さらに、保持部と振動部の結合に接着剤を使用せ
ずに直接接合を行なうために、水晶振動子の接着剤と水
晶との熱膨張率の差に起因する熱応力の発生や、長期安
定性についても優れたものとなる。さらには、保持部が
ガラスであるために熱膨張率が水晶と等しい他の材質に
較べ、コスト的にも安価なものとなっている。
(Embodiment 1) FIG. 1 shows the structure of a crystal unit according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vibrating quartz plate, 2 denotes a holding glass plate, 3 denotes a pair of excitation electrodes deposited on both surfaces of the vibrating quartz plate 1, and 4 denotes an electric connection between the excitation electrode 3 and the outside. It is an electrode take-out part for electrical connection. The vibrating quartz plate 1 and the holding glass plate 2 are bonded by a direct bonding technique. In direct bonding, quartz and glass are directly bonded without using an adhesive. In the conventional crystal unit, thermal stress was generated due to the difference in the thermal expansion coefficient between the crystal unit and the holding unit, and the stability of the crystal unit was impaired. By using a glass plate having almost the same thermal expansion coefficient as that of the glass plate, almost no thermal stress is generated due to the difference in the thermal expansion coefficient. An example of such glass is flint glass.
The coefficient of thermal expansion of the quartz differs depending on the direction because of its anisotropy. Is 8 to 9 × 10 ^ (− 6), which is almost the same. Furthermore, since the bonding between the holding part and the vibrating part is performed directly without using an adhesive, the generation of thermal stress due to the difference in the coefficient of thermal expansion between the adhesive of the crystal unit and the crystal, and long-term stability It also has excellent properties. Further, since the holding portion is made of glass, the cost is lower than other materials having the same coefficient of thermal expansion as quartz.

【0014】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、長辺3ミリ、短辺1ミリの水
晶板に励振用電極を蒸着したものを振動用水晶板として
用いた。この振動用水晶板を用いて従来の構造で保持し
た場合と、本実施例の構造を用い直接接着技術を使用し
て保持した場合とで水晶振動子の安定性を測定したとこ
ろ、本実施例の構造の水晶振動子では温度特性で13p
pmの改善が見られた。これは、保持部に熱膨張率のほ
ぼ等しいガラスを用いたこと、接着剤を使用しないため
接着剤と水晶との熱膨張率の差に起因する熱応力が発生
しないためである。また、長期安定性においても接着剤
を使用しない本実施例においては非常に高安定な結果を
示し、接着時の接着剤の伸縮による応力が水晶にかかる
問題、導電性接着剤の硬化に伴うガスの放出、機械的振
動に対して十分安定でないこと、さらには接着剤の劣化
の問題が発生しなかったことがわかる。また今回は長辺
3ミリ、短辺1ミリの水晶板を用いたが、より小型の水
晶振動子においても本実施例の構造を用いると従来の保
持方法を用いた水晶振動子よりも高安定な水晶振動子が
できることは明らかである。さらに、接着剤を用いない
ために、従来の振動子に存在した、接着剤の耐熱温度の
問題は全く発生しないため、半田リフローも可能となっ
ている。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In the present embodiment, a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as a vibrating quartz plate. When the stability of the crystal unit was measured using the vibration quartz plate in the conventional structure and the case using the structure of the present embodiment and using the direct bonding technology, the stability of the quartz oscillator was measured. 13p with temperature characteristics
An improvement in pm was seen. This is because glass having substantially the same thermal expansion coefficient was used for the holding portion and no thermal stress was generated due to the difference in thermal expansion coefficient between the adhesive and the crystal because no adhesive was used. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding is applied to the crystal, and the gas accompanying the curing of the conductive adhesive It can be seen that there is no problem that the adhesive is not sufficiently stable against the release and mechanical vibration, and that the adhesive does not deteriorate. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible.

【0015】また、本実施例に用いた以外のガラスにお
いても熱膨張率が水晶の熱膨張率に近ければ同様の効果
が得られることは本実施例の効果より明らかである。
It is clear from the effect of the present embodiment that the same effect can be obtained in glasses other than those used in the present embodiment if the coefficient of thermal expansion is close to that of quartz.

【0016】(実施例2)図2に本発明の第2の実施例
の水晶振動子の構造を示す。図2(a)はその断面図、
(b)は匡体内部、(c)は全体の斜視図である。図2
において、1は振動用水晶板、3は振動用水晶板1の両
面に蒸着された励振用電極、4は励振用電極の引出し
部、5は熱膨張率が水晶とほぼ同じガラスで作られた水
晶振動子ベース部、6は熱膨張率が水晶とほぼ同じガラ
スで作られた水晶振動子蓋部、7は外部電極、8は外部
電極を水晶振動子外部に引き出すための低融点ガラスで
ある。本実施例においては振動用水晶板1と中央部に凹
部を設けた水晶振動子ベース部5、および水晶振動子ベ
ース部5と中央部に凹部を設けた水晶振動子蓋部6とを
それぞれ直接接着した後、水晶振動子内部を気密封止す
るために電極引き出し部分7を低融点ガラスにより封止
している。このため、振動用水晶板1が熱膨張率の大き
く異なる他の材質と接着され、振動用水晶板1に熱応力
がかかることのない構造になっている。また、低融点ガ
ラス8の部分を通して励振用電極を外部に引き出すこと
により水晶振動子内部に接着剤の存在しない構造となっ
ている。また。水晶振動子ベース部5と水晶振動子蓋部
6にガラスを用いていることにより、熱膨張率が水晶と
等しい他の材質に較べ、コスト的にも安価なものとなっ
ている。
(Embodiment 2) FIG. 2 shows the structure of a crystal resonator according to a second embodiment of the present invention. FIG. 2A is a sectional view thereof,
(B) is a perspective view of the inside of the housing, and (c) is an overall perspective view. FIG.
In the figures, 1 is a vibrating quartz plate, 3 is an exciting electrode deposited on both sides of the vibrating quartz plate 1, 4 is a lead-out portion of the exciting electrode, and 5 is a glass having a coefficient of thermal expansion substantially equal to that of quartz. A quartz oscillator base portion, 6 is a quartz oscillator lid portion made of glass having substantially the same thermal expansion coefficient as quartz, 7 is an external electrode, and 8 is a low melting point glass for drawing the external electrode out of the quartz oscillator. . In this embodiment, the vibrating quartz plate 1 and the crystal resonator base 5 having a concave portion at the center, and the crystal resonator base 5 and the crystal resonator lid 6 having a concave portion at the center are directly connected to each other. After bonding, the electrode lead-out portion 7 is sealed with low-melting glass to hermetically seal the inside of the crystal unit. For this reason, the vibrating quartz plate 1 is bonded to another material having a significantly different coefficient of thermal expansion, so that the vibrating quartz plate 1 does not receive any thermal stress. In addition, by drawing out the excitation electrode to the outside through the low melting point glass 8, a structure in which no adhesive is present inside the crystal unit is obtained. Also. Since glass is used for the crystal unit base 5 and the crystal unit cover 6, the cost is lower than that of other materials having the same thermal expansion coefficient as quartz.

【0017】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。長辺3ミリ、短辺1ミリの振動用水晶板に励振用電
極を蒸着した従来の水晶振動子の場合と、同じ寸法の振
動用水晶板を用いた本実施例の水晶振動子を比較すると
温度特性で13ppmの改善が見られた。これは、保持
部として熱膨張率のほぼ等しいガラスを用いた水晶振動
子ベース部を使用したこと、接着剤を使用しないため接
着剤と水晶との熱膨張率の差に起因する熱応力が発生し
ないためである。また、長期安定性においても接着剤を
使用しない本実施例においては非常に高安定な結果を示
し、接着時の接着剤の伸縮による応力が水晶にかかる問
題、導電性接着剤の硬化に伴うガスの放出、機械的振動
に対して十分安定でないこと、さらには接着剤の劣化の
問題が発生しなかったことがわかる。さらに、水晶振動
子全体の寸法も、従来の水晶振動子においては保持部お
よび匡体を含めて長辺6ミリ、短辺4ミリの大きさであ
るのに対し本実施例における水晶振動子においては長辺
4.5ミリ、短辺2.5ミリと同じ大きさの振動用水晶板
を用いたにもかかわらず小型の水晶振動子になってい
る。これは従来接着剤を塗付するために必要であったス
ペースが直接接着を用いることにより、小さなスペース
で済むようになったこと、また、従来は熱膨張率の差に
よる熱応力の発生に伴う発振周波数の変化を軽減するた
めに接着部分と振動部分の間に間隙が必要であったが、
本実施例の水晶振動子においては熱膨張率のほぼ等しい
もの同士の直接接合であるため熱応力がほとんど発生せ
ず、この間隙が必要でなくなったためである。また今回
は長辺3ミリ、短辺1ミリの水晶板を用いたが、より小
型の水晶振動子においても本実施例の構造を用いると従
来の保持方法を用いた水晶振動子よりも高安定な水晶振
動子ができることは明らかである。さらに、接着剤を用
いないために、従来の振動子に存在した、接着剤の耐熱
温度の問題は全く発生しないため、半田リフローも可能
となっているまた、本実施例に用いたガラスはその成分
に関係なく、熱膨張率が水晶の熱膨張率に近ければ上記
実施例の効果が得られることは本実施例の効果より明ら
かである。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. A comparison is made between the case of a conventional crystal unit in which excitation electrodes are deposited on a vibration crystal plate having a long side of 3 mm and a short side of 1 mm, and the crystal unit of the present embodiment using a vibration crystal plate of the same dimensions. A 13 ppm improvement in temperature characteristics was observed. This is due to the fact that a quartz resonator base using glass with almost the same coefficient of thermal expansion was used as the holding part, and thermal stress was generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal because no adhesive was used. This is because they do not. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding is applied to the crystal, and the gas accompanying the curing of the conductive adhesive It can be seen that there is no problem that the adhesive is not sufficiently stable against the release and mechanical vibration, and that the adhesive does not deteriorate. Further, the dimensions of the entire crystal unit are 6 mm long and 4 mm short sides including the holding unit and the housing in the conventional crystal unit, whereas the size of the crystal unit in this embodiment is Is a small-sized crystal resonator despite the use of a vibration crystal plate having the same size as the long side of 4.5 mm and the short side of 2.5 mm. This is because the space required for applying the adhesive was reduced to a small space by using direct bonding, and the conventional method was accompanied by the occurrence of thermal stress due to the difference in coefficient of thermal expansion. A gap was needed between the bonded part and the vibrating part to reduce the change in oscillation frequency,
This is because, in the quartz resonator of this embodiment, thermal stress is hardly generated because the quartz resonators having the same thermal expansion coefficient are directly joined to each other, and this gap is not required. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat-resistant temperature of the adhesive, which was present in the conventional vibrator, does not occur at all, so that solder reflow is also possible. It is clear from the effect of the present embodiment that the effect of the above-described embodiment can be obtained if the coefficient of thermal expansion is close to the coefficient of thermal expansion of quartz regardless of the components.

【0018】(実施例3)図3に、本発明の構造の水晶
振動子の製造方法の実施例を示す。図3において、1は
振動用水晶板、2は保持用ガラス板、3は励振用電極、
4は引き出し電極、9は振動用水晶素板、10は振動用
水晶板1の下面に蒸着された励振用電極、11は保持用
ガラス素板、12は振動用水晶板1の下面に蒸着された
励振用電極および同時に蒸着される引き出し電極であ
る。また、図3(a)に本実施例により製造される水晶
振動子の構造を、図3(b)から(g)にその製造工程
を示す。
(Embodiment 3) FIG. 3 shows an embodiment of a method of manufacturing a quartz resonator having a structure of the present invention. In FIG. 3, 1 is a quartz plate for vibration, 2 is a glass plate for holding, 3 is an electrode for excitation,
4 is a lead electrode, 9 is a quartz crystal plate for vibration, 10 is an excitation electrode deposited on the lower surface of the quartz crystal plate 1 for vibration, 11 is a glass substrate for holding, and 12 is deposited on the lower surface of the quartz crystal plate 1 for vibration. The excitation electrode and the extraction electrode that are simultaneously deposited. FIG. 3A shows the structure of the crystal resonator manufactured according to this embodiment, and FIGS. 3B to 3G show the manufacturing steps.

【0019】本実施例では、前記水晶素板9、ガラス素
板11には厚さ350μm、大きさ3インチのATカッ
ト水晶板を用いた。
In the present embodiment, an AT-cut quartz plate having a thickness of 350 μm and a size of 3 inches was used for the quartz plate 9 and the glass plate 11.

【0020】前記振動用水晶素板9は、振動用水晶板1
の形状を多数残して深さ80μmまでエッチングによっ
て削り、振動用水晶素板9に一方の励振用電極10を真
空蒸着によって形成する。本実施例の場合、クロムを厚
さ0.1ミクロン、金を厚さ2ミクロンに真空蒸着して
形成した。その様子を図3(b)に示す。また、保持用
ガラス素板11の状態を図3(c)に示す。前記ガラス
素板11と前記水晶素板9の接触部分を鏡面に研磨し、
アンモニア水と過酸化水素水と水の混合液を60℃に加
熱した溶液を用いて表面を親水化処理し、水洗いした。
その後注意深く洗浄して前記振動用水晶板1と前記保持
用ガラス板2とが接触する部分にはゴミが存在しないよ
うにした。次に、前記水晶素板9と前記ガラス素板11
とを、表面を清浄に保ったまま接触させた。この状態を
図3(d)に示す。このままでもかなりの接着強度があ
るが、後に行なう研磨ができるまでの強度以上にするた
めに、加熱処理を施した。なお、水晶の結晶転移温度が
870℃、ガラスの軟化点が580℃であるために、前
記加熱処理温度はこの温度以上に加熱することはできな
い。このため本実施例では、前記加熱処理温度を500
℃とした。
The vibrating quartz plate 9 is a vibrating quartz plate 1.
Is etched away to a depth of 80 μm while leaving a large number of shapes, and one excitation electrode 10 is formed on the vibrating crystal plate 9 by vacuum evaporation. In this embodiment, chromium was formed to a thickness of 0.1 μm and gold was formed to a thickness of 2 μm by vacuum deposition. This is shown in FIG. FIG. 3C shows the state of the holding glass base plate 11. The contact portion between the glass plate 11 and the crystal plate 9 is polished to a mirror surface,
The surface was hydrophilized using a solution obtained by heating a mixed solution of aqueous ammonia, aqueous hydrogen peroxide and water at 60 ° C., and washed with water.
Thereafter, the plate was carefully washed so that no dust was present at the portion where the vibrating quartz plate 1 and the holding glass plate 2 were in contact with each other. Next, the crystal blank 9 and the glass blank 11
Were brought into contact with each other while keeping the surface clean. This state is shown in FIG. Although there is considerable adhesive strength even in this state, a heat treatment was performed to increase the adhesive strength to a level at which polishing can be performed later. Since the crystal transition temperature of quartz is 870 ° C. and the softening point of glass is 580 ° C., the above-mentioned heat treatment temperature cannot be heated above this temperature. Therefore, in this embodiment, the heat treatment temperature is set to 500
° C.

【0021】直接接合は、親水処理によって、それぞれ
の基板表面に付着した水酸基や水素などの分子間力によ
って基板同士が吸着し、その後の熱処理によって、接合
界面から次第に水酸基などが抜けていき、それに伴い、
水晶及びガラスの構成元素である珪素と酸素の結合が強
まった結合と考えられる。したがって接合強度は熱処理
温度が高いほど強くなる。実際には100℃の熱処理で
も有効であった。高温側は、水晶の結晶転移温度または
ガラスの軟化温度が限界であった。本実施例では、軟化
温度580℃のフリント系ガラスを用いたので、500
℃で熱処理を実施したが、軟化温度のさらに高いガラス
を用いればもっと高温で熱処理することもできる。
In direct bonding, the substrates are adsorbed to each other by intermolecular forces such as hydroxyl groups and hydrogen attached to the surfaces of the substrates by the hydrophilic treatment, and the hydroxyl groups and the like are gradually removed from the bonding interface by the subsequent heat treatment. Accompanying
It is considered that the bond between silicon and oxygen, which are constituent elements of quartz and glass, is strengthened. Therefore, the bonding strength increases as the heat treatment temperature increases. Actually, heat treatment at 100 ° C. was effective. On the high temperature side, the crystal transition temperature of quartz or the softening temperature of glass was the limit. In this embodiment, since a flint glass having a softening temperature of 580 ° C. is used,
Although the heat treatment was performed at a temperature of ° C., the heat treatment can be performed at a higher temperature if a glass having a higher softening temperature is used.

【0022】前記振動用水晶板1を一つ一つ分離するた
めに、前記ガラス素板11に直接接合された前記水晶素
板9を、前記ガラス素板11を保持して研磨した。この
状態を図3(e)に示す。
In order to separate the vibrating quartz plates 1 one by one, the quartz plate 9 directly bonded to the glass plate 11 was polished while holding the glass plate 11. This state is shown in FIG.

【0023】前記振動用水晶板1が接合されている側か
ら、前記水晶素板9の前記振動用水晶板1のほぼ中央付
近に前記励振用電極12を真空蒸着によって形成する。
この状態を図3(f)に示す。
The excitation electrode 12 is formed by vacuum evaporation from the side where the vibration crystal plate 1 is joined, to the quartz plate 9 near the center of the vibration crystal plate 1.
This state is shown in FIG.

【0024】最後に、前記ガラス素板11を一つ一つ切
り離し、水晶振動子を得た。この状態を図3(g)に示
す。
Finally, the glass plates 11 were cut off one by one to obtain a quartz oscillator. This state is shown in FIG.

【0025】前記振動用水晶板1には熱による応力がほ
とんど加わらず、温度変化に起因する応力による周波数
の変化を非常に小さく抑えることができ、周波数安定性
が向上する。また、固定には接着剤を必要としないの
で、熱や振動に対する安定性、信頼性が向上する。更に
前記振動用水晶板1、前記水晶保持部2は、フォトリソ
グラフィーやエッチングなどの半導体加工技術を応用す
ることによってその寸法を非常に精密に加工しているた
めに、非常に小型で精度がよく、高性能な水晶振動子が
得られる。
The vibrating quartz plate 1 is hardly subjected to thermal stress, so that a change in frequency due to a stress caused by a temperature change can be suppressed to a very small value, and the frequency stability is improved. Further, since an adhesive is not required for fixing, stability and reliability against heat and vibration are improved. Further, since the dimensions of the vibrating quartz plate 1 and the quartz holder 2 are very precisely processed by applying a semiconductor processing technique such as photolithography or etching, the size is very small and the precision is high. , And a high-performance quartz oscillator can be obtained.

【0026】(実施例4)図4に本発明の水晶振動子の
第3の実施例を示す。図4において、1は振動用水晶
板、2は保持用ガラス板、3は励振用電極、4は励振用
電極の引出し部、13は水晶振動子の匡体もしくは基
板、14は励振用電極を励振するための外部電極であ
る。また、振動用水晶板1と保持用ガラス板2は直接接
合により接合されている。また、保持用ガラス板2は熱
膨張率が水晶とほぼ等しいガラスからなり、その形状は
細長い棒状で基板5からの応力が振動用水晶板1に伝わ
りにくい構造になっている。基板5の材質にはセラミッ
ク基板等が用いられる。しかしながら、水晶とセラミッ
ク基板とでは熱膨張率が異なるため、温度が変化する
と、基板5と保持用ガラス板2との接合部分で、熱応力
が発生する。この熱応力が振動用水晶板1に加わると、
発振周波数が変化し安定した発振ができない。当実施例
においては振動用水晶板1を保持用ガラス板2を用いて
保持しているため、振動用水晶板1と保持用ガラス板2
の間には熱応力はほとんど発生しない。また、保持用ガ
ラス板2と基板5の間には熱応力が発生するものの、保
持用ガラス板2が細長い棒状になっているために振動用
水晶板1にはこの応力は加わらない、このため振動用水
晶板1は熱応力の影響を受けずに安定に発振することが
可能となる。さらに、前述のセラミック基板等に較べ、
ガラスはエッチング加工が容易に利用でき、保持部をよ
り複雑な形状に加工し、より応力の伝わりにくい形状に
することが可能となっている。また、振動用水晶板1と
保持用ガラス板2は直接接合により接合されているた
め、機械的強固性や長期安定性についても優れたもので
あり、さらに、小型かつ安易な加工が可能となってい
る。
(Embodiment 4) FIG. 4 shows a third embodiment of the crystal unit according to the present invention. In FIG. 4, 1 is a quartz crystal plate for vibration, 2 is a glass plate for holding, 3 is an excitation electrode, 4 is a lead-out portion of the excitation electrode, 13 is a housing or substrate of the crystal oscillator, and 14 is an excitation electrode. External electrodes for excitation. The vibrating quartz plate 1 and the holding glass plate 2 are joined by direct joining. Further, the holding glass plate 2 is made of glass whose coefficient of thermal expansion is substantially equal to that of quartz, and has a long and thin rod shape, so that stress from the substrate 5 is hardly transmitted to the vibrating quartz plate 1. As a material of the substrate 5, a ceramic substrate or the like is used. However, since the coefficient of thermal expansion differs between the quartz and the ceramic substrate, when the temperature changes, thermal stress is generated at the joint between the substrate 5 and the holding glass plate 2. When this thermal stress is applied to the vibrating quartz plate 1,
Oscillation frequency changes and stable oscillation is not possible. In this embodiment, since the vibrating quartz plate 1 is held using the holding glass plate 2, the vibrating quartz plate 1 and the holding glass plate 2 are held.
Almost no thermal stress occurs between them. Although thermal stress is generated between the holding glass plate 2 and the substrate 5, the stress is not applied to the vibrating quartz plate 1 because the holding glass plate 2 has an elongated rod shape. The vibrating quartz plate 1 can stably oscillate without being affected by thermal stress. Furthermore, compared to the aforementioned ceramic substrate, etc.
The glass can be easily used for etching, and the holding portion can be processed into a more complicated shape, so that the shape is less likely to transmit stress. Further, since the vibrating quartz plate 1 and the holding glass plate 2 are joined by direct joining, they have excellent mechanical rigidity and long-term stability, and can be processed in a small size and easily. ing.

【0027】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、基板5としてセラミック基板
を用い、長辺3ミリ、短辺1ミリの水晶板に励振用電極
を蒸着したものを振動用水晶板として用いた。この振動
用水晶板を用いて従来の構造の水晶振動子を作成した場
合と、本実施例の構造を用い直接接着技術を使用して作
成した水晶振動子の場合とで水晶振動子の安定性を測定
したところ、本実施例の構造の水晶振動子では温度特性
で10ppmの改善が見られた。これは、保持部に熱膨
張率のほぼ等しいガラスを用いたこと、接着剤を使用し
ないため接着剤と水晶との熱膨張率の差に起因する熱応
力が発生しないためである。また、長期安定性において
も接着剤を使用しない本実施例においては非常に高安定
な結果を示し、接着時の接着剤の伸縮による応力が水晶
にかかる問題、導電性接着剤の硬化に伴うガスの放出、
機械的振動に対して十分安定でないこと、さらには接着
剤の劣化の問題が発生しなかったことがわかる。また今
回は長辺3ミリ、短辺1ミリの水晶板を用いたが、より
小型の水晶振動子においても本実施例の構造を用いると
従来の保持方法を用いた水晶振動子よりも高安定な水晶
振動子ができることは明らかである。さらに、接着剤を
用いないために、従来の振動子に存在した、接着剤の耐
熱温度の問題は全く発生しないため、半田リフローも可
能となっているまた、本実施例において保持用ガラス板
2は細長い棒状としたが、保持用ガラス板2と基板5と
の間に発生する熱応力が振動用水晶板1に伝わりにくい
構造の水晶板であれば同様の効果が得られることは明ら
かである。また、基板5としてセラミック基板を用いた
が、セラミック基板に限らず、他のどのような基板であ
っても本実施例における効果が損なわれないことは明ら
かである。
The temperature characteristic of the crystal unit is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In this example, a ceramic substrate was used as the substrate 5 and a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as the vibrating quartz plate. The stability of the crystal unit between the case where a crystal unit with the conventional structure is made using this crystal plate for vibration and the case where the crystal unit with the structure of this embodiment is made using the direct bonding technology As a result, the temperature characteristic of the quartz resonator having the structure of the present example was improved by 10 ppm. This is because glass having substantially the same thermal expansion coefficient was used for the holding portion and no thermal stress was generated due to the difference in thermal expansion coefficient between the adhesive and the crystal because no adhesive was used. In addition, even in the long-term stability, the present example in which an adhesive is not used shows a very high stability result, the stress caused by the expansion and contraction of the adhesive at the time of bonding exerts on the quartz crystal, Release,
It can be seen that it is not sufficiently stable against mechanical vibration, and furthermore, the problem of deterioration of the adhesive did not occur. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat-resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible. Is a long and thin rod, but it is clear that the same effect can be obtained if the crystal plate has a structure in which the thermal stress generated between the holding glass plate 2 and the substrate 5 is hardly transmitted to the vibration crystal plate 1. . Further, although the ceramic substrate is used as the substrate 5, it is apparent that the effect of the present embodiment is not impaired by not only the ceramic substrate but also any other substrate.

【0028】また、本実施例に用いたガラスはその成分
に関係なく、熱膨張率が水晶の熱膨張率に近ければ上記
実施例の効果が得られることは本実施例の効果より明ら
かである。
It is clear from the effect of the present embodiment that the effect of the above-described embodiment can be obtained if the coefficient of thermal expansion of the glass used in the present embodiment is close to the coefficient of thermal expansion of quartz regardless of the components. .

【0029】(実施例5)図5に本発明の実施例4にお
ける水晶振動子を示す断面図である。図5において、1
は振動用水晶板、2は保持用ガラス板、3は励振用電
極、4は励振用電極引き出し部分、15は水晶振動子匡
体のベース部分、16は水晶振動子匡体のカバー部分、
17は匡体のカバーとベースを接合する低融点ガラスで
ある。振動用水晶板1と保持用ガラス板2は直接接合さ
れている。また、振動用水晶板1の両面に蒸着された励
振用電極3は引出し部4を通じ、低融点ガラス7の部分
を通して、水晶振動子の外部に引き出されている。本実
施例では振動用水晶板1と保持用ガラス板2が直接接合
技術を用いて作成されているため、安価に小型の振動用
水晶板を作成することができる。そのため、水晶板を密
閉する匡体についても非常に小型の匡体を用いることが
可能であり、水晶振動子全体の大きさは従来の数ミリ角
に対し、2ミリ以下の非常に小型の水晶振動子を作成す
ることができる。さらに、振動用水晶板1とそれを保持
する保持用ガラス板2とが熱膨張率のほぼ等しい材料か
らなり立っているため、この2つの間に熱応力はほとん
ど発生しない、そのため非常に高安定な水晶振動子を作
成することが可能となる。
(Embodiment 5) FIG. 5 is a sectional view showing a crystal resonator according to Embodiment 4 of the present invention. In FIG. 5, 1
Is a quartz crystal plate for vibration, 2 is a glass plate for holding, 3 is an electrode for excitation, 4 is a lead-out portion of the electrode for excitation, 15 is a base portion of the crystal oscillator housing, 16 is a cover portion of the crystal oscillator housing,
Reference numeral 17 denotes a low-melting glass for joining the cover and the base of the housing. The vibrating quartz plate 1 and the holding glass plate 2 are directly joined. The excitation electrodes 3 deposited on both surfaces of the vibrating quartz plate 1 are drawn out of the quartz resonator through the drawer 4 and the low melting point glass 7. In this embodiment, since the vibration crystal plate 1 and the holding glass plate 2 are formed by using a direct joining technique, a small-sized vibration crystal plate can be manufactured at low cost. For this reason, it is possible to use a very small case for the case that encloses the crystal plate, and the overall size of the crystal unit is 2 mm or less compared to the conventional several mm square. A vibrator can be created. Furthermore, since the vibrating quartz plate 1 and the holding glass plate 2 for holding the same are made of a material having substantially the same coefficient of thermal expansion, almost no thermal stress is generated between the two, and therefore, very high stability It is possible to create a simple crystal resonator.

【0030】図6に、従来のセラミック基板に直接水晶
を接着した水晶振動子の断面図を示す。1は振動用水晶
板、3は励振用電極、4は引き出し電極、15は水晶振
動子匡体ベース部、16は水晶振動子匡体カバー部、1
7は匡体のカバーとベースを接合する低融点ガラス、1
8は振動用水晶板1と匡体ベース部とを接合する導電性
接着剤である。振動用水晶板1の両面に蒸着された励振
用電極3は引出し部4と導電性接着剤18を通じ、低融
点ガラス7の部分を通して、水晶振動子の外部に引き出
されている。
FIG. 6 is a cross-sectional view of a conventional crystal unit in which crystal is directly bonded to a ceramic substrate. 1 is a quartz crystal plate for vibration, 3 is an electrode for excitation, 4 is a lead electrode, 15 is a base portion of the quartz oscillator housing, 16 is a cover portion of the quartz oscillator housing, 1
7 is a low-melting glass for joining the cover and the base of the housing, 1
Reference numeral 8 denotes a conductive adhesive for joining the vibration crystal plate 1 and the housing base. The excitation electrodes 3 deposited on both surfaces of the vibrating quartz plate 1 are drawn out of the quartz resonator through the lead portion 4 and the conductive adhesive 18, and through the low melting point glass 7.

【0031】水晶振動子の温度特性は理想的には水晶板
のカット角度で決定する。例えば、ATカット水晶振動子
の場合には−20℃から+70℃の温度範囲で±5pp
m程度である。しかし実際の水晶振動子では保持部の影
響があるため、温度特性は理論状態のものよりも悪化す
る。本実施例においては、長辺3ミリ、短辺1ミリの水
晶板に励振用電極を蒸着したものを振動用水晶板として
用いた。この振動用水晶板を用いて従来の構造の水晶振
動子を作成した場合と、本実施例の構造を用い直接接着
技術を使用して作成した水晶振動子の場合とで水晶振動
子の安定性を測定したところ、本実施例の構造の水晶振
動子では温度特性で10ppmの改善が見られた。これ
は、保持部に熱膨張率のほぼ等しいガラスを用いたこ
と、接着剤を使用しないため接着剤と水晶との熱膨張率
の差に起因する熱応力が発生しないためである。また、
長期安定性においても接着剤を使用しない本実施例にお
いては非常に高安定な結果を示し、接着時の接着剤の伸
縮による応力が水晶にかかる問題、導電性接着剤の硬化
に伴うガスの放出、機械的振動に対して十分安定でない
こと、さらには接着剤の劣化の問題が発生しなかったこ
とがわかる。また今回は長辺3ミリ、短辺1ミリの水晶
板を用いたが、より小型の水晶振動子においても本実施
例の構造を用いると従来の保持方法を用いた水晶振動子
よりも高安定な水晶振動子ができることは明らかであ
る。さらに、接着剤を用いないために、従来の振動子に
存在した、接着剤の耐熱温度の問題は全く発生しないた
め、半田リフローも可能となっているさらに、本実施例
においては長辺3ミリ、短辺1ミリの水晶板を用いた
が、直接接着技術を用いることによりより小型の水晶振
動子の作成が可能であり、従来の水晶振動子の構造より
もより小型化に適した構造であることは明らかである。
The temperature characteristic of the crystal resonator is ideally determined by the cut angle of the crystal plate. For example, in the case of an AT-cut quartz resonator, ± 5pp in a temperature range of -20 ° C to + 70 ° C.
m. However, in an actual crystal resonator, the temperature characteristics are worse than those in the theoretical state because of the influence of the holding portion. In the present embodiment, a quartz plate having a long side of 3 mm and a short side of 1 mm with an excitation electrode deposited thereon was used as a vibrating quartz plate. The stability of the crystal unit between the case where a crystal unit with the conventional structure is made using this crystal plate for vibration and the case where the crystal unit with the structure of this embodiment is made using the direct bonding technology As a result, the temperature characteristic of the quartz resonator having the structure of the present example was improved by 10 ppm. This is because glass having substantially the same thermal expansion coefficient was used for the holding portion and no thermal stress was generated due to the difference in thermal expansion coefficient between the adhesive and the crystal because no adhesive was used. Also,
Even in the case of long-term stability, the present example, which does not use an adhesive, shows a very high stability result. It can be seen that it was not sufficiently stable against mechanical vibrations, and furthermore, the problem of deterioration of the adhesive did not occur. In this case, a quartz plate with a long side of 3 mm and a short side of 1 mm was used. However, the structure of the present embodiment is more stable than a crystal unit using a conventional holding method even in a smaller crystal unit. It is clear that a perfect crystal resonator can be obtained. Furthermore, since no adhesive is used, the problem of the heat resistant temperature of the adhesive, which is present in the conventional vibrator, does not occur at all, so that solder reflow is also possible. Although a quartz plate with a short side of 1 mm was used, it is possible to create a smaller crystal unit by using the direct bonding technology, and the structure is more suitable for miniaturization than the structure of the conventional crystal unit. Clearly there is.

【0032】また、本実施例においては電極材料として
金とクロムの2層構造としたが、どちらか片方の単層構
造でも同様の効果があることは明らかである。さらに
は、金やクロム以外の材質であっても、それらの多層構
造の電極であっても全く同じ効果があることは本実施例
の効果より明らかである。
In this embodiment, the electrode material has a two-layer structure of gold and chromium. However, it is apparent that the same effect can be obtained by using either one of the single-layer structures. Further, it is clear from the effect of the present embodiment that the same effect is obtained even if the material is other than gold or chromium, or if the electrode has a multilayer structure.

【0033】また、本実施例に用いたガラスはその成分
に関係なく、熱膨張率が水晶の熱膨張率に近ければ上記
実施例の効果が得られることは本実施例の効果より明ら
かである。
It is clear from the effects of the present embodiment that the glass used in the present embodiment can obtain the effects of the above-mentioned embodiments regardless of its components if the coefficient of thermal expansion is close to that of quartz. .

【0034】最後に、上記の実施例における各効果は振
動用水晶板と保持用ガラス板の間に無機、有機の接着剤
が関与しないこと、つまり直接接合により接合されてい
ることに起因するものであり、水晶板の大きさおよびカ
ット角、どのような大きさ、またどのような振動の水晶
振動子であろうとも、さらには電極構造にも全く関係な
く上記の効果があることは明らかである。
Finally, the effects in the above embodiment are attributable to the fact that no inorganic or organic adhesive is involved between the vibrating quartz plate and the holding glass plate, that is, they are joined by direct joining. It is clear that the above-mentioned effects are obtained regardless of the size and cut angle of the quartz plate, the size of the quartz plate, and the type of the vibrating quartz resonator, and irrespective of the electrode structure.

【0035】[0035]

【発明の効果】以上の実施例から明らかなように本発明
は、水晶板と保持部の熱膨張率の差に起因する熱応力が
発振周波数を不安定にすることのない、水晶板と保持部
を接着するための導電性接着剤に起因する、接着時の接
着剤の伸縮による応力が水晶にかかる問題、接着剤と水
晶との熱膨張率の差により熱応力が発生する問題、また
十分な接着強度が十分でなく大きな接着面積が必要であ
ること、導電性接着剤の耐熱性に問題があるために半田
付けにおいて低温での処理しかできないこと、導電性接
着剤の硬化に伴うガスの放出、機械的振動に対して十分
安定でないこと、さらには接着剤の劣化の問題、温度お
よび機械的振動に対して特性が不安定になるなどの問題
が存在しない、その上より小型化に適した高安定な水晶
振動子の製造が可能となるものである。
As is clear from the above embodiments, the present invention provides a method for manufacturing a crystal plate and a holding plate in which the thermal stress caused by the difference in the thermal expansion coefficient between the quartz plate and the holding portion does not make the oscillation frequency unstable. The problem of stress caused by the expansion and contraction of the adhesive during bonding due to the conductive adhesive used to bond the parts to the crystal, and the problem of thermal stress being generated due to the difference in the coefficient of thermal expansion between the adhesive and the crystal. That the adhesive strength is not sufficient and that a large bonding area is required, that the conductive adhesive has a problem with the heat resistance, and that only soldering can be performed at a low temperature, It is not sufficiently stable against release and mechanical vibration, and there is no problem such as adhesive deterioration, unstable characteristics against temperature and mechanical vibration, and more suitable for miniaturization Highly stable crystal oscillator can be manufactured And it serves as a.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における水晶振動子の斜
視図
FIG. 1 is a perspective view of a crystal unit according to a first embodiment of the present invention.

【図2】(a)は本発明の第2の実施例における水晶振
動子の断面図 (b)は同水晶振動子の匡体内部を示す図 (c)は同水晶振動子の斜視図
2A is a cross-sectional view of a crystal unit according to a second embodiment of the present invention. FIG. 2B is a diagram showing the inside of a housing of the crystal unit. FIG. 2C is a perspective view of the crystal unit.

【図3】(a)は本発明の第3の実施例における水晶振
動子の斜視図 (b)は同水晶振動子の製造方法を示す図 (c)は同水晶振動子の製造方法を示す図 (d)は同水晶振動子の製造方法を示す図 (e)は同水晶振動子の製造方法を示す図 (f)は同水晶振動子の製造方法を示す図 (g)は同水晶振動子の製造方法を示す図
3A is a perspective view of a crystal unit according to a third embodiment of the present invention, FIG. 3B is a diagram illustrating a method of manufacturing the crystal unit, and FIG. 3C is a diagram illustrating a method of manufacturing the crystal unit. FIG. 4D shows a method for manufacturing the same crystal resonator. FIG. 6E shows a method for manufacturing the same crystal resonator. FIG. 6F shows a method for manufacturing the same crystal resonator. Diagram showing child manufacturing method

【図4】本発明の第4の実施例における水晶振動子の斜
視図
FIG. 4 is a perspective view of a crystal resonator according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における水晶振動子の断
面図
FIG. 5 is a sectional view of a crystal unit according to a fifth embodiment of the present invention.

【図6】従来の水晶振動子を示す断面図FIG. 6 is a cross-sectional view showing a conventional crystal unit.

【図7】従来の水晶振動子の斜視図FIG. 7 is a perspective view of a conventional crystal unit.

【図8】従来の水晶振動子の製造工程図FIG. 8 is a manufacturing process diagram of a conventional crystal unit.

【図9】従来の水晶振動子の斜視図FIG. 9 is a perspective view of a conventional crystal unit.

【符号の説明】[Explanation of symbols]

1 振動用水晶板 2 保持用ガラス板 3 励振用電極 4 電極取り出し部 5 水晶振動子ベース部 6 水晶振動子蓋部 7 外部電極 8 低融点ガラス 9 振動用水晶素板 10 励振用電極 11 保持用ガラス素板 12 励振用電極および引き出し電極 13 水晶振動子匡体もしくは基板 14 外部電極 15 水晶振動子匡体ベース部 16 水晶振動子匡体カバー部 17 低融点ガラス 18 ATカット水晶板 19 保持部 20 導電性接着剤 21 振動用水晶片 22 励磁電極 23 保持用水晶片 24 基台 25 導電性接着剤 26 接着剤 DESCRIPTION OF SYMBOLS 1 Vibration crystal plate 2 Holding glass plate 3 Exciting electrode 4 Electrode extraction part 5 Quartz crystal base part 6 Quartz crystal cover 7 External electrode 8 Low melting point glass 9 Vibrating crystal plate 10 Exciting electrode 11 Holding Glass plate 12 Electrode for excitation and extraction electrode 13 Quartz resonator housing or substrate 14 External electrode 15 Quartz resonator housing base 16 Crystal resonator housing cover 17 Low melting point glass 18 AT cut quartz plate 19 Holder 20 Conductive adhesive 21 Quartz piece for vibration 22 Excitation electrode 23 Quartz piece for holding 24 Base 25 Conductive adhesive 26 Adhesive

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 豊 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−285195(JP,A) 特開 昭63−82116(JP,A) 特開 平2−183510(JP,A) 特開 平1−246820(JP,A) 特開 昭62−122148(JP,A) 特公 昭57−46034(JP,B2) 特表 平4−502984(JP,A) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yutaka Taguchi 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-63-285195 (JP, A) JP-A-63-82116 (JP, A) JP-A-2-183510 (JP, A) JP-A-1-246820 (JP, A) JP-A-62-122148 (JP, A) JP-B-57-46034 (JP, B2) JP-T4-502984 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励振電極が対向する主面に形成された振
動用水晶板と、前記振動用水晶板に適切な振動空間を与
えるための保持用ガラス板とを備え、前記振動用水晶板
片端が前記保持用ガラス板の表面に直接接合されて保
持されており、前記直接接合が、それぞれの水晶板とガ
ラス板の表面に付着した水酸基や水素の分子間力、もし
くは、それぞれの水晶板とガラス板の構成元素である珪
素と酸素の直接結合のうち少なくとも一方による接合で
あることを特徴とする水晶振動子。
An excitation electrode formed on a main surface facing an excitation electrode.
Provide an appropriate vibration space to the working quartz plate and the vibrating quartz plate.
A glass plate for holding, and one end of the vibrating quartz plate is directly bonded to the surface of the glass plate for holding to hold the glass plate.
The direct bonding is carried out by the intermolecular force of hydroxyl groups or hydrogen attached to the surfaces of the respective quartz and glass plates, or the direct bond between silicon and oxygen, which are the constituent elements of the respective quartz and glass plates. Characterized by being joined by at least one of the following.
【請求項2】 請求項1記載の水晶振動子をガラスから
なる水晶振動子のベース部上に配置し、ガラスからなる
水晶振動子蓋部を前記水晶振動子のベース部と、それぞ
れのガラス板の表面に付着した水酸基や水素の分子間
力、もしくは、それぞれのガラス板の構成元素である珪
素と酸素の直接結合のうち少なくとも一方により直接接
合することで、前記ベース部と蓋部の内部に水晶振動子
を封止したことを特徴とする水晶振動子。
2. The quartz resonator according to claim 1, which is made of glass.
Placed on the base of a quartz crystal unit made of glass
The crystal unit lid is formed by attaching the base unit of the crystal unit to the intermolecular force of a hydroxyl group or hydrogen attached to the surface of each glass plate, or a direct bond between silicon and oxygen which are constituent elements of each glass plate. A crystal unit, wherein the crystal unit is sealed inside the base unit and the lid by directly joining at least one of the units.
【請求項3】 あらかじめ一方の面に電極が形成された
振動用水晶板と保持用ガラス板の表面を親水処理するこ
とで表面に水酸基を付着させ、接触させ、熱処理後にお
いても水晶が圧電性を示す温度もしくは前記保持用ガラ
ス板の軟化温度のうちいずれか低い方の温度以下で熱処
理することにより、前記振動用水晶板を前記保持用ガラ
ス板に直接接合し、次いで、前記電極が形成された振動
用水晶板の他方の面に電極を形成することを特徴とする
水晶振動子の製造方法。
3. The surface of the vibrating quartz plate and the holding glass plate having electrodes formed on one surface in advance is subjected to a hydrophilic treatment so that hydroxyl groups are adhered to the surfaces and brought into contact with each other. By performing a heat treatment at a temperature lower than the lower temperature of the temperature at which the crystal exhibits piezoelectricity or the softening temperature of the holding glass plate, the vibration quartz plate is directly joined to the holding glass plate, and then the Vibration with electrodes formed
A method for manufacturing a crystal resonator, comprising forming an electrode on the other surface of a quartz crystal plate for use .
JP16445292A 1991-03-13 1992-06-23 Quartz crystal resonator and its manufacturing method Expired - Fee Related JP3164891B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16445292A JP3164891B2 (en) 1992-06-23 1992-06-23 Quartz crystal resonator and its manufacturing method
DE69310031T DE69310031T2 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method
EP93109905A EP0575948B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
KR1019930011384A KR0157331B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
US08/182,561 US5747857A (en) 1991-03-13 1994-01-18 Electronic components having high-frequency elements and methods of manufacture therefor
US08/473,932 US5668057A (en) 1991-03-13 1995-06-07 Methods of manufacture for electronic components having high-frequency elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16445292A JP3164891B2 (en) 1992-06-23 1992-06-23 Quartz crystal resonator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH066168A JPH066168A (en) 1994-01-14
JP3164891B2 true JP3164891B2 (en) 2001-05-14

Family

ID=15793447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16445292A Expired - Fee Related JP3164891B2 (en) 1991-03-13 1992-06-23 Quartz crystal resonator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3164891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747522B1 (en) 1996-12-09 2010-06-29 Walker Digital, Llc Method and apparatus for issuing and managing gift certificates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162675B2 (en) 2008-11-28 2013-03-13 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
KR20180095610A (en) * 2015-12-17 2018-08-27 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, extreme ultraviolet sources and droplet generators for lithographic apparatus
CN113824424B (en) * 2021-09-24 2022-05-10 杭州鸿星电子有限公司 AT quartz crystal resonator, oscillator and design method based on four-layer film structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133381A (en) * 1978-04-07 1979-10-17 Seiko Epson Corp Crystal vibrator
CH625372A5 (en) * 1979-07-06 1981-09-15 Ebauchesfabrik Eta Ag
JPH0770474B2 (en) * 1985-02-08 1995-07-31 株式会社東芝 Method for manufacturing compound semiconductor device
JPS6227040A (en) * 1985-07-26 1987-02-05 Sapporo Breweries Ltd Method for adsorbing or including material to or into starch
JPS62122148A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor substrate
JPS63285195A (en) * 1987-05-19 1988-11-22 Yokogawa Electric Corp Bonding of quartz single crystal
JPH01246820A (en) * 1988-03-29 1989-10-02 Seiko Epson Corp Semiconductor substrate
JPH02183510A (en) * 1989-01-10 1990-07-18 Sony Corp Manufacture of substrate for semiconductor
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747522B1 (en) 1996-12-09 2010-06-29 Walker Digital, Llc Method and apparatus for issuing and managing gift certificates
US7895120B2 (en) 1996-12-09 2011-02-22 Walker Digital, Llc Method and apparatus for issuing and managing gift certificates
US8099360B2 (en) 1996-12-09 2012-01-17 Walker Digital, Llc Method and apparatus for issuing and managing gift certificates

Also Published As

Publication number Publication date
JPH066168A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
TWI496415B (en) A piezoelectric vibrator, a piezoelectric vibrator, an oscillator, an electronic device, a radio wave, and a method of manufacturing the piezoelectric vibrating plate
US7518291B2 (en) Piezoelectric device
JP5115092B2 (en) Piezoelectric vibrating piece, piezoelectric device, and oscillator
US20090015106A1 (en) Piezoelectric device
JP3887137B2 (en) Method for manufacturing piezoelectric vibrator
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP3164891B2 (en) Quartz crystal resonator and its manufacturing method
JP3164890B2 (en) Quartz crystal resonator and its manufacturing method
JP3709113B2 (en) Piezoelectric vibrator and manufacturing method thereof
WO2000076066A1 (en) Piezoelectric vibrator
JPH07249957A (en) Electronic parts and their formation
JP2013017207A (en) Vibration piece, vibrator, oscillator and sensor
JPS6144408B2 (en)
JP2002299991A (en) Piezoelectric vibrator
JP2004222053A (en) Piezoelectric device, mobile telephone unit, and electronic equipment
JPH06314947A (en) Crystal vibrator and its manufacture
JP3164893B2 (en) Quartz crystal resonator and its manufacturing method
JP2005333658A (en) Piezoelectric vibrator
JP2976704B2 (en) Quartz crystal resonator and its manufacturing method
JP7307397B2 (en) Vibrating element, vibrator, and method for manufacturing vibrating element
WO2022158028A1 (en) Piezoelectric vibrator
JPH08162893A (en) Piezoelectric component and manufacture of piezoelectric component
JP2020017864A (en) Pedestal for vibrating element, vibrator, and oscillator
JP2023121635A (en) Vibration device and method for manufacturing vibration device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees