JPH0746072A - Manufacture of crystal resonator - Google Patents

Manufacture of crystal resonator

Info

Publication number
JPH0746072A
JPH0746072A JP19153493A JP19153493A JPH0746072A JP H0746072 A JPH0746072 A JP H0746072A JP 19153493 A JP19153493 A JP 19153493A JP 19153493 A JP19153493 A JP 19153493A JP H0746072 A JPH0746072 A JP H0746072A
Authority
JP
Japan
Prior art keywords
crystal
substrate
plate
silicon
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19153493A
Other languages
Japanese (ja)
Inventor
Masaru Ikeda
勝 池田
Yoshihiro Tomita
佳宏 冨田
Akihiro Kanahoshi
章大 金星
Yutaka Taguchi
豊 田口
Kazuo Eda
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19153493A priority Critical patent/JPH0746072A/en
Publication of JPH0746072A publication Critical patent/JPH0746072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacturing method capable of mass-producing crystal resonators provided with the basic vibration number of higher than 100MHz with improved yield by solving a problem that it is difficult to grind a crystal for vibration down to under 30mum in the crystal resonators used in many ways as oscillators and filters for communications equipment or the like. CONSTITUTION:After the crystal plate 1 for the vibration is directly jointed on a substrate 2 and both surfaces are simultaneously ground, a through-hole is provided on the substrate 2 and an excitation electrode 3 is formed. By directly jointing the crystal plate 1 on the thick substrate 2 without deflection, since grinding can be performed with a thick carrier, the crystal plate 1 can be ground to less than 15mum while maintaining flatness, parallelism and surface roughness required for a crystal device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水晶振動子の製造方法に
関し、詳しくは、厚みすべり振動の特に100MHz以
上の基本周波数を有する水晶振動子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a crystal resonator, and more particularly to a method for manufacturing a crystal resonator having a fundamental frequency of 100 MHz or more of thickness shear vibration.

【0002】[0002]

【従来の技術】水晶振動子は共振特性に優れることから
通信機器等に発振子、フィルター素子として多用されて
いる。近年では、通信回路の混雑化および高品位通信等
により、高周波化傾向にある。
2. Description of the Related Art Crystal oscillators are widely used as oscillators and filter elements in communication equipment and the like because of their excellent resonance characteristics. In recent years, there has been a trend toward higher frequencies due to congestion of communication circuits and high-quality communication.

【0003】図11は従来例の水晶振動子を示す図であ
る。水晶振動子はたとえばATカットとした円板状の水
晶板1からなる。水晶板1の両主面には励振電極3およ
び引出し電極6が形成される。通常では引出し電極6の
延出した両端外周部を図示しない構造により保持して密
封される。そして、図示しない発振回路によって励振さ
れ、両主面間で互いに反対方向に変位する厚みすべり振
動を呈する。
FIG. 11 is a diagram showing a conventional crystal resonator. The crystal unit comprises, for example, a disk-shaped crystal plate 1 that is AT-cut. The excitation electrode 3 and the extraction electrode 6 are formed on both main surfaces of the crystal plate 1. Normally, the outer peripheral portions of the extended ends of the extraction electrode 6 are held and sealed by a structure not shown. Then, it is excited by an oscillating circuit (not shown) and exhibits a thickness shear vibration that is displaced between the two principal surfaces in opposite directions.

【0004】このような厚みすべり振動は厚みtに反比
例し、厚みが小さいほど振動周波数fは高くなる。すな
わち、f=k/t(但し、kは圧電定数で通常1670
MHz・μm )で示される。たとえば10MHzの振動
周波数とする場合は、167μm の厚みを必要とする。
なお、振動周波数は、基本振動波で、以下同様である。
そして、通常では両面側をそれぞれ研磨して同厚みに加
工する。
Such thickness shear vibration is inversely proportional to the thickness t, and the smaller the thickness, the higher the vibration frequency f. That is, f = k / t (where k is a piezoelectric constant and is usually 1670
MHz · μm). For example, when the vibration frequency is 10 MHz, a thickness of 167 μm is required.
The vibration frequency is the fundamental vibration wave, and so on.
Then, in general, both sides are polished and processed to have the same thickness.

【0005】振動用水晶板を薄板化する方法として、特
開平3ー116882号公報に記載されたものがある。
この研磨方法を図12を用いて説明する。図12(a)
は複合板の分解図、同図(b)は研磨前の複合板の側面
図、同図(c)は研磨後の複合板の側面図、同図(d)
は水晶振動子の断面図であり、図中の1は水晶板、3は
励振電極、7は補強板である。水晶板1を研磨するため
に、同図(b)のように水晶板1の一方の主面に貫通孔
を有する補強板7を接着し、同図(c)のように他方の
主面を研磨した後、同図(d)のように励振電極3を設
けるものである。
As a method for thinning the vibrating quartz plate, there is one described in Japanese Patent Laid-Open No. 3-116882.
This polishing method will be described with reference to FIG. Figure 12 (a)
Is an exploded view of the composite plate, FIG. 7B is a side view of the composite plate before polishing, FIG. 7C is a side view of the composite plate after polishing, and FIG.
3 is a cross-sectional view of a crystal oscillator, in which 1 is a crystal plate, 3 is an excitation electrode, and 7 is a reinforcing plate. In order to polish the crystal plate 1, a reinforcing plate 7 having a through hole is adhered to one main surface of the crystal plate 1 as shown in FIG. 2B, and the other main surface is attached as shown in FIG. After polishing, the excitation electrode 3 is provided as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】ところで水晶振動子で
は、たとえば100MHzの水晶振動子を得ようとする
と、水晶板の厚みは16.7μm となる。しかし、水晶
板の両面研磨では、使用するキャリアの厚みの問題の他
に、水晶板に撓みや、歪、破損などを生じて30μm 以
下の研磨は困難である。また、片面研磨においても、両
面研磨と同様に、水晶板が30μm 以下の厚さになる
と、水晶板に撓みや歪が生ずる問題以外に、研磨台に水
晶板を接着する際に用いるワックスや、エポキシ系接着
剤の厚みのばらつきによる、研磨後の水晶板の厚みのば
らつき、また水晶板の研磨台に接着する面が接着剤によ
り傷や歪が生ずるなど、平面度、平行度、表面粗さが電
気的諸特性に極めて重要になるので水晶板の研磨には好
ましくない。仮に加工できたとしても、水晶板の保持部
にも問題があり、実際上、量産可能なのは、厚さ30μ
m 、振動周波数55MHzの水晶振動子が限界であっ
た。また特開平3ー116882号の研磨方法も基本的
には、接着剤を用いた研磨方法であり、上記の片面研磨
の問題が発生する。
By the way, in the crystal unit, when a crystal unit of 100 MHz is to be obtained, the thickness of the crystal plate becomes 16.7 μm. However, in the double-sided polishing of the crystal plate, in addition to the problem of the thickness of the carrier used, it is difficult to polish the crystal plate to 30 μm or less because the crystal plate is bent, distorted or damaged. Also in single-sided polishing, similar to double-sided polishing, when the crystal plate becomes 30 μm or less in thickness, in addition to the problem that the crystal plate is bent or distorted, the wax used when the crystal plate is bonded to the polishing table, The flatness, parallelism, and surface roughness such as the variation in the thickness of the quartz plate after polishing due to the variation in the thickness of the epoxy adhesive, and the scratches and distortions on the surface of the quartz plate that is attached to the polishing table due to the adhesive. Is extremely important for various electrical characteristics and is not preferable for polishing a quartz plate. Even if it could be processed, there is a problem with the holding part of the crystal plate.
The limit was a crystal unit with m 2 and a vibration frequency of 55 MHz. Further, the polishing method of JP-A-3-116882 is basically a polishing method using an adhesive, and the above-mentioned problem of single-sided polishing occurs.

【0007】そこで本発明は、水晶デバイスに必要な平
面度、平行度、表面粗さを保ったまま振動用水晶板を1
5μm 以下に研磨し100MHz以上の振動周波数を有
する水晶振動子が量産可能で歩留まり良く生産できる水
晶振動子の製造方法を提供することを目的とする。
In view of the above, the present invention provides a vibrating crystal plate having the flatness, parallelism, and surface roughness required for a crystal device.
It is an object of the present invention to provide a method for manufacturing a crystal unit, which can be mass-produced with a crystal unit having a vibration frequency of 100 MHz or higher by polishing to a size of 5 μm or less and with high yield.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の水晶振動子の製造方法は、基板に振動用水晶
板を直接接合し、両面同時研磨を行い、貫通孔を設け、
貫通孔に対応する部分を励振させるように電極を設ける
ことである。
In order to achieve the above-mentioned object, a method of manufacturing a crystal unit according to the present invention is a method of directly bonding a vibrating crystal plate to a substrate, performing simultaneous double-side polishing, and providing a through hole.
The electrode is provided so as to excite the portion corresponding to the through hole.

【0009】[0009]

【作用】本発明は上記の方法に示すように、振動用水晶
板が撓みのない厚い基板上に直接接合されているので厚
いキャリアで研磨が可能であり、ある程度の研磨により
基板上に直接接合されている振動用水晶板を超薄板化に
することができるので振動周波数の高周波化が可能であ
る。
According to the present invention, as shown in the above method, since the vibrating crystal plate is directly bonded on the thick substrate without bending, polishing with a thick carrier is possible, and it is directly bonded on the substrate by some polishing. Since the existing crystal plate for vibration can be made extremely thin, the vibration frequency can be increased.

【0010】また接合厚さがゼロであるので、片面研磨
の問題点である接着剤を用いることによる研磨後の振動
用水晶板の厚さのばらつき、また平面度、平行度、表面
粗さの劣化を解消することができ、電気的諸特性を良好
にすることができる。
Further, since the bonding thickness is zero, the variation in the thickness of the vibrating quartz plate after polishing due to the use of an adhesive, which is a problem of single-sided polishing, and the flatness, parallelism, and surface roughness. Deterioration can be eliminated and various electrical characteristics can be improved.

【0011】[0011]

【実施例】(実施例1)図1は本発明の実施例1を示す
図である。図中の1は振動用の水晶板、2はガラス板か
らなる基板、3は励振電極である。
EXAMPLE 1 FIG. 1 is a diagram showing Example 1 of the present invention. In the figure, 1 is a crystal plate for vibration, 2 is a substrate made of a glass plate, and 3 is an excitation electrode.

【0012】1cm角で50μm まで両面を鏡面に研磨
した振動用の水晶板1と1cm角で1mmまで両面を鏡
面に研磨したガラス基板2は、水晶デバイスおよび直接
接合に必要な平面度、平行度、表面粗さを保ったままで
直接接合技術で接着されている(図1(b))。直接接
合は、水晶とガラスを接着剤を用いずに直接張り合わせ
たものである。水晶板1とガラス基板2の接触面を充分
清浄に洗浄したのち過酸化水素水とアンモニアと純水の
混合液で親水化処理を施して水分子の分子間力で接触さ
せる。その後100℃から600℃まで加熱処理を施す
と水分子が抜けていき分子間力によって接合し研磨する
のに充分な強度が得られる。
A crystal plate for vibration 1 whose both sides are mirror-polished up to 50 μm at 1 cm square and a glass substrate 2 whose both surfaces are mirror-polished up to 1 mm at 1 cm square are a crystal device and flatness and parallelism necessary for direct bonding. , Are bonded by the direct bonding technique while maintaining the surface roughness (FIG. 1 (b)). Direct bonding is a direct bonding of crystal and glass without the use of an adhesive. After the contact surface between the crystal plate 1 and the glass substrate 2 is sufficiently cleaned, a hydrophilizing treatment is performed with a mixed solution of hydrogen peroxide solution, ammonia and pure water, and contact is made by the intermolecular force of water molecules. After that, when heat treatment is performed at 100 ° C. to 600 ° C., water molecules are removed and sufficient strength is obtained for bonding and polishing by intermolecular force.

【0013】水晶板1とガラス基板2を直接接合した
後、水晶板1が15μm になるまでガラス基板2と共に
両面研磨をし(図1(c))、ガラス基板2を弗酸によ
ってくり抜きエッチングをし、励振電極3としてクロム
を800Å、金を3000Å蒸着した(図1(d))。
After the crystal plate 1 and the glass substrate 2 are directly bonded, both surfaces are polished together with the glass substrate 2 until the crystal plate 1 becomes 15 μm (FIG. 1 (c)), and the glass substrate 2 is hollowed out by etching with hydrofluoric acid. Then, 800 Å of chromium and 3000 Å of gold were vapor-deposited as the excitation electrode 3 (FIG. 1 (d)).

【0014】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例では、
水晶板1とガラス基板2を直接接合し両面研磨するた
め、接合厚さがゼロで、厚いキャリアを使用することが
できるので、水晶デバイスに必要な平面度、平行度、表
面粗さを保ったまま、振動用水晶板を15μm以下に研
磨することができる。
In the conventional mass-produced crystal oscillator, the vibration frequency is limited to 55 MHz, but in this embodiment,
Since the crystal plate 1 and the glass substrate 2 are directly bonded and both surfaces are polished, the bonding thickness is zero and a thick carrier can be used, so that the flatness, parallelism, and surface roughness required for the crystal device are maintained. As it is, the vibrating crystal plate can be polished to 15 μm or less.

【0015】本実施例より図2に示すように振動周波数
が、100MHz以上を得ることができた。 (実施例2)図2は本発明の実施例2を示す図である。
図中の1は振動用の水晶板、2はシリコン板からなる基
板、3は励振電極である。
From this example, as shown in FIG. 2, a vibration frequency of 100 MHz or more could be obtained. (Embodiment 2) FIG. 2 is a diagram showing Embodiment 2 of the present invention.
In the figure, 1 is a crystal plate for vibration, 2 is a substrate made of a silicon plate, and 3 is an excitation electrode.

【0016】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で0.5mmまで両面を鏡面に
研磨したシリコン基板2は、水晶デバイスおよび直接接
合に必要な平面度、平行度、表面粗さを保ったまま、直
接接合技術で接着されている(図2(b))。直接接合
は、水晶とシリコンを接着剤を用いずに直接張り合わせ
たものである。水晶板1とシリコン基板2の接触面を充
分清浄に洗浄したのち過酸化水素水とアンモニアと純水
の混合液で親水化処理を施して水分子の分子間力で接触
させる。その後100℃から500℃まで加熱処理を施
すと水分子が抜けていき分子間力によって接合し研磨す
るのに充分な強度が得られる。
The crystal plate 1 whose both sides are mirror-polished up to 50 μm at 1 cm square and the silicon substrate 2 whose both sides are mirror-polished up to 0.5 mm at 1 cm square are a crystal device and flatness, parallelism necessary for direct bonding, They are bonded by the direct bonding technique while maintaining the surface roughness (Fig. 2 (b)). Direct bonding is the direct bonding of quartz and silicon without the use of an adhesive. After the contact surface between the crystal plate 1 and the silicon substrate 2 is sufficiently cleaned, a hydrophilization treatment is performed with a mixed solution of hydrogen peroxide solution, ammonia and pure water, and contact is made by the intermolecular force of water molecules. After that, when heat treatment is performed from 100 ° C. to 500 ° C., water molecules escape, and sufficient strength is obtained for bonding and polishing by intermolecular force.

【0017】その後、水晶板1が15μm になるまでシ
リコン基板2と共に両面研磨をし(図2(c))、シリ
コン基板2をヒドラジンによりくり抜きエッチングを
し、励振電極3としてクロム800Å、金を3000Å
蒸着した(図2(d))。この方法により、従来の量産
可能な水晶振動子では、振動周波数が55MHzが限界
だったのが、100MHz以上を得ることができた。 (実施例3)図4は本発明の実施例3を示す図である。
図中の1は振動用の水晶板、2はシリコン板からなる第
一基板、3は励振電極、4は水晶板からなる第二基板、
6は引出し電極、8は溝である。
After that, the quartz plate 1 was polished on both sides together with the silicon substrate 2 until it became 15 μm (FIG. 2 (c)), the silicon substrate 2 was hollowed and etched by hydrazine, and the excitation electrode 3 was made of chromium 800 Å and gold 3000 Å.
It vapor-deposited (FIG.2 (d)). According to this method, in the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but 100 MHz or more could be obtained. (Embodiment 3) FIG. 4 is a diagram showing Embodiment 3 of the present invention.
In the figure, 1 is a crystal plate for vibration, 2 is a first substrate made of a silicon plate, 3 is an excitation electrode, 4 is a second substrate made of a crystal plate,
Reference numeral 6 is an extraction electrode, and 8 is a groove.

【0018】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で500μm まで両面を鏡面に
研磨したシリコン基板2は、水晶デバイス及び直接接合
に必要な平面度、平行度、表面粗さを保ったまま、直接
接合技術で接着されている(図4(b))。その後、水
晶板1が15μm になるまでシリコン基板2と共に両面
研磨をし(図4(c))、水晶板1の非接合面に深さ3
000Åの溝を有しクロムと金の励振電極を埋め込んで
ある水晶基板4を直接接合し(図4(d))、その後、
ヒドラジンによるエッチングによってシリコン基板を除
去し励振電極3としてクロムを800Å、金を3000
Å蒸着した(図4(e))。
The crystal plate 1 whose both sides are mirror-polished up to 50 μm at 1 cm square and the silicon substrate 2 whose both sides are mirror-polished up to 500 μm at 1 cm square are the flatness, parallelism and surface roughness required for the crystal device and direct bonding. It is adhered by the direct joining technique while maintaining the thickness (Fig. 4 (b)). After that, double-side polishing is performed together with the silicon substrate 2 until the crystal plate 1 becomes 15 μm (FIG. 4 (c)), and a depth of 3 is formed on the non-bonded surface of the crystal plate 1.
A quartz substrate 4 having a groove of 000 Å and embedded with excitation electrodes of chromium and gold is directly bonded (FIG. 4 (d)).
The silicon substrate is removed by etching with hydrazine, and chromium is 800 Å and gold is 3000 as the excitation electrode 3.
Å Evaporated (Fig. 4 (e)).

【0019】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。ま
た本実施例では振動用水晶板を第二基板へ転写すること
により一括処理が可能で保持用基板の加工精度を向上す
ることができる。 (実施例4)図5は本発明の実施例4を示す図である。
図中の1は振動用の水晶板、2はガラス板からなる第一
基板、3は励振電極、4はシリコン板からなる第二基
板、6は引出し電極、8は溝、9はバンプである。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more from this embodiment. Further, in this embodiment, by transferring the vibrating crystal plate to the second substrate, it is possible to carry out batch processing and improve the processing accuracy of the holding substrate. (Embodiment 4) FIG. 5 is a diagram showing Embodiment 4 of the present invention.
In the figure, 1 is a crystal plate for vibration, 2 is a first substrate made of a glass plate, 3 is an excitation electrode, 4 is a second substrate made of a silicon plate, 6 is an extraction electrode, 8 is a groove, and 9 is a bump. .

【0020】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で500μm まで両面を鏡面に
研磨したガラス基板2は、水晶デバイスおよび直接接合
に必要な平面度、平行度、表面粗さを保ったまま、直接
接合技術で接着されている(図5(b))。その後、水
晶板1が15μm になるまで水晶基板2と共に両面研磨
をした後、励振電極3としてクロムを600Å、金を1
400Å蒸着し、(図5(c))、水晶板1の非接合面
に深さ3000Åの溝を有しクロムと金の引出し電極お
よびバンプを埋め込んであるシリコン基板4を直接接合
し(図5(d))、その後、弗酸によるエッチングによ
ってガラス基板を除去し励振電極としてクロムを600
Å、金を1400Å蒸着した(図5(e))。
The crystal plate 1 whose both sides are mirror-polished up to 50 μm at 1 cm square and the glass substrate 2 whose both surfaces are mirror-polished up to 500 μm at 1 cm square are the flatness, parallelism and surface roughness required for the crystal device and direct bonding. It is adhered by the direct joining technique while maintaining the thickness (Fig. 5 (b)). After that, after polishing both sides with the crystal substrate 2 until the crystal plate 1 becomes 15 μm, chromium is 600 Å and gold is 1 as the excitation electrode 3.
400Å is vapor-deposited (FIG. 5 (c)), and the silicon substrate 4 having a groove with a depth of 3000Å and a lead electrode of chrome and gold and a buried bump is directly bonded to the non-bonded surface of the crystal plate 1 (FIG. (D)) After that, the glass substrate is removed by etching with hydrofluoric acid, and chromium is used as the excitation electrode to 600 nm.
Å, 1400Å gold was vapor deposited (Fig. 5 (e)).

【0021】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。 (実施例5)図6は本発明の実施例5を示す図である。
図中の1は振動用の水晶板、2はシリコン板からなる第
一基板、3は励振電極、4はガラス板からなる第二基
板、6は引出し電極、8は溝である。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more according to this embodiment. (Embodiment 5) FIG. 6 is a diagram showing Embodiment 5 of the present invention.
In the figure, 1 is a crystal plate for vibration, 2 is a first substrate made of a silicon plate, 3 is an excitation electrode, 4 is a second substrate made of a glass plate, 6 is an extraction electrode, and 8 is a groove.

【0022】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で500μm まで両面を鏡面に
研磨したシリコン基板2は、水晶デバイスおよび直接接
合に必要な平面度、平行度、表面粗さを保ったまま、直
接接合技術で接着されている(図6(b))。その後、
水晶板1が15μm になるまで両面研磨をし(図6
(c))、水晶板1の非接合面に深さ3000Åの溝を
有しクロムと金の励振電極3を埋め込んであるガラス基
板4を直接接合し(図6(d))、ヒドラジンによるエ
ッチングによってシリコン基板2を除去し、励振電極と
してクロムを800Å、金を3000Å蒸着した(図6
(e))。
The crystal plate 1 whose both sides are mirror-polished up to 50 μm at 1 cm square and the silicon substrate 2 whose both sides are mirror-polished up to 500 μm at 1 cm square are the flatness, parallelism and surface roughness required for the crystal device and direct bonding. It is adhered by the direct joining technique while maintaining the same (FIG. 6 (b)). afterwards,
Both sides were polished until the crystal plate 1 became 15 μm (Fig. 6
(C)) A glass substrate 4 having a groove with a depth of 3000 Å and a chrome and gold excitation electrode 3 embedded therein is directly bonded to the non-bonded surface of the quartz plate 1 (FIG. 6 (d)), and is etched with hydrazine. The silicon substrate 2 was removed by means of vacuum, and 800 Å of chromium and 3000 Å of gold were vapor-deposited as excitation electrodes (Fig. 6).
(E)).

【0023】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。ま
た本実施例では基板の両面に振動用水晶板を直接接合し
両面研磨をするため、歩留りの向上となる。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more according to this embodiment. Further, in this embodiment, since the vibrating crystal plates are directly bonded to both surfaces of the substrate and both surfaces are polished, the yield is improved.

【0024】なお実施例3から5ではそれぞれ第一基板
としてシリコン、ガラス、シリコン、第二基板として水
晶、シリコン、ガラスを使用したが、第一基板としてガ
ラス、シリコン、第二基板として水晶、シリコン、ガラ
スをそれぞれどの実施例に使用した場合にも同様の効果
が得られる。また第一基板の片面に振動用水晶板を直接
接合しても両面に直接接合しても接合部の厚さがゼロ
で、厚いキャリアで研磨が可能である為、厚さを15μ
m以下に研磨することができ100MHz以上の振動周
波数を得ることができる。なお第一基板材料と第二基板
材料は異ならなければならない。 (実施例6)図7は本発明の実施例6を示す図である。
図中の1は振動用の水晶板、2は水晶板からなる第一基
板、3は励振電極、4は水晶板からなる第二基板、5は
酸化珪素からなる薄膜層である。
In Examples 3 to 5, silicon, glass and silicon were used as the first substrate and quartz, silicon and glass were used as the second substrate, but glass and silicon were used as the first substrate, and quartz and silicon were used as the second substrate. The same effect can be obtained when any of the glass and the glass is used. Moreover, even if the vibrating crystal plate is directly bonded to one surface of the first substrate or both surfaces are directly bonded, the thickness of the bonded portion is zero and polishing can be performed with a thick carrier.
It can be polished to m or less and a vibration frequency of 100 MHz or more can be obtained. The first substrate material and the second substrate material must be different. (Sixth Embodiment) FIG. 7 is a diagram showing a sixth embodiment of the present invention.
In the figure, 1 is a quartz plate for vibration, 2 is a first substrate made of a quartz plate, 3 is an excitation electrode, 4 is a second substrate made of a quartz plate, and 5 is a thin film layer made of silicon oxide.

【0025】1cm角で50μm まで両面を鏡面に研磨
し2000Åの酸化珪素をスパッタした水晶板1と1c
m角で500μm まで両面を鏡面に研磨した水晶基板2
は、水晶デバイスおよび直接接合に必要な平面度、平行
度、表面粗さを保ったまま、酸化珪素膜を介して直接接
合技術で接着されている(図7(b))。直接接合は、
水晶と酸化珪素膜を接着剤を用いずに直接張り合わせた
ものである。水晶板と酸化珪素膜の接触面を充分清浄に
洗浄したのち過酸化水素水とアンモニアと純水の混合液
で親水化処理を施して水分子の分子間力で接触させる。
その後100℃から500℃まで加熱処理を施すと水分
子が抜けていき分子間力によって接合し研磨するのに充
分な強度が得られる。その後、水晶板1が15μm にな
るまで水晶基板2と共に両面研磨をし(図7(c))、
水晶板1の非接合面に貫通孔を有する水晶基板4を直接
接合し(図7(d))、バッファード弗酸により酸化珪
素をリフトオフし水晶基板2を分離し、励振電極3とし
てクロムを800Å、金を3000Å蒸着した(図7
(e))。
Crystal plates 1 and 1c each having a mirror surface of 1 cm square and 50 μm on both sides and sputtered with 2000 Å of silicon oxide.
Quartz substrate 2 with both sides mirror-polished up to 500 μm square
Are bonded by a direct bonding technique through a silicon oxide film while maintaining the flatness, parallelism, and surface roughness required for the crystal device and direct bonding (FIG. 7B). Direct bonding
The crystal and the silicon oxide film are directly bonded together without using an adhesive. After the contact surface between the quartz plate and the silicon oxide film is sufficiently cleaned, a hydrophilizing treatment is performed with a mixed solution of hydrogen peroxide solution, ammonia and pure water to bring them into contact with each other by the intermolecular force of water molecules.
After that, when heat treatment is performed from 100 ° C. to 500 ° C., water molecules escape, and sufficient strength is obtained for bonding and polishing by intermolecular force. After that, both sides are polished together with the quartz substrate 2 until the quartz plate 1 becomes 15 μm (FIG. 7 (c)),
A quartz substrate 4 having a through hole is directly joined to the non-joining surface of the quartz plate 1 (FIG. 7D), silicon oxide is lifted off by buffered hydrofluoric acid to separate the quartz substrate 2, and chromium is used as an exciting electrode 3. 800Å and 3000Å gold was vapor deposited (Fig. 7
(E)).

【0026】本実施例では薄膜層を介して振動用水晶板
と第一基板を直接接合したが、薄膜層はその膜厚及び平
滑度を精度良く制御することができるので、振動用水晶
板と第一基板は薄膜層を介さずに直接接合したと考えて
もよく、両面研磨するにあたって、接合厚さがゼロで、
厚いキャリアを使用することができるので、水晶デバイ
スに必要な平面度、平行度、表面粗さを保ったまま、振
動用水晶板を15μm以下に研磨することができる。従
来の量産可能な水晶振動子では、振動周波数が55MH
zが限界であったのが、本実施例より振動周波数が、1
00MHz以上を得ることができた。
In this embodiment, the vibrating crystal plate and the first substrate are directly bonded via the thin film layer. However, since the thin film layer can control the thickness and smoothness of the vibrating crystal plate accurately, It may be considered that the first substrate was directly bonded without the interposition of a thin film layer.
Since a thick carrier can be used, the vibrating crystal plate can be polished to 15 μm or less while maintaining the flatness, parallelism, and surface roughness required for the crystal device. With a conventional mass-produced crystal unit, the vibration frequency is 55 MH
Although z is the limit, the vibration frequency is 1 according to the present embodiment.
It was possible to obtain over 00 MHz.

【0027】また薄膜層を介して直接接合することによ
り第一基板材料と第二基板材料が、同質の材料であって
も分離することができ、第一基板に水晶基板を用いるこ
とも可能である。 (実施例7)図8は本発明の実施例7を示す図である。
図中の1は振動用の水晶板、2はガラス板からなる第一
基板、3は励振電極、4はシリコン板からなる第二基
板、5は珪素からなる薄膜層、6は引出し電極、8は溝
である。
Further, the first substrate material and the second substrate material can be separated even if the first substrate material and the second substrate material are the same material by directly bonding through the thin film layer, and a quartz substrate can be used as the first substrate. is there. (Embodiment 7) FIG. 8 is a diagram showing Embodiment 7 of the invention.
In the figure, 1 is a quartz plate for vibration, 2 is a first substrate made of a glass plate, 3 is an excitation electrode, 4 is a second substrate made of a silicon plate, 5 is a thin film layer made of silicon, 6 is an extraction electrode, 8 Is a groove.

【0028】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で500μm まで両面を鏡面に
研磨し2000Åの珪素をスパッタしたガラス基板2
は、水晶デバイスおよび直接接合に必要な平面度、平行
度、表面粗さを保ったまま、珪素を介して直接接合技術
で接着されている(図8(b))。直接接合は、水晶と
珪素膜を接着剤を用いずに直接張り合わせたものであ
る。水晶板と珪素膜の接触面を充分清浄に洗浄したのち
過酸化水素水とアンモニアと純水の混合液で親水化処理
を施して水分子の分子間力で接触させる。その後100
℃から600℃まで加熱処理を施すと水分子が抜けてい
き、分子間力によって接合し研磨するのに充分な強度が
得られる。その後、水晶板1が15μm になるまでガラ
ス基板2と共に両面研磨をし(図8(c))、水晶板1
の非接合面に深さ3000Åの溝を有しクロムと金の励
振電極3を埋め込んであるシリコン基板4を直接接合し
(図8(d))、ヒドラジンにより珪素をリフトオフし
ガラス基板2を分離し、振動用水晶板に励振電極として
クロムを800Å、金を3000Å蒸着した(図8
(e))。
Quartz crystal plate 1 with both sides mirror-polished up to 50 μm at 1 cm square and glass substrate 2 with 2000 Å silicon sputtered on both sides up to 500 μm at 1 cm square.
Are bonded by a direct bonding technique via silicon while maintaining the flatness, parallelism and surface roughness required for the crystal device and direct bonding (FIG. 8B). Direct bonding is a direct bonding of a crystal and a silicon film without using an adhesive. After the contact surface between the quartz plate and the silicon film is sufficiently cleaned, a hydrophilizing treatment is performed with a mixed solution of hydrogen peroxide solution, ammonia and pure water, and contact is made by the intermolecular force of water molecules. Then 100
When heat treatment is performed at a temperature of from 600 ° C. to 600 ° C., water molecules escape, and sufficient strength is obtained for bonding and polishing due to intermolecular force. After that, both sides are polished together with the glass substrate 2 until the crystal plate 1 becomes 15 μm (FIG. 8 (c)).
A silicon substrate 4 having a groove with a depth of 3000 Å and an embedded excitation electrode 3 of chromium and gold is directly bonded to the non-bonded surface of the substrate (Fig. 8 (d)), and silicon is lifted off by hydrazine to separate the glass substrate 2. Then, chromium (800Å) and gold (3000Å) were vapor-deposited on the vibrating crystal plate as the excitation electrodes (Fig. 8).
(E)).

【0029】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。 (実施例8)図9は本発明の実施例8を示す図である。
図中の1は振動用の水晶板、2はシリコンからなる第一
基板、3は励振電極、4はガラスからなる第二基板、5
は酸化珪素からなる薄膜層である。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more according to this embodiment. (Embodiment 8) FIG. 9 is a diagram showing Embodiment 8 of the present invention.
In the figure, 1 is a quartz plate for vibration, 2 is a first substrate made of silicon, 3 is an excitation electrode, 4 is a second substrate made of glass, 5
Is a thin film layer made of silicon oxide.

【0030】1cm角で50μm まで両面を鏡面に研磨
し3000Åの酸化珪素をスパッタした振動用水晶板1
と1cm角で1mmまで両面を鏡面に研磨し3000Å
の酸化珪素をスパッタしたシリコン基板2は、水晶デバ
イスおよび直接接合に必要な、平面度、平行度、表面粗
さを保ったまま酸化珪素を介して直接接合技術で接着さ
れている(図9(b))。直接接合は、酸化珪素膜と酸
化珪素膜を接着剤を用いずに直接張り合わせたものであ
る。酸化珪素膜と酸化珪素膜の接触面を充分清浄に洗浄
したのち過酸化水素水とアンモニアと純水の混合液で親
水化処理を施して水分子の分子間力で接触させる。その
後100℃から500℃まで加熱処理を施すと水分子が
抜けていき分子間力によって接合し研磨するのに充分な
強度が得られる。その後、水晶板1が15μm になるま
でシリコン基板2と共に両面研磨をし(図9(c))、
水晶板1の非接合面に貫通孔を有するガラス基板4を直
接接合し(図9(d))、バッファード弗酸により酸化
珪素をリフトオフしシリコン基板2を分離し、励振電極
としてクロムを800Å、金を3000Å蒸着した(図
9(e))。
A vibrating quartz plate 1 which is mirror-polished on both sides up to 1 μm and 50 μm and sputtered with 3000 Å of silicon oxide.
With 1 cm square, both sides are polished to a mirror surface up to 1 mm and 3000 Å
The silicon substrate 2 sputtered with silicon oxide is bonded by a direct bonding technique via silicon oxide while maintaining the flatness, parallelism, and surface roughness required for the crystal device and direct bonding (see FIG. 9 ( b)). Direct bonding is a direct bonding of a silicon oxide film and a silicon oxide film without using an adhesive. After the contact surface between the silicon oxide film and the silicon oxide film is sufficiently cleaned, the surface is hydrophilized with a mixed solution of hydrogen peroxide solution, ammonia, and pure water to bring them into contact with each other by the intermolecular force of water molecules. After that, when heat treatment is performed from 100 ° C. to 500 ° C., water molecules escape, and sufficient strength is obtained for bonding and polishing by intermolecular force. Then, both sides are polished together with the silicon substrate 2 until the crystal plate 1 becomes 15 μm (FIG. 9 (c)),
A glass substrate 4 having a through hole is directly bonded to the non-bonded surface of the crystal plate 1 (FIG. 9 (d)), silicon oxide is lifted off by buffered hydrofluoric acid to separate the silicon substrate 2, and chromium is used as an excitation electrode at 800Å. , Gold was deposited by 3000Å (FIG. 9 (e)).

【0031】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。 (実施例9)図10は本発明の実施例9を示す図であ
る。図中の1は振動用の水晶板、2は水晶板からなる第
一基板、3は励振電極、4は水晶板からなる第二基板、
5は窒化珪素からなる薄膜層、6は引出し電極、8は溝
である。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more according to this embodiment. (Ninth Embodiment) FIG. 10 is a diagram showing a ninth embodiment of the present invention. In the figure, 1 is a quartz plate for vibration, 2 is a first substrate made of a quartz plate, 3 is an excitation electrode, 4 is a second substrate made of a quartz plate,
Reference numeral 5 is a thin film layer made of silicon nitride, 6 is an extraction electrode, and 8 is a groove.

【0032】1cm角で50μm まで両面を鏡面に研磨
した水晶板1と1cm角で500μm まで両面を鏡面に
研磨し、2000Åの窒化珪素をスパッタした第一基板
2は、水晶デバイス及び直接接合に必要な平面度、平行
度、表面粗さを保ったまま、窒化珪素を介して直接接合
技術で接着されている(図10(b))。直接接合は、
水晶と窒化珪素膜を接着剤を用いずに直接張り合わせた
ものである。水晶板と窒化珪素膜の接触面を充分清浄に
洗浄したのち過酸化水素水とアンモニアと純水の混合液
で親水化処理を施して水分子の分子間力で接触させる。
その後100℃から500℃まで加熱処理を施すと水分
子が抜けていき分子間力によって接合し研磨するのに充
分な強度が得られる。その後、水晶板1が15μm にな
るまで両面研磨をし(図10(c))、水晶板1の非接
合面に深さ3000Åの溝を有しクロムと金の励振電極
を埋め込んである水晶基板4を直接接合し(図10
(d))、弗酸により窒化珪素をリフトオフし水晶基板
2を分離し、振動用水晶板に励振電極3としてクロムを
800Å、金を3000Å蒸着した(図10(e))。
The quartz plate 1 having both sides mirror-polished up to 50 μm at 1 cm square and the first substrate 2 having both sides mirror-polished up to 500 μm at 1 cm square and sputtered with 2000 Å of silicon nitride are necessary for a crystal device and direct bonding. They are bonded by a direct bonding technique via silicon nitride while maintaining the flatness, parallelism, and surface roughness (FIG. 10B). Direct bonding
The crystal and the silicon nitride film are directly bonded together without using an adhesive. After the contact surface between the crystal plate and the silicon nitride film is sufficiently cleaned, a hydrophilizing treatment is performed with a mixed solution of hydrogen peroxide solution, ammonia and pure water to bring them into contact with each other by the intermolecular force of water molecules.
After that, when heat treatment is performed from 100 ° C. to 500 ° C., water molecules escape, and sufficient strength is obtained for bonding and polishing by intermolecular force. After that, double-side polishing is performed until the crystal plate 1 becomes 15 μm (FIG. 10 (c)), and a crystal substrate having a 3,000 Å deep groove on the non-bonded surface of the crystal plate 1 and burying the chromium and gold excitation electrodes. 4 are directly joined (see FIG. 10).
(D)), silicon nitride was lifted off with hydrofluoric acid to separate the quartz substrate 2, and 800 Å of chromium and 3000 Å of gold were vapor-deposited on the vibrating quartz plate as the excitation electrode 3 (Fig. 10 (e)).

【0033】従来の量産可能な水晶振動子では、振動周
波数が55MHzが限界であったのが、本実施例より振
動周波数が、100MHz以上を得ることができた。ま
た本実施例では基板の両面に振動用水晶板を直接接合し
両面研磨をするため、歩留りの向上となる。
In the conventional mass-producible crystal oscillator, the vibration frequency was limited to 55 MHz, but it was possible to obtain a vibration frequency of 100 MHz or more according to this embodiment. Further, in this embodiment, since the vibrating crystal plates are directly bonded to both surfaces of the substrate and both surfaces are polished, the yield is improved.

【0034】なお実施例3から6ではそれぞれ基板とし
て水晶、ガラス、シリコン、水晶、第二基板として水
晶、シリコン、ガラス、水晶、薄膜層として酸化珪素、
珪素、酸化珪素、窒化珪素を使用したが、基板として水
晶、ガラス、シリコン、第二基板として水晶、ガラス、
シリコン、また薄膜層として酸化珪素、窒化珪素、珪素
をそれぞれどの実施例に使用した場合にも同様の効果が
得られる。また薄膜層を振動用水晶板上、もしくは第一
基板上、もしくは両者上に形成した場合にも、振動用水
晶板と基板は直接接合することができ同様の効果が得ら
れる。
In each of Examples 3 to 6, the substrate is quartz, glass, silicon, quartz, the second substrate is quartz, silicon, glass, quartz, and the thin film layer is silicon oxide.
Although silicon, silicon oxide, and silicon nitride were used, the substrate was quartz, glass, and silicon, and the second substrate was quartz, glass,
The same effect can be obtained when any of silicon, silicon oxide, silicon nitride and silicon is used as the thin film layer. Further, even when the thin film layer is formed on the vibrating crystal plate, the first substrate, or both, the vibrating crystal plate and the substrate can be directly bonded, and the same effect can be obtained.

【0035】また第一基板の片面に振動用水晶板を直接
接合しても両面に直接接合しても接合部の厚さがゼロ
で、厚いキャリアで研磨が可能である為、厚さを15μ
m以下に研磨することができ100MHz以上の振動周
波数を得ることができる。
Further, even if the vibrating crystal plate is directly bonded to one surface of the first substrate or both surfaces are directly bonded, the thickness of the bonded portion is zero and polishing can be performed with a thick carrier.
It can be polished to m or less and a vibration frequency of 100 MHz or more can be obtained.

【0036】[0036]

【発明の効果】以上の実施例の説明より明らかなよう
に、本発明は振動用水晶板を撓みのない基板に直接接合
し、非接合面を両面同時研磨をすることにより、厚いキ
ャリアを使用することができ、接合厚みがゼロなので水
晶デバイスに必要な、平面度、平行度、表面粗さを保っ
たまま振動用水晶板を15μm 以下に研磨することがで
きるので、100MHz以上の基本周波数を有する水晶
振動子が量産可能で歩留まり良く生産することができ
る。
As is apparent from the above description of the embodiments, the present invention uses a thick carrier by directly bonding a vibrating crystal plate to a non-deflecting substrate and simultaneously polishing the non-bonded surfaces on both sides. Since the bonding thickness is zero, it is possible to polish the vibrating crystal plate to 15 μm or less while maintaining the flatness, parallelism, and surface roughness required for the crystal device. The crystal unit it has can be mass-produced and can be produced with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例1における直接接合前
の振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同水晶振動子の断面図
1A is a perspective view of a vibrating quartz plate and a substrate before direct bonding in Example 1 of the present invention, FIG. 1B is a side view of a composite plate before polishing, and FIG. 1C is a composite after polishing. Side view of the plate (d) is a cross-sectional view of the crystal unit

【図2】実施例1における水晶振動子の特性図FIG. 2 is a characteristic diagram of the crystal unit according to the first embodiment.

【図3】(a)は本発明の実施例2における直接接合前
の振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同水晶振動子の断面図
3A is a perspective view of a vibrating quartz plate and a substrate before direct bonding in Example 2 of the present invention, FIG. 3B is a side view of the composite plate before polishing, and FIG. 3C is a composite view after polishing. Side view of the plate (d) is a cross-sectional view of the crystal unit

【図4】(a)は本発明の実施例3における直接接合前
の振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第二基板への転写を示す断面
図 (e)は同水晶振動子の断面図
4A is a perspective view of a vibrating quartz plate and a substrate before direct bonding in Example 3 of the present invention, FIG. 4B is a side view of the composite plate before polishing, and FIG. 4C is a composite view after polishing. Side view of the plate (d) is a cross-sectional view showing transfer of the crystal plate for vibration to the second substrate (e) is a cross-sectional view of the crystal resonator

【図5】(a)は本発明の実施例4における直接接合前
の振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第二基板への転写を示す断面
図 (e)は同水晶振動子の断面図
5A is a perspective view of a vibrating crystal plate and a substrate before direct bonding in Example 4 of the present invention, FIG. 5B is a side view of a composite plate before polishing, and FIG. 5C is a composite view after polishing. Side view of the plate (d) is a cross-sectional view showing transfer of the crystal plate for vibration to the second substrate (e) is a cross-sectional view of the crystal resonator

【図6】(a)は本発明の実施例5における直接接合前
の振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第二基板への転写を示す断面
図 (e)は同水晶振動子の断面図
6A is a perspective view of a vibrating quartz plate and a substrate before direct bonding in Example 5 of the present invention, FIG. 6B is a side view of the composite plate before the polishing, and FIG. 6C is a composite view after the polishing. Side view of the plate (d) is a cross-sectional view showing transfer of the crystal plate for vibration to the second substrate (e) is a cross-sectional view of the crystal resonator

【図7】(a)は本発明の実施例6における直接接合前
の片面に薄膜層を形成した振動用水晶板と基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第二基板への転写を示す断面
図 (e)は同水晶振動子の断面図
7 (a) is a perspective view of a vibrating crystal plate and a substrate having a thin film layer formed on one surface before direct bonding in Example 6 of the present invention, and FIG. 7 (b) is a side view of the composite plate before polishing (c). ) Is a side view of the composite plate after the polishing. (D) is a cross-sectional view showing transfer of the vibration crystal plate to the second substrate. (E) is a cross-sectional view of the crystal oscillator.

【図8】(a)は本発明の実施例7における直接接合前
の振動用水晶板と片面に薄膜層を形成した基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第2基板への転写を示す断面
図 (e)は同水晶振動子の断面図
FIG. 8A is a perspective view of a vibrating quartz plate before direct bonding and a substrate having a thin film layer formed on one surface thereof in Embodiment 7 of the present invention. FIG. 8B is a side view of the composite plate before polishing. ) Is a side view of the composite plate after the polishing. (D) is a cross-sectional view showing transfer of the vibration crystal plate to the second substrate. (E) is a cross-sectional view of the crystal oscillator.

【図9】(a)は本発明の実施例8における直接接合前
の片面に薄膜層を形成した振動用水晶板と片面に薄膜層
を形成した基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第2基板への転写を示す断面
図 (e)は同水晶振動子の断面図
9 (a) is a perspective view of a vibrating quartz plate having a thin film layer formed on one surface and a substrate having a thin film layer formed on one surface before direct bonding in Example 8 of the present invention. FIG. Side view of the composite plate (c) is a side view of the composite plate after the polishing (d) is a cross-sectional view showing transfer of the crystal plate for vibration to the second substrate (e) is a cross-sectional view of the crystal oscillator

【図10】(a)は本発明の実施例9における直接接合前
の振動用水晶板と両面に薄膜層を形成した基板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同振動用水晶板の第二基板への転写を示す断面
図 (e)は同水晶振動子の断面図
10 (a) is a perspective view of a vibrating quartz plate before direct bonding and a substrate having thin film layers formed on both sides in Example 9 of the present invention. FIG. 10 (b) is a side view of the composite plate before polishing (c). ) Is a side view of the composite plate after the polishing. (D) is a cross-sectional view showing transfer of the vibration crystal plate to the second substrate. (E) is a cross-sectional view of the crystal oscillator.

【図11】従来の水晶振動子の斜視図FIG. 11 is a perspective view of a conventional crystal unit.

【図12】(a)は従来の例における振動用水晶板と補強
板の斜視図 (b)は同研磨前の複合板の側面図 (c)は同研磨後の複合板の側面図 (d)は同水晶振動子の断面図
12A is a perspective view of a vibrating crystal plate and a reinforcing plate in a conventional example, FIG. 12B is a side view of the composite plate before the polishing, and FIG. 12C is a side view of the composite plate after the polishing. ) Is a cross-sectional view of the crystal unit

【符号の説明】[Explanation of symbols]

1 振動用水晶板 2 基板 3 励振電極 4 第二基板 5 薄膜層 6 引出し電極 7 補強版 8 溝 9 バンプ 1 Vibration Quartz Plate 2 Substrate 3 Excitation Electrode 4 Second Substrate 5 Thin Film Layer 6 Extraction Electrode 7 Reinforcement Plate 8 Groove 9 Bump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 豊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Taguchi, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Kazuo Eda, 1006 Kadoma, Kadoma City, Osaka

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に振動用水晶板を直接接合し、そ
れぞれの非接合面を両面同時研磨し、その後、前記基板
に貫通孔を設け、前記貫通孔に対応する部分を励振させ
るように電極を形成することを特徴とする水晶振動子の
製造方法。
1. A vibrating quartz plate is directly bonded onto a substrate, both non-bonded surfaces are simultaneously polished, and then a through hole is provided in the substrate so that a portion corresponding to the through hole is excited. A method for manufacturing a crystal unit, comprising forming electrodes.
【請求項2】 基板として、ガラス、シリコンを用いる
ことを特徴とする請求項1に記載の水晶振動子の製造方
法。
2. The method for manufacturing a crystal unit according to claim 1, wherein glass or silicon is used as the substrate.
【請求項3】 第一基板上の片面または両面に振動用水
晶板を直接接合し、それぞれの非接合面を両面同時研磨
した後、貫通孔もしくは溝を有する第二基板上に前記振
動用水晶板を直接接合を用いて転写をし前記貫通孔もし
くは溝に対応する部分を励振させるように電極を形成す
ることを特徴とする水晶振動子の製造方法。
3. A vibrating crystal plate is directly bonded to one surface or both surfaces of a first substrate, both non-bonded surfaces are simultaneously polished on both surfaces, and the vibrating crystal is then mounted on a second substrate having through holes or grooves. A method for manufacturing a crystal resonator, comprising the steps of transferring a plate by direct bonding and forming electrodes so as to excite portions corresponding to the through holes or grooves.
【請求項4】 第一基板として、ガラス、シリコンを用
いることを特徴とする請求項3に記載の水晶振動子の製
造方法。
4. The method of manufacturing a crystal resonator according to claim 3, wherein glass and silicon are used as the first substrate.
【請求項5】 第二基板として、水晶、ガラス、シリコ
ンを用いることを特徴とする請求項3に記載の水晶振動
子の製造方法。
5. The method of manufacturing a crystal resonator according to claim 3, wherein crystal, glass, or silicon is used as the second substrate.
【請求項6】 第一基板上もしくは振動用水晶板上もし
くは両者上に薄膜層を形成し、前記第一基板の片面また
は両面に前記振動用水晶板を薄膜層を介して直接接合
し、その後前記第一基板および前記振動用水晶板それぞ
れの非接合面を両面同時研磨をした後、貫通孔もしくは
溝を有する第二基板上に前記振動用水晶板を直接接合を
用いて転写をし前記貫通孔もしくは溝に対応する部分を
励振させるように電極を形成することを特徴とする水晶
振動子の製造方法。
6. A thin film layer is formed on a first substrate, a vibrating crystal plate, or both, and the vibrating crystal plate is directly bonded to one surface or both surfaces of the first substrate via the thin film layer, and thereafter. After simultaneously polishing both non-bonded surfaces of the first substrate and the vibrating crystal plate, the vibrating crystal plate is directly bonded and transferred onto the second substrate having a through hole or a groove. A method of manufacturing a crystal resonator, comprising forming electrodes so as to excite portions corresponding to holes or grooves.
【請求項7】 第一基板として、水晶、ガラス、シリコ
ンを用いることを特徴とする請求項6に記載の水晶振動
子の製造方法。
7. The method of manufacturing a crystal resonator according to claim 6, wherein crystal, glass, or silicon is used as the first substrate.
【請求項8】 第二基板として、水晶、ガラス、シリコ
ンを用いることを特徴とする請求項6に記載の水晶振動
子の製造方法。
8. The method for manufacturing a crystal resonator according to claim 6, wherein crystal, glass, or silicon is used as the second substrate.
【請求項9】 薄膜層として、酸化珪素、窒化珪素、珪
素を用いることを特徴とする請求項6に記載の水晶振動
子の製造方法。
9. The method of manufacturing a crystal resonator according to claim 6, wherein silicon oxide, silicon nitride, or silicon is used as the thin film layer.
JP19153493A 1993-08-03 1993-08-03 Manufacture of crystal resonator Pending JPH0746072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19153493A JPH0746072A (en) 1993-08-03 1993-08-03 Manufacture of crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19153493A JPH0746072A (en) 1993-08-03 1993-08-03 Manufacture of crystal resonator

Publications (1)

Publication Number Publication Date
JPH0746072A true JPH0746072A (en) 1995-02-14

Family

ID=16276270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19153493A Pending JPH0746072A (en) 1993-08-03 1993-08-03 Manufacture of crystal resonator

Country Status (1)

Country Link
JP (1) JPH0746072A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056391A1 (en) * 1998-04-28 1999-11-04 Tdk Corporation Piezoelectric bulk vibrator
EP1187318A2 (en) * 2000-09-11 2002-03-13 Agilent Technologies, Inc. (a Delaware corporation) Acoustic resonator
JP2004328122A (en) * 2003-04-22 2004-11-18 Atokku:Kk Crystal oscillator and its manufacturing method
JP2005538643A (en) * 2002-09-12 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bulk acoustic wave resonator with means to suppress passband ripple in bulk acoustic wave filters
JP2007067795A (en) * 2005-08-31 2007-03-15 Kyocera Kinseki Corp Structure of crystal vibrator
JP2008205888A (en) * 2007-02-21 2008-09-04 Seiko Epson Corp Manufacturing method of piezoelectric vibation chip and piezoelectric vibration element
US7622846B2 (en) 2004-04-06 2009-11-24 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator, filter and duplexer and methods of making same
US9013243B2 (en) 2012-03-27 2015-04-21 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and mobile object
US9013242B2 (en) 2012-03-27 2015-04-21 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and mobile object
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056391A1 (en) * 1998-04-28 1999-11-04 Tdk Corporation Piezoelectric bulk vibrator
US6259187B1 (en) 1998-04-28 2001-07-10 Tdk Corporation Piezoelectric bulk acoustic wave device
EP1187318A2 (en) * 2000-09-11 2002-03-13 Agilent Technologies, Inc. (a Delaware corporation) Acoustic resonator
EP1187318A3 (en) * 2000-09-11 2003-05-28 Agilent Technologies, Inc. (a Delaware corporation) Acoustic resonator
JP2005538643A (en) * 2002-09-12 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bulk acoustic wave resonator with means to suppress passband ripple in bulk acoustic wave filters
JP2004328122A (en) * 2003-04-22 2004-11-18 Atokku:Kk Crystal oscillator and its manufacturing method
US7622846B2 (en) 2004-04-06 2009-11-24 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator, filter and duplexer and methods of making same
JP2007067795A (en) * 2005-08-31 2007-03-15 Kyocera Kinseki Corp Structure of crystal vibrator
JP2008205888A (en) * 2007-02-21 2008-09-04 Seiko Epson Corp Manufacturing method of piezoelectric vibation chip and piezoelectric vibration element
US9013243B2 (en) 2012-03-27 2015-04-21 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and mobile object
US9013242B2 (en) 2012-03-27 2015-04-21 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and mobile object
US9312812B2 (en) 2013-10-30 2016-04-12 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9438167B2 (en) 2013-10-30 2016-09-06 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9461585B2 (en) 2013-10-30 2016-10-04 Seiko Epson Corporation Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9628022B2 (en) 2013-10-30 2017-04-18 Seiko Epson Corporation Oscillation circuit, oscillator, method of manufacturing oscillator, electronic device, and moving object
US9748920B2 (en) 2013-10-30 2017-08-29 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
KR102428548B1 (en) Bonding method
TWI672839B (en) Joining method
EP0631384B1 (en) Piezoelectric resonator and method of manufacturing the same
US6426583B1 (en) Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
US5446330A (en) Surface acoustic wave device having a lamination structure
JP3435789B2 (en) Surface acoustic wave device
US6377137B1 (en) Acoustic resonator filter with reduced electromagnetic influence due to die substrate thickness
JP4345049B2 (en) Thin film acoustic resonator and manufacturing method thereof
JPH0746072A (en) Manufacture of crystal resonator
US5647932A (en) Method of processing a piezoelectric device
WO1998051011A1 (en) Elastic boundary wave device and method of its manufacture
JPH10335974A (en) Elastic boundary wave element
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JPH08153915A (en) Composite piezoelectric substrate and its manufacture
JP4730383B2 (en) Thin film acoustic resonator and manufacturing method thereof
JP2002261574A (en) Crystal oscillator and its producing method
JPH07111435A (en) Production of crystal piezoelectric device
JP2000228547A (en) Manufacture of piezoelectric board
JPH0738363A (en) Working method for electronic parts
JP2848116B2 (en) Quartz blank processing method
JPH0750438A (en) Manufacture of thin plate material
JPH09221392A (en) Composite piezoelectric substrate and its production
JPH06314947A (en) Crystal vibrator and its manufacture
EP0594117B1 (en) Piezoelectric filter and its production method
JP2000138555A (en) Piezoelectric element and its manufacture