JP2848116B2 - Quartz blank processing method - Google Patents

Quartz blank processing method

Info

Publication number
JP2848116B2
JP2848116B2 JP13325192A JP13325192A JP2848116B2 JP 2848116 B2 JP2848116 B2 JP 2848116B2 JP 13325192 A JP13325192 A JP 13325192A JP 13325192 A JP13325192 A JP 13325192A JP 2848116 B2 JP2848116 B2 JP 2848116B2
Authority
JP
Japan
Prior art keywords
quartz
plate
semiconductor substrate
thickness
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13325192A
Other languages
Japanese (ja)
Other versions
JPH05327383A (en
Inventor
章大 金星
哲義 小掠
豊 田口
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13325192A priority Critical patent/JP2848116B2/en
Publication of JPH05327383A publication Critical patent/JPH05327383A/en
Application granted granted Critical
Publication of JP2848116B2 publication Critical patent/JP2848116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水晶素板の加工方法に
関し、特に半導体基板上に水晶素板が接着されているよ
うな構造の水晶振動子に用いられる水晶素板の加工方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of processing a quartz crystal plate, and more particularly to a method of processing a quartz crystal plate used for a crystal resonator having a structure in which a quartz crystal plate is bonded on a semiconductor substrate.

【0002】[0002]

【従来の技術】水晶振動子は、その高い安定性により、
情報通信に欠かせない重要なデバイスとして用いられて
いる。近年、衛星通信や携帯電話などの発達にともな
い、その高性能化が一つの大きな目標とされているが、
水晶振動子も例外ではない。
2. Description of the Related Art Quartz resonators have high stability
It is used as an important device indispensable for information communication. In recent years, with the development of satellite communications, mobile phones, etc., high performance has been one of the major goals,
Quartz resonators are no exception.

【0003】水晶振動子は近年、その小型化,ハイブリ
ッド化の試みとして、様々な新たな加工方法が提案され
ている。以下、最近新たに提案されている、水晶振動子
の直接接着を応用した加工方法について簡単に述べる。
[0003] In recent years, various new processing methods have been proposed as attempts to reduce the size and hybridize the quartz oscillator. Hereinafter, a processing method using a direct bonding of a crystal unit, which has been recently proposed, will be briefly described.

【0004】直接接着とは、シリコン基板どうし、ある
いはシリコンとガラス基板どうしを、接着剤を介在させ
ないで直接接着させるという技術で、表面処理を行った
シリコンやガラス基板などを清浄雰囲気中で接触させ、
加熱処理を行い、強固な接着を得るというものである。
[0004] Direct bonding is a technique in which silicon substrates or silicon and glass substrates are directly bonded to each other without an adhesive agent interposed therebetween. Surface-treated silicon or glass substrates are brought into contact in a clean atmosphere. ,
Heat treatment is performed to obtain strong adhesion.

【0005】上記直接接着技術を水晶素板に応用し、水
晶素板と半導体基板とを適当な処理,加工を行った後、
直接接着し、半導体加工技術を応用して前記水晶素板を
希望の形状に加工し、小型でハイブリッド化された水晶
振動子を得るという加工方法が新たに開発されている。
従来のこの種の加工方法について、図2を参照しながら
説明する。
[0005] The above direct bonding technique is applied to a quartz crystal plate, and the quartz crystal plate and the semiconductor substrate are appropriately processed and processed.
A processing method of directly bonding and processing the quartz crystal plate into a desired shape by applying a semiconductor processing technique to obtain a small and hybrid crystal resonator has been newly developed.
A conventional processing method of this kind will be described with reference to FIG.

【0006】図において、21は水晶素板、22a,2
2bはそれぞれ上部励起電極および下部励起電極、23
は空間、24は半導体基板である。そして、前記水晶素
板21と前記半導体基板24とは、直接接着のための表
面処理がなされた後、清浄雰囲気中で接触させられ、熱
処理がなされている。また、前記空間23は前記水晶素
板21の振動のために前記半導体基板24に開けられて
いる。この方法は、前記水晶素板21をフォトリソグラ
フィーやエッチングなどの半導体加工技術を用いて任意
の形状,寸法に加工することができ、高性能化,小型化
や量産性に優れた加工方法である。さらに、前記水晶素
板21が接着されている前記半導体基板24に前記水晶
素板21を駆動するための能動回路を組み込むことによ
り、発振回路と振動部分とが一体化されたハイブリッド
型水晶発振器を得ることも可能である。
In the figure, reference numeral 21 denotes a quartz crystal plate, 22a, 2
2b is an upper excitation electrode and a lower excitation electrode, respectively.
Is a space, and 24 is a semiconductor substrate. The crystal plate 21 and the semiconductor substrate 24 are subjected to a surface treatment for direct bonding, and then brought into contact in a clean atmosphere and subjected to a heat treatment. The space 23 is opened in the semiconductor substrate 24 for the vibration of the quartz crystal plate 21. This method can process the quartz crystal plate 21 into an arbitrary shape and size by using a semiconductor processing technique such as photolithography or etching, and is a processing method excellent in high performance, miniaturization, and mass productivity. . Further, by incorporating an active circuit for driving the quartz crystal plate 21 into the semiconductor substrate 24 to which the quartz crystal plate 21 is adhered, a hybrid crystal oscillator in which an oscillation circuit and a vibrating part are integrated is provided. It is also possible to get.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の加工方法では、水晶素板21と半導体基板24との
直接接着後の接着強度を向上させるために必要である加
熱処理を施そうとしても、水晶と半導体との熱膨脹率の
差によって前記水晶素板21あるいは前記半導体基板2
4が熱応力のために破壊されてしまう場合があり、条件
が制約されるという問題があった。例えば、前記水晶素
板21として厚さ80μm,大きさ8φのATカット水
晶板を用い、前記半導体基板24として大きさ10mm×
10mm,厚さ350μm、面方位(100)のシリコン
単結晶基板を用いた場合、水晶(ATカット)の熱膨脹
率は13×10-6/℃、シリコンは2.5×10-6/℃
であるため、加熱処理温度を300℃以上にすると、熱
応力のために前記水晶素板21と前記半導体基板24と
が破壊されてしまう場合があり、高温にすればするほど
破壊される頻度が高くなるため、十分な接着強度を得る
ためには量産性に問題があった。
However, in the above-mentioned conventional processing method, even if an attempt is made to perform a heat treatment necessary for improving the bonding strength after the direct bonding between the quartz crystal plate 21 and the semiconductor substrate 24, The quartz crystal plate 21 or the semiconductor substrate 2 depends on the difference in thermal expansion coefficient between quartz and semiconductor.
4 may be destroyed due to thermal stress, and there is a problem that conditions are restricted. For example, an AT-cut quartz plate having a thickness of 80 μm and a size of 8φ is used as the quartz plate 21, and a size of 10 mm ×
When a silicon single crystal substrate with a thickness of 10 mm, a thickness of 350 μm, and a plane orientation (100) is used, the thermal expansion coefficient of quartz (AT cut) is 13 × 10 −6 / ° C., and that of silicon is 2.5 × 10 −6 / ° C.
Therefore, when the heat treatment temperature is set to 300 ° C. or higher, the quartz crystal plate 21 and the semiconductor substrate 24 may be broken due to thermal stress. Therefore, there is a problem in mass productivity in order to obtain sufficient adhesive strength.

【0008】そして、水晶素板21の厚さが薄ければ、
熱応力による破壊は生じにくいために、例えば前記水晶
素板21を直接接着前に20μm以下に研磨してから接
着すれば、500℃以上の加熱処理を行っても熱応力に
よる破壊は生じにくくなるが、その場合前記水晶素板2
1の取り扱いが非常に困難になるために、作業性に問題
があった。
If the thickness of the crystal plate 21 is small,
Since damage due to thermal stress is unlikely to occur, if the quartz plate 21 is polished to 20 μm or less before direct bonding and then bonded, for example, even if a heat treatment at 500 ° C. or more is performed, damage due to thermal stress is unlikely to occur. However, in that case, the crystal blank 2
Since the handling of No. 1 became very difficult, there was a problem in workability.

【0009】また、移動体通信に使用される周波数帯が
GHz帯まで高周波化するにしたがって、水晶振動子の
発振周波数も高周波化が必要である。水晶振動子の発振
周波数は、水晶素板21の厚みに反比例するため、発振
周波数の高周波化を行うためには、水晶素板21を薄く
加工する必要がある。しかしながら、現在の加工方法で
は水晶素板21の厚さが40μm以下になると実現は非
常に困難で、また、そのように薄い水晶素板21は取り
扱いが非常に困難であった。そのため、基本波発振で得
られる量産可能な水晶振動子の発振周波数の上限は40
MHz程度で、更なる高周波化には、ウェットエッチン
グやドライエッチングなどの手法を用いるが、厚さの制
御性を良くするためにエッチングレートを低く抑える
と、エッチングして除去する水晶の量が多いために、水
晶素板21が所望の厚さになるまで非常に時間がかかる
という問題があった。
Further, as the frequency band used for mobile communication increases to the GHz band, the oscillation frequency of the quartz oscillator also needs to increase. Since the oscillation frequency of the crystal unit is inversely proportional to the thickness of the quartz plate 21, the quartz plate 21 needs to be thinned in order to increase the oscillation frequency. However, with the current processing method, it is very difficult to realize when the thickness of the quartz plate 21 is 40 μm or less, and it is very difficult to handle such a thin quartz plate 21. Therefore, the upper limit of the oscillation frequency of the mass-produced quartz oscillator obtained by the fundamental wave oscillation is 40
At about MHz, to further increase the frequency, techniques such as wet etching and dry etching are used, but if the etching rate is kept low to improve the controllability of the thickness, the amount of crystal to be etched and removed is large For this reason, there has been a problem that it takes a very long time for the crystal element plate 21 to have a desired thickness.

【0010】本発明は上記課題を解決するもので、水晶
素板が容易に薄く研磨でき、水晶振動子の高周波化を容
易にし、半導体基板との接着強度も向上し、量産性も良
い水晶素板の加工方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and a quartz crystal plate can be easily polished thin and thin, a high frequency of a quartz oscillator can be easily achieved, an adhesive strength with a semiconductor substrate can be improved, and mass production can be easily performed. An object of the present invention is to provide a method for processing a plate.

【0011】[0011]

【課題を解決するための手段】本発明の水晶素板の加工
方法は、上記目的を達成するために表面を親水化処理し
た半導体基板と厚さ50μm以上80μm以下の水晶素
板とを直接接着した後、350℃以上400℃以下の加
熱処理を行い、前記水晶素板を50μm以下の厚さに加
工し、前記水晶素板と前記半導体基板とに400℃以上
573℃以下の加熱処理を行う加工方法とする。
According to the present invention, there is provided a method for processing a quartz crystal plate, comprising: directly bonding a semiconductor substrate having a hydrophilized surface to a quartz crystal plate having a thickness of 50 μm or more and 80 μm or less to achieve the above object. After that, a heat treatment of 350 ° C. or more and 400 ° C. or less is performed, the quartz plate is processed to a thickness of 50 μm or less, and the quartz plate and the semiconductor substrate are subjected to a heat treatment of 400 ° C. or more and 573 ° C. or less. Processing method.

【0012】[0012]

【作用】本発明は上記した加工方法により、水晶素板や
半導体基板が割れることが少なく、十分な接着強度が得
られるような加熱処理が可能になるため、量産性が向上
する。
According to the present invention, by the above-described processing method, the quartz plate or the semiconductor substrate is hardly cracked, and a heat treatment for obtaining a sufficient adhesive strength can be performed, so that mass productivity is improved.

【0013】また、水晶素板は、半導体基板に接着した
まま研磨やエッチングによって薄くすることができるの
で、水晶素板の厚さが薄くなっても取り扱いは容易であ
るため、水晶振動子の超高周波化が容易になる。
Further, since the quartz crystal plate can be thinned by polishing or etching while being adhered to the semiconductor substrate, it is easy to handle even if the thickness of the quartz crystal plate becomes thin. Higher frequency becomes easier.

【0014】さらに、水晶素板の厚さを非常に薄く研磨
することが容易になるため、エッチング加工によって除
去する水晶の量も少なくて済み、水晶振動子の共振周波
数の高周波化が容易になることとなる。
Further, since the thickness of the quartz crystal plate can be very thinly polished, the amount of quartz to be removed by etching can be reduced, and the resonance frequency of the quartz resonator can be easily increased. It will be.

【0015】[0015]

【実施例】以下、本発明の一実施例について詳しく説明
する。水晶素板の厚さと、直接接着した後の加熱処理後
に割れたり剥がれたりする不良率が20%以下になるよ
うな最高加熱処理温度との関係を、水晶素板の厚さが1
60μm,80μm,55μm,40μm,20μmの
5種類について、加熱処理温度を室温から500℃まで
変化させて調べた実験の結果、(表1)に示す結果が得
られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. The relationship between the thickness of the quartz crystal plate and the maximum heat treatment temperature at which the failure rate of cracking or peeling after the heat treatment after direct bonding is 20% or less is determined by the following equation.
As a result of an experiment in which the heat treatment temperature was changed from room temperature to 500 ° C. for five types of 60 μm, 80 μm, 55 μm, 40 μm, and 20 μm, the results shown in Table 1 were obtained.

【0016】[0016]

【表1】 [Table 1]

【0017】この場合、直接接着に用いている水晶素板
の大きさは8φで、半導体基板は、大きさ11×11m
m,厚さ400μm,面方位(100)のシリコン単結
晶基板である。また、前記水晶素板と前記半導体基板と
は、電気炉によって空気中で加熱し、昇温率は100℃
/1時間で、降温率は300℃/2時間程度であり、前
記水晶素板と前記半導体基板とを直接接着した試料は、
前記水晶素板の各々の厚さにつき20枚作製した。
In this case, the size of the quartz plate used for direct bonding is 8φ, and the size of the semiconductor substrate is 11 × 11 m.
m, a thickness of 400 μm, and a (100) plane single-crystal silicon substrate. Further, the quartz crystal plate and the semiconductor substrate are heated in air by an electric furnace, and the temperature rise rate is 100 ° C.
/ 1 hour, the temperature drop rate is about 300 ° C./2 hours, and the sample in which the quartz plate and the semiconductor substrate are directly bonded is
Twenty pieces were prepared for each thickness of the quartz plate.

【0018】そして、直接接着後の加熱処理温度が35
0℃以上であれば、水晶素板と半導体基板との接着強度
は、少なくとも前記半導体基板を保持して前記水晶素板
を機械研磨するのに問題のないような強度になることが
わかっているが、(表1)より水晶素板の厚さが少なく
とも80μm以下でなければ350℃の加熱処理はでき
ないことがわかる。また、水晶素板の厚さを50μm以
下に研磨することは容易ではなく、さらに薄い水晶素板
は取り扱いが困難になるので、直接接着する前の水晶素
板の厚さは50μm以上80μm以下にすればよい。そ
こで、本実施例では直接接着に用いる水晶素板の厚さは
60μm程度とした。また、前記水晶素板を接着する半
導体基板は、大きさ11×11mm,厚さ400μm、面
方位(100)のシリコン単結晶基板を用い、前記水晶
素板と前記シリコン基板とは、ともに両面が鏡面に仕上
げられている。
The heat treatment temperature after the direct bonding is 35.
If the temperature is 0 ° C. or higher, it is known that the bonding strength between the quartz crystal plate and the semiconductor substrate is at least such that there is no problem in mechanically polishing the quartz crystal plate while holding the semiconductor substrate. However, it can be seen from Table 1 that the heat treatment at 350 ° C. cannot be performed unless the thickness of the quartz crystal plate is at least 80 μm or less. In addition, it is not easy to polish the thickness of the quartz plate to 50 μm or less, and it is difficult to handle a thinner quartz plate. Therefore, the thickness of the quartz plate before directly bonding is 50 μm or more and 80 μm or less. do it. Therefore, in the present embodiment, the thickness of the quartz plate used for direct bonding is set to about 60 μm. The semiconductor substrate to which the quartz plate is bonded is a silicon single crystal substrate having a size of 11 × 11 mm, a thickness of 400 μm, and a plane orientation of (100). Both sides of the quartz plate and the silicon substrate are provided. It is mirror finished.

【0019】前記水晶素板と前記半導体基板とを水和処
理した後、流水中で洗浄し、清浄雰囲気中で接触させ
た。その後、前記水晶素板と前記半導体基板とを電気炉
で空気中で350℃まで十分ゆっくり加熱し、第1加熱
処理を行った。
After the quartz crystal plate and the semiconductor substrate were hydrated, they were washed in running water and brought into contact in a clean atmosphere. Thereafter, the crystal plate and the semiconductor substrate were sufficiently slowly heated to 350 ° C. in air in an electric furnace to perform a first heat treatment.

【0020】前記第1加熱処理後、十分ゆっくり室温ま
で冷やした前記水晶素板と前記半導体基板との、前記半
導体基板側を研磨機の定盤にエレクトロンワックスを用
いて固定し、前記水晶素板を研磨して薄くした。水晶素
板の厚さは薄くする方がより高温の加熱処理が可能であ
り高周波化にも対応するものであるが、機械研磨で精度
よく研磨できるのは、10μm以上であるので、本実施
例の場合、前記水晶素板の厚さは15μmとした。
After the first heat treatment, the semiconductor substrate side of the quartz crystal plate and the semiconductor substrate cooled sufficiently slowly to room temperature is fixed to a surface plate of a polishing machine using electron wax, and the quartz crystal plate is cooled. Was thinned by polishing. Although the thinner quartz crystal plate can be heated at a higher temperature and can respond to higher frequency when the thickness of the quartz crystal plate is reduced, it is possible to precisely polish by mechanical polishing at least 10 μm. In the case of the above, the thickness of the quartz plate was 15 μm.

【0021】その後、前記水晶素板と前記半導体基板と
を再び電気炉で500℃まで空気中で十分ゆっくり加熱
し、第2加熱処理を行った。
Thereafter, the crystal plate and the semiconductor substrate were again heated sufficiently slowly in an electric furnace to 500 ° C. in air, and a second heat treatment was performed.

【0022】上記のようにして前記半導体基板上に直接
接着された前記水晶素板に、半導体加工技術を応用して
振動部を形成し、水晶振動子とした。図1に、本実施例
によって得られた半導体基板上に直接接着された水晶振
動子の外観図を示す。図1において、1は水晶素板、2
は振動部、3は半導体基板、4は励起電極で、前記振動
部2は幅0.8mm,長さ5mmの矩形とし、前記励起電極
4は幅0.5mm,長さ2mmの矩形とし、前記振動部2は
前記水晶素板1をウェットエッチングによってくり抜き
加工して形成した。また、前記水晶素板1は、前記半導
体基板3に直接接着したままウェットエッチングおよび
ドライエッチングすることによって厚さをほぼ2μmに
加工し、得られた前記水晶振動子の共振周波数は167
MHzとなった。前記水晶素板1の厚さが15μmと非
常に薄いため、各々のエッチングにおいて厚さの制御性
を良くするためにエッチングレートを低く抑えても前記
水晶素板1が所望の厚さになるまでの時間は少なくて済
むこととなる。
A vibrating portion is formed by applying a semiconductor processing technique to the quartz crystal plate directly adhered on the semiconductor substrate as described above, to obtain a quartz oscillator. FIG. 1 shows an external view of a crystal unit directly bonded on a semiconductor substrate obtained according to this embodiment. In FIG. 1, 1 is a crystal blank, 2
Is a vibrating section, 3 is a semiconductor substrate, 4 is an excitation electrode, the vibrating section 2 is a rectangle having a width of 0.8 mm and a length of 5 mm, and the excitation electrode 4 is a rectangle having a width of 0.5 mm and a length of 2 mm. The vibrating part 2 was formed by hollowing out the quartz crystal plate 1 by wet etching. The crystal blank 1 is processed to a thickness of about 2 μm by wet etching and dry etching while being directly adhered to the semiconductor substrate 3, and the obtained crystal resonator has a resonance frequency of 167 μm.
MHz. Since the thickness of the quartz crystal plate 1 is very thin, 15 μm, even if the etching rate is kept low in order to improve the controllability of the thickness in each etching, the quartz crystal plate 1 is kept at a desired thickness. Less time is needed.

【0023】上記のように、前記水晶素板1は前記半導
体基板3に強固に直接接着されているで、半導体加工技
術を応用することによって水晶素板1を精密に加工する
ことが可能になり、また、水晶素板1を非常に薄く加工
することも容易になったので、これまで得ることが困難
であった100MHz以上の共振周波数を持つ水晶振動
子の加工が容易になった。
As described above, since the quartz crystal plate 1 is firmly and directly adhered to the semiconductor substrate 3, it is possible to precisely machine the quartz crystal plate 1 by applying a semiconductor processing technique. In addition, since it is easy to process the crystal blank 1 very thinly, it is easy to process a crystal resonator having a resonance frequency of 100 MHz or more, which has been difficult to obtain until now.

【0024】なお、本実施例では、前記第1加熱処理温
度を350℃としているが、これに限るものではなく、
前記水晶素板1を前記半導体基板3に直接接着したまま
研磨できるような接着強度が得られれば良いことから前
記第1加熱処理温度は350℃以上であれば良いことは
明らかである。また、前記第1加熱処理前の水晶素板1
の厚さを60μmとしているが、これに限るものではな
く、前記第1加熱処理温度まで加熱できるような厚さ以
下であれば良い。
In the present embodiment, the first heat treatment temperature is set to 350 ° C., but is not limited to this.
It is clear that the first heat treatment temperature may be 350 ° C. or more, since it is sufficient to obtain an adhesive strength that enables polishing while the crystal plate 1 is directly adhered to the semiconductor substrate 3. Further, the quartz crystal plate 1 before the first heat treatment is performed.
Is set to 60 μm, but is not limited to this, and may be any thickness as long as it can be heated to the first heat treatment temperature.

【0025】さらに、前記第2加熱処理前の水晶素板1
の厚さを15μmとしているが、これに限るものではな
く、前記第2加熱処理温度まで加熱できるような厚さで
あればよく、例えば前記第2加熱処理温度が450℃で
あれば前記水晶素板1の厚さは40μmであれば良い。
また、本実施例では前記第2加熱処理温度を500℃と
しているが、これに限るものではなく、前記水晶素板1
と前記半導体基板3とが割れたり剥がれたりすることが
少なく、また、水晶のα−β転移温度(573℃)以下
であるような温度であれば良い。
Further, the quartz crystal plate 1 before the second heat treatment is performed.
Is 15 μm, but is not limited to this. Any thickness may be used as long as it can be heated to the second heat treatment temperature. For example, if the second heat treatment temperature is 450 ° C., the crystal The thickness of the plate 1 may be 40 μm.
In the present embodiment, the second heat treatment temperature is set to 500 ° C., but the present invention is not limited to this.
And the semiconductor substrate 3 are not likely to be cracked or peeled off, and may be any temperature that is lower than or equal to the α-β transition temperature (573 ° C.) of quartz.

【0026】[0026]

【発明の効果】以上のように本発明は、水晶素板と半導
体基板とを直接接着した後の加熱処理温度と、前記水晶
素板の厚さを規定することによって、前記半導体基板と
前記水晶素板との接着強度が十分であるような加熱処理
温度まで加熱しても、前記水晶素板や前記半導体基板は
割れたり剥がれたりすることが少なくなる。
As described above, according to the present invention, the heat treatment temperature after directly bonding the quartz crystal plate and the semiconductor substrate and the thickness of the quartz crystal plate are defined, whereby the semiconductor substrate and the quartz crystal are defined. Even when heated to a heat treatment temperature at which the bonding strength with the base plate is sufficient, the quartz plate and the semiconductor substrate are less likely to be cracked or peeled.

【0027】また、前記水晶素板は前記半導体基板に接
着されているので、前記水晶素板の厚さが薄くなっても
取り扱いが容易で、作業性も良い。
Further, since the quartz plate is bonded to the semiconductor substrate, it is easy to handle even if the thickness of the quartz plate is thin, and the workability is good.

【0028】そのうえ、前記水晶素板は前記半導体基板
に接着したまま機械研磨で容易に非常に薄くすることが
できるで、エッチングなどによって削除する前記水晶素
板の量は少なくて済むため、水晶振動子の共振周波数の
高周波化が容易になる水晶素板の加工方法を提供でき
る。
In addition, since the quartz crystal plate can be easily made very thin by mechanical polishing while being adhered to the semiconductor substrate, the amount of the quartz crystal plate to be removed by etching or the like can be reduced. It is possible to provide a method for processing a quartz crystal plate that facilitates increasing the resonance frequency of the crystal element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加工方法によって得られた水晶振動子
の斜視図
FIG. 1 is a perspective view of a crystal resonator obtained by a processing method of the present invention.

【図2】(a)従来の加工方法によって得られた水晶振
動子の斜視図 (b)同加工方法によって得られた水晶振動子の断面図
FIG. 2A is a perspective view of a crystal resonator obtained by a conventional processing method; FIG. 2B is a cross-sectional view of the crystal resonator obtained by the processing method;

【符号の説明】[Explanation of symbols]

1 水晶素板 3 半導体基板 Reference Signs List 1 crystal blank 3 semiconductor substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H03H 3/00 - 3/10 H03H 9/00 - 9/76 H01L 41/00 - 41/26────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuo Eda 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H03H 3/00 -3/10 H03H 9/00-9/76 H01L 41/00-41/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面を親水化処理した半導体基板と厚さ
50μm以上80μm以下の水晶素板とを直接接着した
後、350℃以上400℃以下の加熱処理を行い、前記
水晶素板を50μm以下の厚さに加工し、前記水晶素板
と前記半導体基板とに400℃以上573℃以下の加熱
処理を行い加工する水晶素板の加工方法。
1. After directly bonding a semiconductor substrate having a hydrophilized surface to a quartz plate having a thickness of not less than 50 μm and not more than 80 μm, a heat treatment is performed at not less than 350 ° C. and not more than 400 ° C. And processing the quartz crystal plate and the semiconductor substrate by heating at 400 ° C. or more and 573 ° C. or less.
【請求項2】 半導体基板としてシリコン基板を用いる
請求項1記載の水晶素板の加工方法。
2. The method according to claim 1, wherein a silicon substrate is used as the semiconductor substrate.
JP13325192A 1992-05-26 1992-05-26 Quartz blank processing method Expired - Lifetime JP2848116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13325192A JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13325192A JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Publications (2)

Publication Number Publication Date
JPH05327383A JPH05327383A (en) 1993-12-10
JP2848116B2 true JP2848116B2 (en) 1999-01-20

Family

ID=15100244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13325192A Expired - Lifetime JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Country Status (1)

Country Link
JP (1) JP2848116B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2153848C (en) 1994-07-18 2003-05-13 Motoyuki Tanaka Oxide thin film having quartz crystal structure and process for producing the same
EP0716167B1 (en) 1994-12-05 2001-02-28 Sumitomo Electric Industries, Ltd. Single crystal quartz thin film and preparation thereof
JP3703773B2 (en) * 2002-03-28 2005-10-05 株式会社ヒューモラボラトリー Manufacturing method of crystal unit
FR3042649B1 (en) * 2015-10-20 2019-06-21 Soitec METHOD FOR MANUFACTURING A HYBRID STRUCTURE

Also Published As

Publication number Publication date
JPH05327383A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
US4642508A (en) Piezoelectric resonating device
JP3880150B2 (en) Surface acoustic wave device
US5698471A (en) Method of manufacturing a composite substrate and a piezoelectric device using the substrate
US6996882B2 (en) Method for producing a surface acoustic wave element
JP2003017967A (en) Surface acoustic wave element and its manufacturing method
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
JP2973560B2 (en) Processing method of crystal unit
JPH06291587A (en) Piezoelectric vibrator
JPH06350371A (en) Manufacture of piezoelectric device
US5647932A (en) Method of processing a piezoelectric device
KR20190014072A (en) Hybrid structure for surface acoustic wave device
JPH01157108A (en) Piezoelectric thin film resonator
CN115225060A (en) Surface acoustic wave resonator device and method of forming the same
JPH0746072A (en) Manufacture of crystal resonator
JP2848116B2 (en) Quartz blank processing method
CN111883646B (en) Preparation method of silicon-based lithium tantalate piezoelectric single crystal film substrate
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JPS6382116A (en) Piezoelectric thin film resonator and its manufacture
JP2003124767A (en) Surface acoustic wave element and production method therefor
JPH11340769A (en) Manufacture of glass joined piezoelectric substrate
JPH07111435A (en) Production of crystal piezoelectric device
JPH10200369A (en) Piezoelectric thin film resonator
JPH0738363A (en) Working method for electronic parts
JP2857456B2 (en) Method for manufacturing semiconductor film
JPH05327384A (en) Working method for crystal element board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121106