JPH05327383A - Working method for crystal element board - Google Patents

Working method for crystal element board

Info

Publication number
JPH05327383A
JPH05327383A JP13325192A JP13325192A JPH05327383A JP H05327383 A JPH05327383 A JP H05327383A JP 13325192 A JP13325192 A JP 13325192A JP 13325192 A JP13325192 A JP 13325192A JP H05327383 A JPH05327383 A JP H05327383A
Authority
JP
Japan
Prior art keywords
crystal
semiconductor substrate
thickness
crystal element
element board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13325192A
Other languages
Japanese (ja)
Other versions
JP2848116B2 (en
Inventor
Akihiro Kanahoshi
章大 金星
Tetsuyoshi Ogura
哲義 小掠
Yutaka Taguchi
豊 田口
Kazuo Eda
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13325192A priority Critical patent/JP2848116B2/en
Publication of JPH05327383A publication Critical patent/JPH05327383A/en
Application granted granted Critical
Publication of JP2848116B2 publication Critical patent/JP2848116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To provide a working method for crystal element board for easily and thinly grinding a crystal element board, facilitating oscillation in higher frequency for a crystal oscillator improving adhesive strength with a semiconductor substrate and improving mass productivity concerning the constitution of a crystal oscillator adhering the crystal element board on the semiconductor substrate. CONSTITUTION:A semiconductor substrate 3 performing hydrophilic processing for the surface and a crystal element board 1 having thickness thicker than 40mum and thinner than 80mum are directly adhered, thereafter, heating processing of higher than 350 deg.C and lower than 400 deg.C is performed, the crystal element board 1 is worked into the thickness thinner than 40mum, and heating processing of higher than 400 deg.C and lower than 573 deg.C is performed for the crystal element board 1 and the semiconductor substrate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水晶素板の加工方法に
関し、特に半導体基板上に水晶素板が接着されているよ
うな構造の水晶振動子に用いられる水晶素板の加工方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a crystal blank, and more particularly to a method for processing a crystal blank used in a crystal resonator having a structure in which a crystal blank is bonded onto a semiconductor substrate.

【0002】[0002]

【従来の技術】水晶振動子は、その高い安定性により、
情報通信に欠かせない重要なデバイスとして用いられて
いる。近年、衛星通信や携帯電話などの発達にともな
い、その高性能化が一つの大きな目標とされているが、
水晶振動子も例外ではない。
2. Description of the Related Art Crystal oscillators have high stability,
It is used as an important device indispensable for information communication. In recent years, with the development of satellite communications and mobile phones, it has become a major goal to improve their performance.
The crystal unit is no exception.

【0003】水晶振動子は近年、その小型化,ハイブリ
ッド化の試みとして、様々な新たな加工方法が提案され
ている。以下、最近新たに提案されている、水晶振動子
の直接接着を応用した加工方法について簡単に述べる。
In recent years, various new processing methods have been proposed for crystal oscillators in an attempt to reduce their size and make them hybrid. Hereinafter, a recently proposed processing method to which the direct bonding of the crystal unit is applied will be briefly described.

【0004】直接接着とは、シリコン基板どうし、ある
いはシリコンとガラス基板どうしを、接着剤を介在させ
ないで直接接着させるという技術で、表面処理を行った
シリコンやガラス基板などを清浄雰囲気中で接触させ、
加熱処理を行い、強固な接着を得るというものである。
The direct adhesion is a technique of directly adhering silicon substrates or silicon and glass substrates without an adhesive agent, and bringing the surface-treated silicon or glass substrate into contact in a clean atmosphere. ,
Heat treatment is performed to obtain strong adhesion.

【0005】上記直接接着技術を水晶素板に応用し、水
晶素板と半導体基板とを適当な処理,加工を行った後、
直接接着し、半導体加工技術を応用して前記水晶素板を
希望の形状に加工し、小型でハイブリッド化された水晶
振動子を得るという加工方法が新たに開発されている。
従来のこの種の加工方法について、図2を参照しながら
説明する。
After applying the above-mentioned direct bonding technique to a crystal blank and subjecting the crystal blank and the semiconductor substrate to appropriate treatment and processing,
A processing method has been newly developed in which a quartz crystal plate is directly bonded and processed into a desired shape by applying a semiconductor processing technology to obtain a small-sized hybridized crystal resonator.
A conventional processing method of this type will be described with reference to FIG.

【0006】図において、21は水晶素板、22a,2
2bはそれぞれ上部励起電極および下部励起電極、23
は空間、24は半導体基板である。そして、前記水晶素
板21と前記半導体基板24とは、直接接着のための表
面処理がなされた後、清浄雰囲気中で接触させられ、熱
処理がなされている。また、前記空間23は前記水晶素
板21の振動のために前記半導体基板24に開けられて
いる。この方法は、前記水晶素板21をフォトリソグラ
フィーやエッチングなどの半導体加工技術を用いて任意
の形状,寸法に加工することができ、高性能化,小型化
や量産性に優れた加工方法である。さらに、前記水晶素
板21が接着されている前記半導体基板24に前記水晶
素板21を駆動するための能動回路を組み込むことによ
り、発振回路と振動部分とが一体化されたハイブリッド
型水晶発振器を得ることも可能である。
In the figure, reference numeral 21 is a quartz crystal plate, and 22a, 2
2b is an upper excitation electrode and a lower excitation electrode, 23
Is a space and 24 is a semiconductor substrate. Then, the crystal blank 21 and the semiconductor substrate 24 are subjected to a surface treatment for direct bonding, and then brought into contact with each other in a clean atmosphere to be heat-treated. Further, the space 23 is opened in the semiconductor substrate 24 due to the vibration of the quartz crystal plate 21. This method is a processing method capable of processing the crystal blank 21 into an arbitrary shape and size by using a semiconductor processing technique such as photolithography or etching, and having excellent performance, miniaturization and mass productivity. .. Further, by incorporating an active circuit for driving the crystal element plate 21 in the semiconductor substrate 24 to which the crystal element plate 21 is adhered, a hybrid type crystal oscillator in which an oscillation circuit and a vibrating portion are integrated is provided. It is also possible to obtain.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の加工方法では、水晶素板21と半導体基板24との
直接接着後の接着強度を向上させるために必要である加
熱処理を施そうとしても、水晶と半導体との熱膨脹率の
差によって前記水晶素板21あるいは前記半導体基板2
4が熱応力のために破壊されてしまう場合があり、条件
が制約されるという問題があった。例えば、前記水晶素
板21として厚さ80μm,大きさ8φのATカット水
晶板を用い、前記半導体基板24として大きさ10mm×
10mm,厚さ350μm、面方位(100)のシリコン
単結晶基板を用いた場合、水晶(ATカット)の熱膨脹
率は13×10-6/℃、シリコンは2.5×10-6/℃
であるため、加熱処理温度を300℃以上にすると、熱
応力のために前記水晶素板21と前記半導体基板24と
が破壊されてしまう場合があり、高温にすればするほど
破壊される頻度が高くなるため、十分な接着強度を得る
ためには量産性に問題があった。
However, in the above-mentioned conventional processing method, even if an attempt is made to perform the heat treatment necessary for improving the bonding strength after the direct bonding of the quartz crystal plate 21 and the semiconductor substrate 24, Depending on the difference in coefficient of thermal expansion between the crystal and the semiconductor, the crystal blank 21 or the semiconductor substrate 2
There is a problem that 4 may be destroyed due to thermal stress and the conditions are restricted. For example, an AT-cut crystal plate having a thickness of 80 μm and a size of 8φ is used as the crystal base plate 21, and a size of 10 mm × is used as the semiconductor substrate 24.
When a silicon single crystal substrate of 10 mm, thickness of 350 μm and plane orientation (100) is used, the coefficient of thermal expansion of quartz (AT cut) is 13 × 10 −6 / ° C. and that of silicon is 2.5 × 10 −6 / ° C.
Therefore, when the heat treatment temperature is set to 300 ° C. or higher, the quartz crystal plate 21 and the semiconductor substrate 24 may be destroyed due to thermal stress, and the higher the temperature, the more frequently the crystals are destroyed. Therefore, there is a problem in mass productivity in order to obtain sufficient adhesive strength.

【0008】そして、水晶素板21の厚さが薄ければ、
熱応力による破壊は生じにくいために、例えば前記水晶
素板21を直接接着前に20μm以下に研磨してから接
着すれば、500℃以上の加熱処理を行っても熱応力に
よる破壊は生じにくくなるが、その場合前記水晶素板2
1の取り扱いが非常に困難になるために、作業性に問題
があった。
If the crystal blank 21 is thin,
Since destruction due to thermal stress is unlikely to occur, for example, if the crystal element plate 21 is ground to 20 μm or less before being directly adhered and then adhered, even if heat treatment is performed at 500 ° C. or more, destruction due to thermal stress is unlikely to occur. However, in that case, the crystal blank 2
Since handling of No. 1 becomes very difficult, there was a problem in workability.

【0009】また、移動体通信に使用される周波数帯が
GHz帯まで高周波化するにしたがって、水晶振動子の
発振周波数も高周波化が必要である。水晶振動子の発振
周波数は、水晶素板21の厚みに反比例するため、発振
周波数の高周波化を行うためには、水晶素板21を薄く
加工する必要がある。しかしながら、現在の加工方法で
は水晶素板21の厚さが40μm以下になると実現は非
常に困難で、また、そのように薄い水晶素板21は取り
扱いが非常に困難であった。そのため、基本波発振で得
られる量産可能な水晶振動子の発振周波数の上限は40
MHz程度で、更なる高周波化には、ウェットエッチン
グやドライエッチングなどの手法を用いるが、厚さの制
御性を良くするためにエッチングレートを低く抑える
と、エッチングして除去する水晶の量が多いために、水
晶素板21が所望の厚さになるまで非常に時間がかかる
という問題があった。
Further, as the frequency band used for mobile communication is increased to the GHz band, the oscillation frequency of the crystal oscillator is also required to be increased. Since the oscillation frequency of the crystal unit is inversely proportional to the thickness of the crystal element plate 21, the crystal element plate 21 needs to be thinned in order to increase the oscillation frequency. However, with the current processing method, it is very difficult to realize when the thickness of the crystal blank 21 is 40 μm or less, and it is very difficult to handle such a thin crystal blank 21. Therefore, the upper limit of the oscillation frequency of a crystal oscillator that can be mass-produced by fundamental wave oscillation is 40
At frequencies of about MHz, methods such as wet etching and dry etching are used for further increasing the frequency, but if the etching rate is kept low to improve the controllability of the thickness, the amount of crystal removed by etching is large. Therefore, there is a problem that it takes a very long time until the crystal blank 21 has a desired thickness.

【0010】本発明は上記課題を解決するもので、水晶
素板が容易に薄く研磨でき、水晶振動子の高周波化を容
易にし、半導体基板との接着強度も向上し、量産性も良
い水晶素板の加工方法を提供することを目的とする。
The present invention solves the above-mentioned problems. The crystal element plate can be easily polished thinly, the frequency of the crystal oscillator can be easily increased, the adhesive strength with the semiconductor substrate is improved, and the crystal element is excellent in mass productivity. An object is to provide a method for processing a plate.

【0011】[0011]

【課題を解決するための手段】本発明の水晶素板の加工
方法は、上記目的を達成するために表面を親水化処理し
た半導体基板と厚さ50μm以上80μm以下の水晶素
板とを直接接着した後、350℃以上400℃以下の加
熱処理を行い、前記水晶素板を50μm以下の厚さに加
工し、前記水晶素板と前記半導体基板とに400℃以上
573℃以下の加熱処理を行う加工方法とする。
In order to achieve the above-mentioned object, a method for processing a quartz crystal plate according to the present invention directly adheres a semiconductor substrate having a surface hydrophilized to a quartz crystal plate having a thickness of 50 μm or more and 80 μm or less. After that, heat treatment at 350 ° C. or more and 400 ° C. or less is performed, the quartz crystal plate is processed to have a thickness of 50 μm or less, and heat treatment at 400 ° C. or more and 573 ° C. or less is performed on the quartz crystal plate and the semiconductor substrate. The processing method.

【0012】[0012]

【作用】本発明は上記した加工方法により、水晶素板や
半導体基板が割れることが少なく、十分な接着強度が得
られるような加熱処理が可能になるため、量産性が向上
する。
According to the present invention, by the above-described processing method, the quartz crystal plate and the semiconductor substrate are less likely to be cracked, and the heat treatment that can obtain a sufficient adhesive strength can be performed, so that the mass productivity is improved.

【0013】また、水晶素板は、半導体基板に接着した
まま研磨やエッチングによって薄くすることができるの
で、水晶素板の厚さが薄くなっても取り扱いは容易であ
るため、水晶振動子の超高周波化が容易になる。
Further, since the crystal blank can be thinned by polishing or etching while it is adhered to the semiconductor substrate, it is easy to handle even if the thickness of the crystal blank is thin, and therefore, the crystal blank can be easily processed. High frequency becomes easy.

【0014】さらに、水晶素板の厚さを非常に薄く研磨
することが容易になるため、エッチング加工によって除
去する水晶の量も少なくて済み、水晶振動子の共振周波
数の高周波化が容易になることとなる。
Further, since it becomes easy to polish the crystal blank to a very thin thickness, the amount of crystal to be removed by etching processing can be small, and the resonance frequency of the crystal resonator can be easily increased. It will be.

【0015】[0015]

【実施例】以下、本発明の一実施例について詳しく説明
する。水晶素板の厚さと、直接接着した後の加熱処理後
に割れたり剥がれたりする不良率が20%以下になるよ
うな最高加熱処理温度との関係を、水晶素板の厚さが1
60μm,80μm,55μm,40μm,20μmの
5種類について、加熱処理温度を室温から500℃まで
変化させて調べた実験の結果、(表1)に示す結果が得
られた。
EXAMPLES An example of the present invention will be described in detail below. For the relationship between the thickness of the crystal blank and the maximum heat treatment temperature at which the defective rate of cracking or peeling after heat treatment after direct bonding is 20% or less,
The results shown in (Table 1) were obtained as a result of an experiment in which five kinds of 60 μm, 80 μm, 55 μm, 40 μm, and 20 μm were examined by changing the heat treatment temperature from room temperature to 500 ° C.

【0016】[0016]

【表1】 [Table 1]

【0017】この場合、直接接着に用いている水晶素板
の大きさは8φで、半導体基板は、大きさ11×11m
m,厚さ400μm,面方位(100)のシリコン単結
晶基板である。また、前記水晶素板と前記半導体基板と
は、電気炉によって空気中で加熱し、昇温率は100℃
/1時間で、降温率は300℃/2時間程度であり、前
記水晶素板と前記半導体基板とを直接接着した試料は、
前記水晶素板の各々の厚さにつき20枚作製した。
In this case, the size of the crystal blank used for direct bonding is 8φ, and the size of the semiconductor substrate is 11 × 11 m.
It is a silicon single crystal substrate having m, a thickness of 400 μm, and a plane orientation (100). Further, the crystal blank and the semiconductor substrate are heated in air by an electric furnace, and the temperature rise rate is 100 ° C.
/ 1 hour, the temperature decrease rate is about 300 ° C./2 hours, and the sample in which the quartz crystal plate and the semiconductor substrate are directly bonded is
Twenty sheets were prepared for each thickness of the crystal blanks.

【0018】そして、直接接着後の加熱処理温度が35
0℃以上であれば、水晶素板と半導体基板との接着強度
は、少なくとも前記半導体基板を保持して前記水晶素板
を機械研磨するのに問題のないような強度になることが
わかっているが、(表1)より水晶素板の厚さが少なく
とも80μm以下でなければ350℃の加熱処理はでき
ないことがわかる。また、水晶素板の厚さを50μm以
下に研磨することは容易ではなく、さらに薄い水晶素板
は取り扱いが困難になるので、直接接着する前の水晶素
板の厚さは50μm以上80μm以下にすればよい。そ
こで、本実施例では直接接着に用いる水晶素板の厚さは
60μm程度とした。また、前記水晶素板を接着する半
導体基板は、大きさ11×11mm,厚さ400μm、面
方位(100)のシリコン単結晶基板を用い、前記水晶
素板と前記シリコン基板とは、ともに両面が鏡面に仕上
げられている。
The heat treatment temperature after direct bonding is 35
It is known that if the temperature is 0 ° C. or higher, the adhesive strength between the crystal blank and the semiconductor substrate is such that there is no problem in mechanically polishing the crystal blank while holding at least the semiconductor substrate. However, it can be seen from (Table 1) that the heat treatment at 350 ° C. cannot be performed unless the thickness of the quartz crystal plate is at least 80 μm or less. Further, it is not easy to polish the thickness of the crystal blank to 50 μm or less, and it becomes difficult to handle a thinner crystal blank. Therefore, the thickness of the crystal blank before directly bonding should be 50 μm or more and 80 μm or less. do it. Therefore, in this embodiment, the thickness of the crystal blank used for direct bonding is set to about 60 μm. The semiconductor substrate to which the crystal blank is bonded is a silicon single crystal substrate having a size of 11 × 11 mm, a thickness of 400 μm, and a plane orientation (100), and both the crystal blank and the silicon substrate have both surfaces. It is mirror-finished.

【0019】前記水晶素板と前記半導体基板とを水和処
理した後、流水中で洗浄し、清浄雰囲気中で接触させ
た。その後、前記水晶素板と前記半導体基板とを電気炉
で空気中で350℃まで十分ゆっくり加熱し、第1加熱
処理を行った。
After the crystal blank and the semiconductor substrate were hydrated, they were washed in running water and brought into contact in a clean atmosphere. Then, the quartz crystal plate and the semiconductor substrate were sufficiently slowly heated to 350 ° C. in air in an electric furnace to perform a first heat treatment.

【0020】前記第1加熱処理後、十分ゆっくり室温ま
で冷やした前記水晶素板と前記半導体基板との、前記半
導体基板側を研磨機の定盤にエレクトロンワックスを用
いて固定し、前記水晶素板を研磨して薄くした。水晶素
板の厚さは薄くする方がより高温の加熱処理が可能であ
り高周波化にも対応するものであるが、機械研磨で精度
よく研磨できるのは、10μm以上であるので、本実施
例の場合、前記水晶素板の厚さは15μmとした。
After the first heat treatment, the semiconductor substrate side of the crystal substrate and the semiconductor substrate that have been cooled to room temperature sufficiently slowly is fixed on the surface plate of the polishing machine with electron wax, and the crystal substrate is Was thinned by polishing. The thinner the quartz crystal plate is, the higher the heat treatment is possible, and the higher the frequency can be dealt with. However, the mechanical polishing can be performed with a precision of 10 μm or more. In this case, the thickness of the crystal blank was 15 μm.

【0021】その後、前記水晶素板と前記半導体基板と
を再び電気炉で500℃まで空気中で十分ゆっくり加熱
し、第2加熱処理を行った。
After that, the quartz crystal plate and the semiconductor substrate were again heated in an electric furnace to 500 ° C. in air slowly enough to perform a second heat treatment.

【0022】上記のようにして前記半導体基板上に直接
接着された前記水晶素板に、半導体加工技術を応用して
振動部を形成し、水晶振動子とした。図1に、本実施例
によって得られた半導体基板上に直接接着された水晶振
動子の外観図を示す。図1において、1は水晶素板、2
は振動部、3は半導体基板、4は励起電極で、前記振動
部2は幅0.8mm,長さ5mmの矩形とし、前記励起電極
4は幅0.5mm,長さ2mmの矩形とし、前記振動部2は
前記水晶素板1をウェットエッチングによってくり抜き
加工して形成した。また、前記水晶素板1は、前記半導
体基板3に直接接着したままウェットエッチングおよび
ドライエッチングすることによって厚さをほぼ2μmに
加工し、得られた前記水晶振動子の共振周波数は167
MHzとなった。前記水晶素板1の厚さが15μmと非
常に薄いため、各々のエッチングにおいて厚さの制御性
を良くするためにエッチングレートを低く抑えても前記
水晶素板1が所望の厚さになるまでの時間は少なくて済
むこととなる。
As described above, the quartz crystal plate directly bonded onto the semiconductor substrate was applied with a semiconductor processing technique to form a vibrating portion to obtain a quartz oscillator. FIG. 1 shows an external view of a crystal unit directly bonded onto a semiconductor substrate obtained in this example. In FIG. 1, 1 is a quartz crystal plate, 2
Is a vibrating part, 3 is a semiconductor substrate, 4 is an excitation electrode, the vibrating part 2 is a rectangle having a width of 0.8 mm and a length of 5 mm, and the excitation electrode 4 is a rectangle having a width of 0.5 mm and a length of 2 mm. The vibrating portion 2 was formed by hollowing out the quartz crystal plate 1 by wet etching. Further, the crystal blank 1 is processed to have a thickness of approximately 2 μm by wet etching and dry etching while being directly bonded to the semiconductor substrate 3, and the resonance frequency of the obtained crystal resonator is 167.
Became MHz. Since the thickness of the quartz crystal plate 1 is as thin as 15 μm, even if the etching rate is kept low in order to improve the controllability of the thickness in each etching, the quartz crystal plate 1 has a desired thickness. The time will be less.

【0023】上記のように、前記水晶素板1は前記半導
体基板3に強固に直接接着されているで、半導体加工技
術を応用することによって水晶素板1を精密に加工する
ことが可能になり、また、水晶素板1を非常に薄く加工
することも容易になったので、これまで得ることが困難
であった100MHz以上の共振周波数を持つ水晶振動
子の加工が容易になった。
As described above, the crystal blank 1 is firmly bonded directly to the semiconductor substrate 3, so that the crystal blank 1 can be precisely processed by applying a semiconductor processing technique. Further, since it becomes easy to process the crystal blank 1 very thinly, it becomes easy to process a crystal resonator having a resonance frequency of 100 MHz or more, which has been difficult to obtain so far.

【0024】なお、本実施例では、前記第1加熱処理温
度を350℃としているが、これに限るものではなく、
前記水晶素板1を前記半導体基板3に直接接着したまま
研磨できるような接着強度が得られれば良いことから前
記第1加熱処理温度は350℃以上であれば良いことは
明らかである。また、前記第1加熱処理前の水晶素板1
の厚さを60μmとしているが、これに限るものではな
く、前記第1加熱処理温度まで加熱できるような厚さ以
下であれば良い。
Although the first heat treatment temperature is 350 ° C. in this embodiment, the temperature is not limited to this.
It is clear that the first heat treatment temperature may be 350 ° C. or higher as long as the bonding strength is such that polishing can be performed while the crystal blank 1 is directly bonded to the semiconductor substrate 3. Further, the crystal blank 1 before the first heat treatment
The thickness is 60 μm, but the thickness is not limited to this, and may be any thickness equal to or smaller than the thickness capable of heating up to the first heat treatment temperature.

【0025】さらに、前記第2加熱処理前の水晶素板1
の厚さを15μmとしているが、これに限るものではな
く、前記第2加熱処理温度まで加熱できるような厚さで
あればよく、例えば前記第2加熱処理温度が450℃で
あれば前記水晶素板1の厚さは40μmであれば良い。
また、本実施例では前記第2加熱処理温度を500℃と
しているが、これに限るものではなく、前記水晶素板1
と前記半導体基板3とが割れたり剥がれたりすることが
少なく、また、水晶のα−β転移温度(573℃)以下
であるような温度であれば良い。
Furthermore, the crystal blank 1 before the second heat treatment
The thickness is 15 μm, but the thickness is not limited to this and may be any thickness as long as it can be heated to the second heat treatment temperature. For example, if the second heat treatment temperature is 450 ° C. The thickness of the plate 1 may be 40 μm.
Further, although the second heat treatment temperature is set to 500 ° C. in the present embodiment, the present invention is not limited to this, and the crystal blank 1
The semiconductor substrate 3 is less likely to be cracked or peeled off, and the temperature may be the α-β transition temperature (573 ° C.) of the crystal or lower.

【0026】[0026]

【発明の効果】以上のように本発明は、水晶素板と半導
体基板とを直接接着した後の加熱処理温度と、前記水晶
素板の厚さを規定することによって、前記半導体基板と
前記水晶素板との接着強度が十分であるような加熱処理
温度まで加熱しても、前記水晶素板や前記半導体基板は
割れたり剥がれたりすることが少なくなる。
As described above, according to the present invention, the heat treatment temperature after directly bonding the crystal element plate and the semiconductor substrate and the thickness of the crystal element plate are defined, whereby the semiconductor substrate and the crystal element are formed. Even if heated to a heat treatment temperature at which the adhesive strength with the base plate is sufficient, the crystal base plate and the semiconductor substrate are less likely to be cracked or peeled off.

【0027】また、前記水晶素板は前記半導体基板に接
着されているので、前記水晶素板の厚さが薄くなっても
取り扱いが容易で、作業性も良い。
Further, since the crystal blank is bonded to the semiconductor substrate, it is easy to handle even if the thickness of the crystal blank is thin, and the workability is good.

【0028】そのうえ、前記水晶素板は前記半導体基板
に接着したまま機械研磨で容易に非常に薄くすることが
できるで、エッチングなどによって削除する前記水晶素
板の量は少なくて済むため、水晶振動子の共振周波数の
高周波化が容易になる水晶素板の加工方法を提供でき
る。
In addition, since the crystal blank can be easily made very thin by mechanical polishing while being adhered to the semiconductor substrate, the amount of the crystal blank to be removed by etching or the like can be small, so that the crystal vibration It is possible to provide a method for processing a quartz crystal blank that facilitates increasing the resonance frequency of a child.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加工方法によって得られた水晶振動子
の斜視図
FIG. 1 is a perspective view of a crystal unit obtained by a processing method of the present invention.

【図2】(a)従来の加工方法によって得られた水晶振
動子の斜視図 (b)同加工方法によって得られた水晶振動子の断面図
FIG. 2A is a perspective view of a crystal unit obtained by a conventional processing method, and FIG. 2B is a cross-sectional view of a crystal unit obtained by the processing method.

【符号の説明】[Explanation of symbols]

1 水晶素板 3 半導体基板 1 Crystal blank 3 Semiconductor substrate

フロントページの続き (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued Front Page (72) Inventor Kazuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面を親水化処理した半導体基板と厚さ
50μm以上80μm以下の水晶素板とを直接接着した
後、350℃以上400℃以下の加熱処理を行い、前記
水晶素板を50μm以下の厚さに加工し、前記水晶素板
と前記半導体基板とに400℃以上573℃以下の加熱
処理を行い加工する水晶素板の加工方法。
1. A semiconductor substrate whose surface has been hydrophilized and a crystal element plate having a thickness of 50 μm or more and 80 μm or less are directly adhered to each other, and then heat treatment is performed at 350 ° C. or more and 400 ° C. or less to make the crystal element plate 50 μm or less. A method of processing a crystal blank, which is processed to a thickness of 4 ° C. and heat-processes the crystal blank and the semiconductor substrate at 400 ° C. or higher and 573 ° C. or lower.
【請求項2】 半導体基板としてシリコン基板を用いる
請求項1記載の水晶素板の加工方法。
2. The method for processing a quartz crystal plate according to claim 1, wherein a silicon substrate is used as the semiconductor substrate.
JP13325192A 1992-05-26 1992-05-26 Quartz blank processing method Expired - Lifetime JP2848116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13325192A JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13325192A JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Publications (2)

Publication Number Publication Date
JPH05327383A true JPH05327383A (en) 1993-12-10
JP2848116B2 JP2848116B2 (en) 1999-01-20

Family

ID=15100244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13325192A Expired - Lifetime JP2848116B2 (en) 1992-05-26 1992-05-26 Quartz blank processing method

Country Status (1)

Country Link
JP (1) JP2848116B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693580A1 (en) 1994-07-18 1996-01-24 Sumitomo Electric Industries, Ltd. Oxide thin film having quartz crystal structure and process for producing the same
EP0716167A2 (en) 1994-12-05 1996-06-12 Sumitomo Electric Industries, Ltd. Single crystal quartz thin film and preparation thereof
DE10254611B4 (en) * 2002-03-28 2007-04-19 Humo Laboratory, Ltd. Crystal oscillator and method for its production
US20220278269A1 (en) * 2015-10-20 2022-09-01 Soitec Method for manufacturing a hybrid structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693580A1 (en) 1994-07-18 1996-01-24 Sumitomo Electric Industries, Ltd. Oxide thin film having quartz crystal structure and process for producing the same
EP0716167A2 (en) 1994-12-05 1996-06-12 Sumitomo Electric Industries, Ltd. Single crystal quartz thin film and preparation thereof
DE10254611B4 (en) * 2002-03-28 2007-04-19 Humo Laboratory, Ltd. Crystal oscillator and method for its production
US20220278269A1 (en) * 2015-10-20 2022-09-01 Soitec Method for manufacturing a hybrid structure
US11930710B2 (en) * 2015-10-20 2024-03-12 Soitec Hybrid structure and a method for manufacturing the same

Also Published As

Publication number Publication date
JP2848116B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US6996882B2 (en) Method for producing a surface acoustic wave element
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
JPH1155070A (en) Surface acoustic wave element and its producing method
US5647932A (en) Method of processing a piezoelectric device
KR20160037898A (en) Composite board and method for making same
JP2973560B2 (en) Processing method of crystal unit
JPH0746072A (en) Manufacture of crystal resonator
JPH0917984A (en) Bonded soi substrate manufacturing method
JP2848116B2 (en) Quartz blank processing method
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JPH11340769A (en) Manufacture of glass joined piezoelectric substrate
JP2003124767A (en) Surface acoustic wave element and production method therefor
US5283496A (en) Thickness shear crystal resonator and manufacturing method therefor
JPH07111435A (en) Production of crystal piezoelectric device
JP2000228547A (en) Manufacture of piezoelectric board
JPH0738363A (en) Working method for electronic parts
JPH10200369A (en) Piezoelectric thin film resonator
JPH05327384A (en) Working method for crystal element board
JPH11163654A (en) Manufacture of reinforced piezo-electric substrate
JPH0927645A (en) Manufacture of composite substrate and piezoelectric element using that
JPH0230207A (en) Crystal resonator and its manufacture
JP2003168941A (en) Convex working method for small piezoelectric blank plate
US20240074316A1 (en) Assembly of piezoelectric material substrate and supporting substrate
JP2002217666A (en) Surface acoustic wave element and its manufacturing method
JPH08228122A (en) Frame-shaped crystal oscillator and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121106