JP2001168674A - Piezoelectric resonance element and electronic appliance - Google Patents

Piezoelectric resonance element and electronic appliance

Info

Publication number
JP2001168674A
JP2001168674A JP35058599A JP35058599A JP2001168674A JP 2001168674 A JP2001168674 A JP 2001168674A JP 35058599 A JP35058599 A JP 35058599A JP 35058599 A JP35058599 A JP 35058599A JP 2001168674 A JP2001168674 A JP 2001168674A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
substrate
piezoelectric thin
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35058599A
Other languages
Japanese (ja)
Inventor
Hidekazu Kitamura
英一 北村
Kazuhiro Inoue
和裕 井上
Masaki Takeuchi
雅樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35058599A priority Critical patent/JP2001168674A/en
Publication of JP2001168674A publication Critical patent/JP2001168674A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric thin film resonator which is stable in the temperature characteristic of a resonance frequency and is also excellent in anti-resonance characteristic. SOLUTION: A quartz substrate 22 is etched from the side of a rear surface to form a cavity 24 on the rear surface of the substrate 22 and a thin film supporting part 23 consisting of a part of the substrate 22 is formed on its upper surface. A piezoelectric element part 27 consisting of a piezoelectric thin film 25 consisting of PZT, an exciting electrode 26a on the lower surface of the film 25 and an exciting electrode 26b on the upper surface of the film 25 is formed on the upper surface of the part 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電共振子及び電子
機器に関し、特に、圧電体層の弾性振動を利用した圧電
共振子と当該圧電共振子を利用した電子機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator and an electronic device, and more particularly, to a piezoelectric resonator using elastic vibration of a piezoelectric layer and an electronic device using the piezoelectric resonator.

【0002】[0002]

【従来の技術】圧電基板の厚み振動を利用した圧電薄膜
共振子の共振周波数は、圧電基板の厚さに反比例し、超
高周波領域では圧電基板を極めて薄く加工する必要があ
る。しかし、圧電基板自体の厚さを薄くするのは、その
機械的強度や取り扱い上の制限などから、基本モードで
は数100MHzが実用上の高周波限界とされてきた。
このような問題を解決するため、従来より圧電薄膜共振
子が提案されており、フィルタや共振器として提案され
ている。
2. Description of the Related Art The resonance frequency of a piezoelectric thin-film resonator utilizing the thickness vibration of a piezoelectric substrate is inversely proportional to the thickness of the piezoelectric substrate. However, the thickness of the piezoelectric substrate itself has been reduced to a practical high frequency limit of several hundred MHz in the fundamental mode due to its mechanical strength and restrictions on handling.
In order to solve such a problem, a piezoelectric thin film resonator has been conventionally proposed, and is proposed as a filter or a resonator.

【0003】図1は高周波特性を伸ばせるようにした圧
電薄膜共振子1を示す断面図であって、微細加工法を用
いてSi基板2を部分的にエッチングすることにより、
Si基板2の一部に数μm以下の厚さの薄膜支持部3を
形成し、その上に一対の励振用電極5a,5bを有する
ZnO圧電薄膜4を設けたものである。
FIG. 1 is a cross-sectional view showing a piezoelectric thin-film resonator 1 capable of extending high-frequency characteristics. The piezoelectric thin-film resonator 1 is formed by partially etching a Si substrate 2 using a fine processing method.
A thin film supporting portion 3 having a thickness of several μm or less is formed on a part of a Si substrate 2, and a ZnO piezoelectric thin film 4 having a pair of excitation electrodes 5a and 5b is provided thereon.

【0004】また、図2に示す圧電薄膜共振子6では、
Si基板2の表面に熱酸化等によってSiO薄膜7を
形成し、Si基板2を部分的にエッチングすることによ
ってSiO薄膜7で薄膜支持部3を形成し、その上に
励振用電極5a,5bを両面に有するZnO圧電薄膜4
を設けている。
In the piezoelectric thin film resonator 6 shown in FIG.
The SiO 2 thin film 7 is formed on the surface of the Si substrate 2 by thermal oxidation or the like, and the Si substrate 2 is partially etched to form the thin film support portion 3 with the SiO 2 thin film 7, on which the excitation electrodes 5 a, Piezoelectric thin film 4 having 5b on both sides
Is provided.

【0005】図1及び図2のような圧電薄膜共振子1、
6では、薄膜支持部3は微細加工技術を用いて薄くする
ことができ、圧電薄膜4もスパッタリング等によって薄
く形成することができるので、数100MHz〜数10
00MHzまで高周波特性を延ばすことができる可能性
がある。
A piezoelectric thin film resonator 1 shown in FIGS.
In (6), since the thin film support portion 3 can be thinned by using a fine processing technique, and the piezoelectric thin film 4 can also be formed thin by sputtering or the like, several hundred MHz to several tens of MHz.
There is a possibility that high-frequency characteristics can be extended up to 00 MHz.

【0006】また、ZnOの弾性定数の温度係数(TC
F)は約−70ppm/℃、Siの弾性定数の温度係数は
約−30ppm/℃であって、ZnOとSiでは弾性定数
の温度係数がいずれも負の値をもつので、ZnOからな
る圧電薄膜4とSiからなる薄膜支持部3との組み合わ
せを有する図1の圧電薄膜共振子1では、基本モードに
おける共振周波数の温度特性が悪くなる恐れがある。こ
れに対し、ZnOの弾性定数の温度係数は約−70ppm
/℃、SiOの弾性定数の温度係数は約+100ppm
/℃であって、ZnOとSiOでは弾性定数の温度係
数の符号が異なるので、図2の圧電薄膜共振子では、Z
nOからなる圧電薄膜4の膜厚とSiO からなる薄膜
支持部3の膜厚との比をある適当な値(概略で、2:
1)に設定することにより、基本モードにおける共振周
波数の温度係数を小さくし、共振周波数の温度特性を安
定にすることができる(特開昭58−121817号公
報)。
Further, the temperature coefficient of the elastic constant of ZnO (TC
F) is about -70 ppm / ° C., and the temperature coefficient of the elastic constant of Si is
About -30 ppm / ° C. Elastic constant for ZnO and Si
Has a negative value, the temperature coefficient of
Combination of the piezoelectric thin film 4 and the thin film support 3 made of Si
In the piezoelectric thin-film resonator 1 shown in FIG.
There is a possibility that the temperature characteristics of the resonance frequency may be deteriorated. This
On the other hand, the temperature coefficient of the elastic constant of ZnO is about -70 ppm.
/ ℃, SiO2The temperature coefficient of elastic constant is about + 100ppm
/ ° C, ZnO and SiO2Then the temperature constant of the elastic constant
Since the signs of the numbers are different, in the piezoelectric thin film resonator of FIG.
Film thickness of piezoelectric thin film 4 made of nO and SiO 2Consisting of thin film
The ratio with the film thickness of the support portion 3 is set to an appropriate value (approximately 2:
By setting to 1), the resonance frequency in the fundamental mode
Reduce the temperature coefficient of the wave number and reduce the temperature characteristics of the resonance frequency.
(JP-A-58-121817)
Information).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図1の
ような構造の圧電薄膜共振子では、半導体であるSi基
板を用いているため、励振用電極とSi基板との間の浮
遊容量及びSi基板自体を経由して励振用電極間で高周
波信号の漏れが発生し、高い反共振特性が得られないと
いう問題があった。
However, in the piezoelectric thin film resonator having the structure shown in FIG. 1, since the Si substrate which is a semiconductor is used, the floating capacitance between the excitation electrode and the Si substrate and the Si substrate Leakage of a high-frequency signal occurs between the excitation electrodes via itself, and there is a problem that high anti-resonance characteristics cannot be obtained.

【0008】また、図2のような構造の圧電薄膜共振子
でも、半導体であるシリコン基板を用いているので、励
振用電極とシリコン基板との間の浮遊容量、Si基板及
びSi基板と励振用電極との間の浮遊容量を経由して励
振用電極間で高周波信号の漏れが発生し、高い反共振特
性が得られないという問題があった。
In the piezoelectric thin-film resonator having the structure shown in FIG. 2, the silicon substrate which is a semiconductor is used, so that the floating capacitance between the excitation electrode and the silicon substrate, the Si substrate and the Si substrate and the excitation Leakage of a high-frequency signal occurs between the excitation electrodes via the stray capacitance between the electrodes, and there is a problem that high anti-resonance characteristics cannot be obtained.

【0009】本発明は上述の技術的問題点を解決するた
めになされたものであり、その目的とするところは、共
振周波数の温度特性が安定で、かつ反共振特性も良好な
圧電薄膜による圧電共振子及び電子機器を提供すること
にある。
The present invention has been made to solve the above-mentioned technical problems, and an object of the present invention is to provide a piezoelectric thin film having a stable temperature characteristic of resonance frequency and good anti-resonance characteristics. It is to provide a resonator and an electronic device.

【0010】[0010]

【課題を解決するための手段とその作用】本発明にかか
る圧電共振子は、絶縁材料もしくは圧電材料からなる基
板の一部を裏面側からエッチングすることによって該基
板の表面の一部に薄膜部分を形成し、該薄膜部分の上に
1層もしくは複数層の圧電体層と電極とからなる圧電素
子部を設けた圧電共振子であって、前記圧電体層のうち
少なくとも1層における弾性定数の温度係数の正負符号
が、前記薄膜部分における弾性定数の温度係数の正負符
号と異なっていることを特徴としている。
A piezoelectric resonator according to the present invention is characterized in that a part of a substrate made of an insulating material or a piezoelectric material is etched from the back side to form a thin film part on a part of the surface of the substrate. And a piezoelectric resonator comprising one or more piezoelectric layers and electrodes on the thin film portion, wherein the piezoelectric element has an elastic constant of at least one of the piezoelectric layers. The sign of the temperature coefficient is different from the sign of the temperature coefficient of the elastic constant in the thin film portion.

【0011】本発明にかかる圧電共振子にあっては、圧
電体層のうち少なくとも1層における弾性定数の温度係
数の正負符号が、薄膜部分における弾性定数の温度係数
の正負符号と異なっているので、圧電共振子全体として
の弾性定数の温度係数を小さくすることができる。しか
も、基板が絶縁材料もしくは圧電材料からなるので、圧
電素子部の電極間で高周波信号が漏れるのを防止でき、
強い反共振特性を得ることができる。
In the piezoelectric resonator according to the present invention, the sign of the temperature coefficient of the elastic constant in at least one of the piezoelectric layers is different from the sign of the temperature coefficient of the elastic constant in the thin film portion. In addition, the temperature coefficient of the elastic constant of the entire piezoelectric resonator can be reduced. Moreover, since the substrate is made of an insulating material or a piezoelectric material, it is possible to prevent a high frequency signal from leaking between the electrodes of the piezoelectric element portion,
Strong anti-resonance characteristics can be obtained.

【0012】さらに、基板の薄膜部は裏面側から基板を
エッチングすることによって形成されているので、薄膜
部を基板に接合させたりする方法に比較して容易に薄膜
部を形成することができ、コストダウンを図ることがで
きる。
Further, since the thin film portion of the substrate is formed by etching the substrate from the back side, the thin film portion can be easily formed as compared with a method of bonding the thin film portion to the substrate. Cost can be reduced.

【0013】例えば、基板の材料としては、水晶、Li
NbO、LiTaO、PbTiO、PZTのうち
いずれかを主成分とするものを用いることができる。
For example, the material of the substrate is quartz, Li
A material containing any one of NbO 3 , LiTaO 3 , PbTiO 3 , and PZT as a main component can be used.

【0014】また、弾性定数の温度係数が負である圧電
体層としては、ZnO、LiNbO 、LiTaO
PbZrTi(1−X)〔0≦x≦0.52〕の
いずれかの圧電材料を主成分とするものを用いることが
でき、主としてこれらの圧電体層を用いる場合には、弾
性定数の温度係数が正の基板を用いればよい。
A piezoelectric element having a negative temperature coefficient of elastic constant.
For the body layer, ZnO, LiNbO 3, LiTaO3,
PbZrXTi(1-X)O3[0 ≦ x ≦ 0.52]
It is possible to use one that contains any piezoelectric material as the main component.
When these piezoelectric layers are mainly used,
A substrate having a positive temperature coefficient of a sex constant may be used.

【0015】また、弾性定数の温度係数が正である圧電
体層としては、AlN、PbZrTi(1−X)
〔0.54≦x≦1〕を主成分とするものを用いること
ができ、主としてこれらの圧電体層を用いる場合には、
弾性定数の温度係数が負の基板を用いればよい。
[0015] As the piezoelectric layer temperature coefficient of elastic constant is positive, AlN, PbZr X Ti (1 -X) O 3
A material having [0.54 ≦ x ≦ 1] as a main component can be used. When these piezoelectric layers are mainly used,
A substrate having a negative temperature coefficient of elastic constant may be used.

【0016】また、本発明の圧電共振子を用いて電子機
器を構成することができる。
Further, an electronic device can be configured using the piezoelectric resonator of the present invention.

【0017】[0017]

【発明の実施の形態】(第1の実施形態)図3は本発明
の第1の実施形態による圧電薄膜共振子21の構造を示
す断面図である。この圧電薄膜共振子21にあっては、
水晶基板22を裏面側からエッチングすることによって
水晶基板22の裏面に空洞24を形成し、その上面に水
晶基板22の一部からなる薄膜支持部23を形成してい
る。薄膜支持部23の上面には、PZTからなる圧電薄
膜25と圧電薄膜25下面の励振用電極26aと圧電薄
膜25上面の励振用電極26bとからなる圧電素子部2
7が形成されている。
(First Embodiment) FIG. 3 is a sectional view showing the structure of a piezoelectric thin film resonator 21 according to a first embodiment of the present invention. In this piezoelectric thin film resonator 21,
By etching the quartz substrate 22 from the back surface side, a cavity 24 is formed on the back surface of the quartz substrate 22, and a thin film support portion 23 formed of a part of the quartz substrate 22 is formed on the upper surface thereof. On the upper surface of the thin film support portion 23, a piezoelectric element portion 2 including a piezoelectric thin film 25 made of PZT, an excitation electrode 26a on the lower surface of the piezoelectric thin film 25, and an excitation electrode 26b on the upper surface of the piezoelectric thin film 25
7 are formed.

【0018】図4(a)〜(d)及び図5(e)〜
(h)は上記圧電薄膜共振子21の製造工程の概略を示
す図である。まず、水晶基板22を用意し、水晶基板2
2の上にフォトレジスト28を塗布し、フォトリソグラ
フィによりフォトレジスト28をパターニングして図4
(a)のように下層の励振用電極パターンの開口29を
あける。ついで、図4(b)に示すように、フォトレジ
スト28の上から電極用金属30を蒸着やスパッタ等に
よって堆積させた後、フォトレジスト28を剥離させる
ことにより、図4(c)に示すように、リフトオフ法で
下層の励振用電極26aを形成する。
FIGS. 4 (a) to 4 (d) and 5 (e) to 5 (e).
(H) is a figure which shows the outline of the manufacturing process of the said piezoelectric thin film resonator 21. First, the crystal substrate 22 is prepared, and the crystal substrate 2 is prepared.
2 is coated on top of the photoresist 2, and the photoresist 28 is patterned by photolithography.
An opening 29 of the lower excitation electrode pattern is opened as shown in FIG. Next, as shown in FIG. 4B, after the electrode metal 30 is deposited on the photoresist 28 by vapor deposition, sputtering, or the like, the photoresist 28 is peeled off, as shown in FIG. 4C. Then, a lower excitation electrode 26a is formed by a lift-off method.

【0019】この後、図4(d)に示すように水晶基板
22の上にメタルマスク31を用いてスパッタによりP
ZTパターンを水晶基板22の上に堆積させ、図5
(e)に示すように圧電薄膜25を形成する。
Thereafter, as shown in FIG. 4 (d), P is formed on the quartz substrate 22 by sputtering using a metal mask 31.
A ZT pattern is deposited on the quartz substrate 22, and FIG.
The piezoelectric thin film 25 is formed as shown in FIG.

【0020】つづけて、圧電薄膜25の上から水晶基板
22の表面にフォトレジスト32を塗布し、フォトリソ
グラフィによりフォトレジスト32をパターニングして
上層の励振用電極パターンの開口33をあける。つい
で、図5(f)に示すように、フォトレジスト32の上
から電極用金属34を蒸着やスパッタ等によって堆積さ
せた後、フォトレジスト32を剥離させることにより、
図5(g)に示すように、リフトオフ法で上層の励振用
電極26bを形成する。
Subsequently, a photoresist 32 is applied to the surface of the quartz substrate 22 from above the piezoelectric thin film 25, and the photoresist 32 is patterned by photolithography to form an opening 33 of an upper excitation electrode pattern. Next, as shown in FIG. 5F, after depositing a metal for electrode 34 from above the photoresist 32 by vapor deposition or sputtering, the photoresist 32 is peeled off.
As shown in FIG. 5G, the upper-layer excitation electrode 26b is formed by a lift-off method.

【0021】この後、マスクを用いてウェットエッチン
グあるいはリアクティブ・イオンエッチング(RIE)
により水晶基板22を裏面側から部分的にエッチングす
ることにより、図5(h)に示すように水晶基板22の
裏面に凹部24を形成し、その表面側に圧電薄膜25を
形成する。
Thereafter, wet etching or reactive ion etching (RIE) is performed using a mask.
By partially etching the quartz substrate 22 from the back surface side, a concave portion 24 is formed on the back surface of the quartz substrate 22 as shown in FIG. 5H, and the piezoelectric thin film 25 is formed on the front surface side.

【0022】このような構造の圧電薄膜共振子21にあ
っては、圧電薄膜25であるPZTの弾性定数の温度係
数が負であるのに対し、薄膜支持部23である水晶の弾
性定数の温度係数は正であるので、圧電薄膜25の膜厚
と薄膜支持部23の膜厚を適当に設定すれば、圧電薄膜
共振子21の温度係数をほぼゼロにすることができる。
In the piezoelectric thin film resonator 21 having such a structure, while the temperature coefficient of the elastic constant of the PZT as the piezoelectric thin film 25 is negative, the temperature of the elastic constant of the quartz as the thin film support portion 23 is lower. Since the coefficient is positive, by appropriately setting the film thickness of the piezoelectric thin film 25 and the film thickness of the thin film support portion 23, the temperature coefficient of the piezoelectric thin film resonator 21 can be made substantially zero.

【0023】また、上記のように下面側からエッチング
することによって薄膜支持部23を形成しているので、
孔をあけた基板の上に同じ材質の薄板を接合させ、研磨
する方法などに比較すると、容易に薄膜支持部を得るこ
とができる。
Further, since the thin film support portion 23 is formed by etching from the lower surface side as described above,
A thin film support can be easily obtained as compared with a method in which a thin plate of the same material is joined to a substrate having a hole and polished.

【0024】さらに、基板22が圧電体(絶縁体)であ
る水晶によって形成されており、水晶の比抵抗は約10
16Ω・cmとシリコンの比抵抗が約10Ω・cmで
あるのに対して非常に値が大きいので、両励振用電極2
6a、26b間を電気的に確実に絶縁することができ、
両励振用電極26a、26b間における高周波信号の漏
れを防止でき、圧電薄膜共振子21の反共振特性を良好
にでき、反共振点における特性曲線を鋭くできる。
Further, the substrate 22 is formed of quartz which is a piezoelectric body (insulator), and the specific resistance of the quartz is about 10
Since the specific resistance of silicon is about 10 3 Ω · cm, which is very large, while the specific resistance of silicon is about 16 Ω · cm, the dual excitation electrode 2 is used.
6a and 26b can be electrically insulated reliably.
Leakage of a high-frequency signal between the two excitation electrodes 26a and 26b can be prevented, the anti-resonance characteristics of the piezoelectric thin-film resonator 21 can be improved, and the characteristic curve at the anti-resonance point can be sharpened.

【0025】なお、ここでは水晶基板に対して圧電薄膜
としてPZTを用いたが、PZTに代えてLiNb
、LiTaO、PbTiO等の圧電体を用いて
もよい。
Although PZT is used here as the piezoelectric thin film for the quartz substrate, LiNb is used instead of PZT.
A piezoelectric material such as O 3 , LiTaO 3 , and PbTiO 3 may be used.

【0026】(第2の実施形態)図6は本発明の第2の
実施形態による圧電薄膜共振子41の構造を示す断面図
である。この圧電薄膜共振子41にあっては、LiNb
からなる基板42を裏面側からエッチングすること
によって基板42の裏面に空洞44を形成し、その上面
に基板42の一部からなる薄膜支持部43を形成してい
る。薄膜支持部43の上面には、AlNからなる圧電薄
膜45と圧電薄膜45下面の励振用電極46aと圧電薄
膜45上面の励振用電極46bとからなる圧電素子部4
7が形成されている。
(Second Embodiment) FIG. 6 is a sectional view showing the structure of a piezoelectric thin film resonator 41 according to a second embodiment of the present invention. In this piezoelectric thin film resonator 41, LiNb
The substrate 42 made of O 3 a cavity 44 is formed on the back surface of the substrate 42 by etching from the back side to form a thin film support portion 43 consisting of a portion of the substrate 42 on its upper surface. On the upper surface of the thin film support portion 43, a piezoelectric element portion 4 composed of a piezoelectric thin film 45 made of AlN, an excitation electrode 46a on the lower surface of the piezoelectric thin film 45, and an excitation electrode 46b on the upper surface of the piezoelectric thin film 45 is provided.
7 are formed.

【0027】このような構造の圧電薄膜共振子41にあ
っても下面側から基板42をエッチングすることによっ
て薄膜支持部43を形成しているので、薄膜支持部43
を容易に得ることができる。
Even in the piezoelectric thin film resonator 41 having such a structure, the thin film supporting portion 43 is formed by etching the substrate 42 from the lower surface side.
Can be easily obtained.

【0028】また、圧電薄膜45であるAlNの弾性定
数の温度係数が正であるのに対し、薄膜支持部43であ
るLiNbOの弾性定数の温度係数は負であるので、
圧電薄膜45の膜厚と薄膜支持部43の膜厚を適当に設
定すれば、圧電薄膜共振子41の温度係数をほぼゼロに
することができる。
Further, the temperature coefficient of the elastic constant of AlN as the piezoelectric thin film 45 is positive, while the temperature coefficient of the elastic constant of LiNbO 3 as the thin film support 43 is negative.
By appropriately setting the thickness of the piezoelectric thin film 45 and the thickness of the thin film support 43, the temperature coefficient of the piezoelectric thin film resonator 41 can be made substantially zero.

【0029】さらに、基板が圧電体(絶縁体)であるL
iNbOによって形成されているので、両励振用電極
46a、46b間を電気的に確実に絶縁することがで
き、両励振用電極46a、46b間における高周波信号
の漏れを防止でき、圧電薄膜共振子41の反共振特性を
良好にでき、反共振点における特性曲線を鋭くできる。
Further, the substrate L is a piezoelectric material (insulator).
Since it is formed of iNbO 3 , it is possible to electrically insulate the electrodes 46a and 46b reliably from each other, prevent leakage of a high-frequency signal between the electrodes 46a and 46b, and obtain a piezoelectric thin film resonator. 41 can have good anti-resonance characteristics, and can sharpen the characteristic curve at the anti-resonance point.

【0030】なお、ここでは基板としてLiNbO
用いたが、代わりにLiTaO、PbTiO等の圧
電体を用いてもよい。また、比抵抗が約1010Ω・c
m以上の絶縁体を基板として用いてもよい。
Although LiNbO 3 is used as the substrate here, a piezoelectric material such as LiTaO 3 or PbTiO 3 may be used instead. The specific resistance is about 10 10 Ω · c
m or more insulators may be used as the substrate.

【0031】(第3の実施形態)図7は本発明の第3の
実施形態による圧電薄膜共振子51の構造を示す断面図
である。この圧電薄膜共振子51にあっては、水晶基板
52を裏面側からエッチングすることによって水晶基板
52の裏面に空洞54を形成し、その上面に基板52の
一部からなる薄膜支持部53を形成している。薄膜支持
部53の上面には、ZnOからなる複数層の圧電薄膜5
5と励振用電極56a、56bとが交互に積層され、各
励振用電極56aどうしを接続し、各励振用電極56b
どうしも接続して圧電素子部57が形成されている。
(Third Embodiment) FIG. 7 is a sectional view showing the structure of a piezoelectric thin film resonator 51 according to a third embodiment of the present invention. In this piezoelectric thin-film resonator 51, a cavity 54 is formed on the back surface of the quartz substrate 52 by etching the quartz substrate 52 from the back surface side, and a thin film support portion 53 composed of a part of the substrate 52 is formed on the upper surface thereof. are doing. On the upper surface of the thin film support 53, a plurality of piezoelectric thin films 5 made of ZnO are provided.
5 and the excitation electrodes 56a and 56b are alternately laminated, and the respective excitation electrodes 56a are connected to each other, and the respective excitation electrodes 56b
The piezoelectric element portion 57 is formed by being connected to each other.

【0032】このような構造の圧電薄膜共振子51にあ
っても第1及び第2の実施形態と同様な作用効果を奏す
るが、さらに、圧電薄膜55が複数層に形成されている
ので、共振レスポンスをさらに高くすることができる。
The piezoelectric thin-film resonator 51 having such a structure has the same operation and effect as those of the first and second embodiments. However, since the piezoelectric thin-films 55 are formed in a plurality of layers, resonance occurs. The response can be further improved.

【0033】なお、この実施形態でも基板材料や圧電薄
膜材料は、上記実施形態で用いた材料の組み合わせを用
いることもできる。
In this embodiment, as the substrate material and the piezoelectric thin film material, a combination of the materials used in the above embodiment can be used.

【0034】(第4の実施形態)図8は本発明の第4の
実施形態による圧電薄膜共振子61の構造を示す断面図
である。この圧電薄膜共振子61にあっては、水晶基板
62を裏面側からエッチングすることによって水晶基板
62の裏面に空洞64を形成し、その上面に基板62の
一部からなる薄膜支持部63を形成している。薄膜支持
部63の上面には、下層の励振用電極67a、ZnOか
らなる圧電薄膜65、AlNからなる圧電薄膜励振用電
極66、上層の励振用電極67bとが積層されて圧電素
子部68が形成されている。
(Fourth Embodiment) FIG. 8 is a sectional view showing the structure of a piezoelectric thin film resonator 61 according to a fourth embodiment of the present invention. In this piezoelectric thin-film resonator 61, a cavity 64 is formed on the back surface of the quartz substrate 62 by etching the quartz substrate 62 from the back surface side, and a thin film support portion 63 formed of a part of the substrate 62 is formed on the upper surface thereof. are doing. On the upper surface of the thin-film support portion 63, a lower-layer excitation electrode 67a, a piezoelectric thin-film 65 made of ZnO, a piezoelectric thin-film excitation electrode 66 made of AlN, and an upper-layer excitation electrode 67b are laminated to form a piezoelectric element portion 68. Have been.

【0035】このような構造の圧電薄膜共振子61にあ
っても第1及び第2の実施形態と同様な作用効果を奏す
る。また、この実施形態は、複数材質の圧電薄膜65、
66を積層した点を特徴としており、ZnOの弾性定数
の温度係数は負、AlNの弾性定数の温度係数は正、水
晶の弾性定数の温度係数が正であるので、圧電薄膜共振
子61の共振周波数の温度係数をゼロにするためのパラ
メータが増加して設計が容易になる。
The piezoelectric thin film resonator 61 having such a structure has the same operation and effect as those of the first and second embodiments. In addition, this embodiment includes a piezoelectric thin film 65 of a plurality of materials,
The temperature coefficient of the elastic constant of ZnO is negative, the temperature coefficient of the elastic constant of AlN is positive, and the temperature coefficient of the elastic constant of quartz is positive. The parameter for setting the temperature coefficient of the frequency to zero is increased and the design becomes easy.

【0036】なお、この実施形態でも上記圧電薄膜材料
と異なる材料で各圧電薄膜を形成してもよく、上記基板
材料と異なる材料の基板を用いてもよい。
In this embodiment, each piezoelectric thin film may be formed of a material different from the above-mentioned piezoelectric thin film material, or a substrate made of a material different from the above-mentioned substrate material may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の圧電薄膜共振子の構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing the structure of a conventional piezoelectric thin film resonator.

【図2】弾性定数の温度特性を改善した従来の別な圧電
薄膜共振子の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of another conventional piezoelectric thin film resonator in which the temperature characteristic of the elastic constant is improved.

【図3】本発明の第1の実施形態による圧電薄膜共振子
の構造を示す断面図である。
FIG. 3 is a sectional view showing the structure of the piezoelectric thin film resonator according to the first embodiment of the present invention.

【図4】(a)〜(d)は同上の圧電薄膜共振子の製造
工程を説明する概略図である。
FIGS. 4A to 4D are schematic views for explaining a manufacturing process of the piezoelectric thin-film resonator according to the first embodiment.

【図5】(e)〜(h)は、図4(a)〜(d)の続図
である。
5 (e) to (h) are continuation diagrams of FIGS. 4 (a) to (d).

【図6】本発明の第2の実施形態による圧電薄膜共振子
の構造を示す断面図である。
FIG. 6 is a sectional view showing a structure of a piezoelectric thin-film resonator according to a second embodiment of the present invention.

【図7】本発明の第3の実施形態による圧電薄膜共振子
の構造を示す断面図である。
FIG. 7 is a sectional view showing a structure of a piezoelectric thin-film resonator according to a third embodiment of the present invention.

【図8】本発明の第4の実施形態による圧電薄膜共振子
の構造を示す断面図である。
FIG. 8 is a sectional view showing a structure of a piezoelectric thin-film resonator according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21、41 圧電薄膜共振子 22 水晶基板 42 LiNbO基板 23、43 薄膜支持部 25 PZT圧電薄膜 45 AlN圧電薄膜 26a、26b、46a、46b 励振用電極 27、47 圧電素子部21 and 41 the piezoelectric thin film resonator 22 quartz substrate 42 LiNbO 3 substrate 23, 43 a thin film support portion 25 PZT piezoelectric thin film 45 AlN piezoelectric thin film 26a, 26b, 46a, 46b excitation electrodes 27, 47 piezoelectric element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 雅樹 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5J108 AA04 BB04 BB07 CC04 CC11 EE03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaki Takeuchi 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. 5J108 AA04 BB04 BB07 CC04 CC11 EE03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁材料もしくは圧電材料からなる基板
の一部を裏面側からエッチングすることによって該基板
の表面の一部に薄膜部分を形成し、該薄膜部分の上に1
層もしくは複数層の圧電体層と電極とからなる圧電素子
部を設けた圧電共振子であって、 前記圧電体層のうち少なくとも1層における弾性定数の
温度係数の正負符号が、前記薄膜部分における弾性定数
の温度係数の正負符号と異なっていることを特徴とする
圧電共振子。
1. A thin film portion is formed on a part of a surface of a substrate made of an insulating material or a piezoelectric material by etching a portion of the substrate from the back surface side, and a thin film portion is formed on the thin film portion.
A piezoelectric resonator provided with a piezoelectric element portion including one or more piezoelectric layers and electrodes, wherein at least one of the piezoelectric layers has a positive or negative sign of a temperature coefficient of an elastic constant in the thin film portion. A piezoelectric resonator characterized in that the temperature coefficient of the elastic constant is different from the sign of the temperature coefficient.
【請求項2】 前記基板は、水晶、LiNbO、Li
TaO、PbTiO、PZTのうちいずれかを主成
分とするものであることを特徴とする、請求項1に記載
の圧電共振子。
2. The substrate is made of quartz, LiNbO 3 , Li
2. The piezoelectric resonator according to claim 1, wherein one of TaO 3 , PbTiO 3 , and PZT is a main component. 3.
【請求項3】 弾性定数の温度係数が負である圧電体層
は、ZnO、LiNbO、LiTaO、PbZr
Ti(1−X)〔0≦x≦0.52〕のいずれかの
圧電材料を主成分として構成されていることを特徴とす
る、請求項1又は2に記載の圧電共振子。
3. The piezoelectric layer having a negative temperature coefficient of elastic constant is made of ZnO, LiNbO 3 , LiTaO 3 , PbZr X
The piezoelectric resonator according to claim 1, wherein the piezoelectric resonator is mainly composed of any one of Ti (1-X) O 3 [0 ≦ x ≦ 0.52].
【請求項4】 弾性定数の温度係数が正である圧電体層
は、AlN、PbZrTi(1−X)〔0.54
≦x≦1〕を主成分として構成されていることを特徴と
する、請求項1又は2に記載の圧電共振子。
4. A piezoelectric layer temperature coefficient is positive elastic constants, AlN, PbZr X Ti (1 -X) O 3 [0.54
≦ x ≦ 1] as the main component.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の圧電共振子を用いて構成したことを特徴とする電子
機器。
5. An electronic device comprising the piezoelectric resonator according to claim 1. Description:
JP35058599A 1999-12-09 1999-12-09 Piezoelectric resonance element and electronic appliance Pending JP2001168674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35058599A JP2001168674A (en) 1999-12-09 1999-12-09 Piezoelectric resonance element and electronic appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35058599A JP2001168674A (en) 1999-12-09 1999-12-09 Piezoelectric resonance element and electronic appliance

Publications (1)

Publication Number Publication Date
JP2001168674A true JP2001168674A (en) 2001-06-22

Family

ID=18411485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35058599A Pending JP2001168674A (en) 1999-12-09 1999-12-09 Piezoelectric resonance element and electronic appliance

Country Status (1)

Country Link
JP (1) JP2001168674A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060478A (en) * 2001-08-17 2003-02-28 Murata Mfg Co Ltd Piezoelectric thin-film resonator, manufacturing method thereof, and filter and electronic device using the piezoelectric thin-film resonator
US6870445B2 (en) * 2002-03-28 2005-03-22 Kabushiki Kaisha Toshiba Thin film bulk acoustic wave resonator
US7002437B2 (en) 2002-06-11 2006-02-21 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
WO2006027873A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Thin film piezoelectric resonator
US7161447B2 (en) 2002-09-25 2007-01-09 Murata Manufacturing Co., Ltd. Piezoelectric resonator, piezoelectric filter, and communication apparatus
US7180390B2 (en) 2003-08-12 2007-02-20 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same
US7245060B2 (en) 2004-09-24 2007-07-17 Murata Manufacturing Co., Ltd. Piezoelectric resonator, method for manufacturing the same, piezoelectric filter, and duplexer
US7276994B2 (en) 2002-05-23 2007-10-02 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
US7320164B2 (en) 2002-01-10 2008-01-22 Murata Manufacturing Co., Ltd. Method of manufacturing an electronic component
US7414349B2 (en) 2002-10-28 2008-08-19 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibrator, filter using the same and its adjusting method
US20100107387A1 (en) * 2004-04-06 2010-05-06 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator, filter and duplexer and methods of making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060478A (en) * 2001-08-17 2003-02-28 Murata Mfg Co Ltd Piezoelectric thin-film resonator, manufacturing method thereof, and filter and electronic device using the piezoelectric thin-film resonator
US7320164B2 (en) 2002-01-10 2008-01-22 Murata Manufacturing Co., Ltd. Method of manufacturing an electronic component
US6870445B2 (en) * 2002-03-28 2005-03-22 Kabushiki Kaisha Toshiba Thin film bulk acoustic wave resonator
US7276994B2 (en) 2002-05-23 2007-10-02 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
US7002437B2 (en) 2002-06-11 2006-02-21 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator, piezoelectric filter, and electronic component including the piezoelectric filter
US7161447B2 (en) 2002-09-25 2007-01-09 Murata Manufacturing Co., Ltd. Piezoelectric resonator, piezoelectric filter, and communication apparatus
US7414349B2 (en) 2002-10-28 2008-08-19 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibrator, filter using the same and its adjusting method
US7180390B2 (en) 2003-08-12 2007-02-20 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same
US20100107387A1 (en) * 2004-04-06 2010-05-06 Samsung Electronics Co., Ltd. Bulk acoustic wave resonator, filter and duplexer and methods of making same
WO2006027873A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Thin film piezoelectric resonator
US7327209B2 (en) 2004-09-10 2008-02-05 Murata Manufacturing Co., Ltd. Piezoelectric thin film resonator
US7245060B2 (en) 2004-09-24 2007-07-17 Murata Manufacturing Co., Ltd. Piezoelectric resonator, method for manufacturing the same, piezoelectric filter, and duplexer

Similar Documents

Publication Publication Date Title
US6441539B1 (en) Piezoelectric resonator
US5446330A (en) Surface acoustic wave device having a lamination structure
JP4345049B2 (en) Thin film acoustic resonator and manufacturing method thereof
EP0963040B1 (en) Acoustic resonator and method for making the same
JP4648911B2 (en) Device incorporating a tunable thin film bulk acoustic resonator for amplitude and phase modulation
EP1701440A1 (en) Method for manufacturing piezoelectric thin-film device and piezoelectric thin-film device
JP3514224B2 (en) Piezoelectric resonator, filter and electronic device
JP4478910B2 (en) Piezoelectric thin film resonator
JP3514222B2 (en) Piezoelectric resonator, electronic components and electronic equipment
US7320164B2 (en) Method of manufacturing an electronic component
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JP2002372974A (en) Thin-film acoustic resonator and method of manufacturing the same
JPH0746072A (en) Manufacture of crystal resonator
JP2005033379A (en) Thin film bulk wave vibrating element and manufacturing method thereof
JP2005303573A (en) Thin film piezoelectric resonator and its manufacturing method
JP2001168675A (en) Piezoelectric resonator, piezoelectric oscillator using this and method for manufacturing piezoelectric resonator
JP2001156582A (en) Piezoelectric resonator
JP2005236338A (en) Piezoelectric thin-film resonator
JP2000165188A (en) Piezoelectric resonator
JPH0640611B2 (en) Piezoelectric thin film resonator
JPH10209794A (en) Piezoelectric thin-film resonator
JP2000341077A (en) Piezoelectric resonator
JPH10200369A (en) Piezoelectric thin film resonator
WO2023006089A1 (en) Film bulk acoustic resonator having multiple bottom electrode layers, filter, and electronic device
JPH025331B2 (en)