JPH0815085B2 - Solid electrolyte ink - Google Patents

Solid electrolyte ink

Info

Publication number
JPH0815085B2
JPH0815085B2 JP62262118A JP26211887A JPH0815085B2 JP H0815085 B2 JPH0815085 B2 JP H0815085B2 JP 62262118 A JP62262118 A JP 62262118A JP 26211887 A JP26211887 A JP 26211887A JP H0815085 B2 JPH0815085 B2 JP H0815085B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
organic
ink
ion conductive
copper ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62262118A
Other languages
Japanese (ja)
Other versions
JPH01104677A (en
Inventor
康治 山村
正 外邨
輝寿 神原
和典 高田
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262118A priority Critical patent/JPH0815085B2/en
Publication of JPH01104677A publication Critical patent/JPH01104677A/en
Publication of JPH0815085B2 publication Critical patent/JPH0815085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、構成材料がすべて固体物質である固体電解
質電池の固体電解質インクに関する。
The present invention relates to a solid electrolyte ink for a solid electrolyte battery whose constituent materials are all solid substances.

従来の技術 構成材料がすべて固体物質である固体電解質電池は、
一定の大きさが必要な液体電解質を用いる電池に比べ、
漏液とかガス発生の心配がない。また、一定の大きさの
容器が不要なことから、形状も任意に選べ、小型化、薄
型化が極めて容易であり、他の電子部品と同一のパッケ
ージ内に納めることができるなど、従来にはない数多く
の利点を有している。しかし、この固体電解質電池は、
機械的衝撃に対して極めて弱く破損し易いという問題を
有していた。
Conventional technology Solid electrolyte batteries, whose constituent materials are all solid substances,
Compared to batteries that use a liquid electrolyte that requires a certain size,
There is no worry of liquid leakage or gas generation. In addition, since a container of a certain size is not required, the shape can be selected arbitrarily, it is extremely easy to make it small and thin, and it can be stored in the same package as other electronic parts. Not have many advantages. However, this solid electrolyte battery
It has a problem that it is extremely weak against mechanical shock and is easily damaged.

この問題点を除くために、本発明者らは電極または固
体電解質に可塑性を有する有機結着剤を混合し固体電解
質電池に可撓性を付与する方法を提案している。
In order to eliminate this problem, the present inventors have proposed a method of imparting flexibility to a solid electrolyte battery by mixing an organic binder having plasticity with an electrode or a solid electrolyte.

発明が解決しようとする問題点 従来、固体電解質がアルコール、ケトンまたはエステ
ルなどの有機物と反応して分解していたことからトルエ
ン、キシレン、シクロヘキサンなどの安定な非吸水性の
有機溶剤を用いていた。しかし、固体電解質粉末と有機
結着剤および上記有機溶剤より成る固体電解質インクで
は有機溶剤が揮発し易くインクの粘度を調整することが
困難であり、また、固体電解質電池の製造の際、塗布し
難い、固体電解質粉末の沈降が速く有機結着剤が局在化
するため出力電流が小さい、分極が大きく放電するとす
ぐに電圧が低下し放電容量がでない、また、個々の電池
特性がばらつくなどの問題があった。
Problems to be Solved by the Invention Conventionally, since a solid electrolyte was decomposed by reacting with an organic substance such as alcohol, ketone or ester, a stable non-water-absorbing organic solvent such as toluene, xylene and cyclohexane was used. . However, in a solid electrolyte ink composed of a solid electrolyte powder, an organic binder and the above organic solvent, it is difficult to adjust the viscosity of the ink because the organic solvent is easily volatilized, and it is applied during the production of the solid electrolyte battery. Difficult to settle down the solid electrolyte powder quickly, and the organic binder is localized, resulting in a small output current. Large polarization causes the voltage to drop immediately after discharge and the discharge capacity does not occur, and individual battery characteristics may vary. There was a problem.

問題点を解決するための手段 本発明は、上記の問題点を解決するためにアルコー
ル、ケトンまたはエステルなどの有機物でも無水または
脱水処理することにより固体電解質が反応して分解する
ことないため無水または脱水処理したアルコール、ケト
ン、エステルまたは高沸点有機物を混合したものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an anhydrous or dehydration treatment for organic substances such as alcohols, ketones, or esters, so that the solid electrolyte does not react and decompose. It is a mixture of dehydrated alcohol, ketone, ester or high-boiling organic matter.

作用 本発明になる固体電解質インクを用いた場合、可塑性
を有する有機結着剤は構成要素である固体電解質電池の
固体電解質シートに可撓性を付与し、薄い固体電解質シ
ートの作成に可能にするものである。
When the solid electrolyte ink according to the present invention is used, the organic binder having plasticity imparts flexibility to the solid electrolyte sheet of the solid electrolyte battery, which is a constituent element, and enables the production of a thin solid electrolyte sheet. It is a thing.

実施例 以下、実施例について説明する。Examples Examples will be described below.

(実施例1) 銅イオン導電性固体電解質、銀イオン導電性固体電解
質について、ドライ不活性ガス(N2,Ar,He)気流中で銅
イオン導電性固体電解質、銀イオン導電性固体電解質の
それぞれの粉末を各種有機溶剤に分散し、その安定性を
調べた。
(Example 1) Copper ion-conductive solid electrolyte, for silver ion conductive solid electrolyte, a dry inert gas (N 2, Ar, the He) a copper ion conductive solid electrolyte in an air stream, each of the silver ion conductive solid electrolyte The powder was dispersed in various organic solvents and its stability was investigated.

固体電解質は、銅イオン導電性固体電解質としてRbCu
4I1.5Cl3.5と銀イオン導電性固体電解質としてRbAg4I5
を用いた。
The solid electrolyte is RbCu as a copper ion conductive solid electrolyte.
4 I 1.5 Cl 3.5 and RbAg 4 I 5 as silver ion conductive solid electrolyte
Was used.

使用有機溶剤、有機物は、関東化学株式会社製の試薬
を用いた。
As the organic solvent and organic substance used, reagents manufactured by Kanto Chemical Co., Inc. were used.

有機溶剤、有機物の脱水処理は、約300℃で減圧乾燥
したモレキュラシーブ0.3nm(関東化学株式会社製)を
用いた。また、粘度の高い溶液についてはトルエンで希
釈して粘度を下げて脱水処理後、トルエンをある程度除
去したものを用いた。下記表に銅イオン導電性固体電解
質の各種有機溶剤に分散し、その安定性を調べた結果を
示した。
For the dehydration treatment of the organic solvent and the organic substance, molecular sieve 0.3 nm (manufactured by Kanto Chemical Co., Inc.) dried under reduced pressure at about 300 ° C. was used. Further, a solution having a high viscosity was used by diluting with toluene to reduce the viscosity, dehydrating the solution, and removing toluene to some extent. The following table shows the results of examining the stability of copper ion conductive solid electrolytes dispersed in various organic solvents.

以上の結果より水に可溶性な有機溶剤は、0.5%程度
の水を含んでいるのに対し水に不溶性な有機溶剤では含
水量が0.05%以下であり、この含水量の違いが銅イオン
導電性固体電解質の分解の有無にあらわれている。しか
し、水に可溶性な有機溶剤でもモレキュラシーブ0.3nm
を用いて脱水処理することにより銅イオン導電性固体電
解質の分解を無くすことができる。
From the above results, the water-soluble organic solvent contains about 0.5% of water, whereas the water-insoluble organic solvent has a water content of 0.05% or less. It appears whether or not the solid electrolyte is decomposed. However, even with water-soluble organic solvents, molecular sieves 0.3 nm
The decomposition of the copper ion conductive solid electrolyte can be eliminated by performing a dehydration treatment using.

また、有機結着剤粉末についても湿気のあるところに
放置した場合、有機結着剤が水を含んでしまい銅イオン
導電性固体電解質を分解することが認められた。
It was also found that when the organic binder powder was left to stand in a humid place, the organic binder contained water and decomposed the copper ion conductive solid electrolyte.

さらに、水素イオンを放出するカルボン酸、銅イオン
導電性固体電解質中の一価の銅イオンを酸化する酸素を
含む溶液または過酸化物を含む溶液、およびハロゲン物
を含む溶液は銅イオン導電性固体電解質を分解し、R−
CN、R−SH有機物またはアミン系有機塩基物も銅イオン
導電性固体電解質を分解することが認められた。
Further, a carboxylic acid that releases hydrogen ions, a solution containing oxygen or a solution containing peroxide that oxidizes monovalent copper ions in a copper ion conductive solid electrolyte, and a solution containing a halogen are copper ion conductive solids. R-
It was also found that CN, R-SH organic substance or amine type organic base substance also decomposes the copper ion conductive solid electrolyte.

また、銀イオン導電性固体電解質について、銅イオン
導電性固体電解質と同様の試験を紫外線を除去した赤色
灯下で行った。その結果、銀イオン導電性固体電解物質
でも銅イオン導電性固体電解質と同様に無水または脱水
処理していない水に可溶な有機溶剤、有機物または水を
含んだ有機結着剤を用いた場合、銀イオン導電性固体電
解質が分解し、また、R−CN、R−SH有機物またはアミ
ン系有機塩基物も銀イオン導電性固体電解質を分解する
ことが認められた。
Further, the same test as that for the copper ion conductive solid electrolyte was performed on the silver ion conductive solid electrolyte under a red lamp from which ultraviolet rays were removed. As a result, in the same manner as the copper ion conductive solid electrolyte even in the silver ion conductive solid electrolyte material, when using an organic solvent that is soluble in water that is not dehydrated or dehydrated, an organic substance, or an organic binder containing water, It was found that the silver ion conductive solid electrolyte decomposes, and that R-CN, R-SH organic substance or amine organic base substance also decomposes the silver ion conductive solid electrolyte.

しかし、銀イオン導電性固体電解質の場合、ハロゲン
物または過酸化物などの酸化性物質を含んだ溶液でも分
解しなかった。
However, in the case of a silver ion conductive solid electrolyte, it did not decompose even in a solution containing an oxidizing substance such as a halide or a peroxide.

(実施例2) 固体電解質としてRbCu4I1.5Cl3.5と銅イオン導電性固
体電解質、電極材料としてCu2Mo6S7.8銅シェブレルに上
記銅イオン導電性固体電解質を20重量%添加し、減圧
下、200℃で17時間処理したものを用いた場合について
述べる。
(Example 2) Solid electrolyte as RbCu 4 I 1.5 Cl 3.5 and the copper ion conductive solid electrolyte, the copper ion conductive solid electrolyte Cu 2 Mo 6 S 7.8 copper Chevrel as an electrode material was added 20 wt%, under reduced pressure , The case of using the one treated at 200 ° C for 17 hours is described.

先ず、ドライ活性ガス気流中で固体電解質粉末に2.6
重量%のスチレン−エチレン−ブタジエン−スチレン共
重合体(80℃減圧乾燥)有機結着剤と有機溶剤としてト
ルエンを加え攪拌混合して有機結着剤を溶解した後、シ
クロヘキサノールを加え超音波処理後、塗布し易い粘度
に調整して固体電解質インクを作成した。
First, 2.6% solid electrolyte powder was added in a dry active gas stream.
Wt% styrene-ethylene-butadiene-styrene copolymer (dried at 80 ° C under reduced pressure) Organic binder and toluene as an organic solvent are added and mixed by stirring to dissolve the organic binder, and then cyclohexanol is added and sonicated. After that, the viscosity was adjusted to be easy to apply to prepare a solid electrolyte ink.

この際、使用するトルエン、シクロヘキサノールは新
しい特級試薬の場合にはそのまま使用できるが、大気中
で放置した試薬については約300℃で減圧乾燥したモレ
キュラシーブ0.3nmを用いて脱水処理する必要がある。
At this time, the toluene and cyclohexanol used can be used as they are in the case of the new special grade reagent, but the reagent left in the air needs to be dehydrated by using molecular sieve 0.3 nm dried under reduced pressure at about 300 ° C.

トルエン、シクロヘキサノールが電極活物質、固体電
解質と反応せず、また、固体電解質シート作成時にそれ
らを完全に除去するためトルエン、シクロヘキサノール
の添加量は、固体電解質シートの特性に影響しない。
Toluene and cyclohexanol do not react with the electrode active material and the solid electrolyte, and since they are completely removed during the preparation of the solid electrolyte sheet, the addition amounts of toluene and cyclohexanol do not affect the characteristics of the solid electrolyte sheet.

次に、上記固体電解質インクを用いて固体電解質電池
を下記のように作成し、その電池を0.6V、24時間充電
し、1mA/cm2で放置した時の放電特性を第1図に示し
た。
Next, a solid electrolyte battery was prepared as follows using the above solid electrolyte ink, the battery was charged at 0.6 V for 24 hours, and the discharge characteristics when left at 1 mA / cm 2 are shown in FIG. .

固体電解質電池は、固体電解質インクを洗浄、乾燥し
たポリプロピレン不織布に塗布し、約100℃で減圧乾燥
して固体電解質シートを作成し、この固体電解質シート
を直径10mmの円板状に打ち抜きを3トン/cm2でプレス成
型し、電極材料粉末(200mg)を3トン/cm2でプレス成
型した電極成型体を固体電解質シート(約70mg)の両側
に置き3トン/cm2でプレスして作成した。また、電極材
料粉末(正極、負極とも200mg)および固体電解質粉末
(500mg)を3トン/cm2でプレス成型して作成した固体
電解質電池を同様の充放電し、その放電特性も第1図示
した。
The solid electrolyte battery is made by washing solid electrolyte ink, applying it to a dried polypropylene non-woven fabric, and drying it under reduced pressure at about 100 ° C to create a solid electrolyte sheet, and punching this solid electrolyte sheet into a disk shape with a diameter of 10 mm for 3 tons. / press molded in cm 2, and the press-molded electrode molded electrode material powder (200 mg) in 3 t / cm 2 created by pressing at 3 t / cm 2 placed on both sides of the solid electrolyte sheet (about 70 mg) . A solid electrolyte battery prepared by press-molding electrode material powder (both positive and negative electrodes 200 mg) and solid electrolyte powder (500 mg) at 3 ton / cm 2 was similarly charged and discharged, and its discharge characteristics are also shown in the first diagram. .

上記固体電解質インクを用いて作成した固体電解質電
池でも電極材料粉末および固体電解質粉末を用いて作成
した固体電解質電池とほぼ同様の放電特性を示した。
The solid electrolyte battery prepared using the above solid electrolyte ink also showed almost the same discharge characteristics as the solid electrolyte battery prepared using the electrode material powder and the solid electrolyte powder.

(実施例3) 固体電解質としてRbCu4I1.5Cl3.5銅イオン導電性固体
電解質、電極材料としてCu2Mo6S7.8銅シェブレルに上記
銅イオン導電性固体電解質を20重量%添加し、減圧下、
200℃で17時間処理したものを用いた場合について述べ
る。
(Example 3) RbCu 4 I 1.5 Cl 3.5 copper ion conductive solid electrolyte as a solid electrolyte and Cu 2 Mo 6 S 7.8 copper chevrel as an electrode material were added with 20% by weight of the above copper ion conductive solid electrolyte, and under reduced pressure,
Described below is the case where the product treated at 200 ° C. for 17 hours is used.

先ず、ドライ不活性ガス気流中で電極材料粉末に2重
量%のポリビニルブチラール(80℃減圧乾燥)有機結着
剤と有機溶剤としてジエチレングリコールモノブチルエ
ーテルアセテートを加え攪拌混合して有機結着剤を溶解
させ、塗布し易い粘度に調整して固体電解質インクを作
成した。
First, 2% by weight of polyvinyl butyral (80 ° C. vacuum dried) organic binder and diethylene glycol monobutyl ether acetate as an organic solvent were added to the electrode material powder in a dry inert gas stream, and the mixture was stirred and mixed to dissolve the organic binder. A solid electrolyte ink was prepared by adjusting the viscosity so that it could be easily applied.

ジエチレングリコールモノブチルエーテルアセテート
を溶剤として使用した場合ジエチレングリコールモノブ
チルエーテルアセテートがトルエン、キシレンなどに比
べて沸点が高くすぐに揮発することがないためジエチレ
ングリコールモノブチルエーテルアセテートの添加量で
粘度を調整することができるが、ポリビニルブチラール
がジエチレングリコールモノブチルエーテルアセテート
に溶解し難いので、クロロホルム、トルエンなどの溶剤
を用いてポリビニルブチラールを均一に電極材料粉末と
混合した粉末、または、クロロホルム、トルエンなどと
ジエチレングリコールモノブチルエーテルアセテートを
混合した溶剤を用いると容易にポリビニルブチラールを
ジエチレングリコールモノブチルエーテルアセテートに
溶解させることができる。
When diethylene glycol monobutyl ether acetate is used as a solvent, diethylene glycol monobutyl ether acetate has a boiling point higher than that of toluene, xylene, etc. and does not evaporate immediately, so that the viscosity can be adjusted by the addition amount of diethylene glycol monobutyl ether acetate. Since polyvinyl butyral is difficult to dissolve in diethylene glycol monobutyl ether acetate, polyvinyl butyral is uniformly mixed with the electrode material powder using a solvent such as chloroform or toluene, or a solvent in which chloroform, toluene, etc. are mixed with diethylene glycol monobutyl ether acetate. It is possible to easily dissolve polyvinyl butyral in diethylene glycol monobutyl ether acetate. That.

次に、上記固体電解質インクを洗浄、乾燥したデトロ
ン不織布に塗布した後、130℃で減圧乾燥して固体電解
質シートを作成し、以下実施例2と同様の方法で固体電
解質電池を作成した。この電池を実施例2と同様の充放
電を行い、第2図にその放電特性を示した。
Next, the above solid electrolyte ink was washed and applied to a dried detron nonwoven fabric, and then dried under reduced pressure at 130 ° C. to prepare a solid electrolyte sheet, and a solid electrolyte battery was prepared in the same manner as in Example 2 below. This battery was charged and discharged in the same manner as in Example 2, and its discharge characteristics are shown in FIG.

上記固体電解質インクを用いて作成した固体電解質電
池でも第1図に示した電極材料粉末および固体電解質粉
末を用いて作成した固体電解質電池とほぼ同様の放電特
性を示した。
The solid electrolyte battery prepared by using the above solid electrolyte ink also showed almost the same discharge characteristics as the solid electrolyte battery prepared by using the electrode material powder and the solid electrolyte powder shown in FIG.

(実施例4) 固体電解質としてRbCu4I1.5Cl3.5銅イオン導電性固体
電解質、電極材料としてCu2Mo6S7.8銅シェブレルに上記
銅イオン導電性固体電解質を20重量%添加し、減圧下、
200℃で17時間処理したものを用いた場合について述べ
る。
(Example 4) RbCu 4 I 1.5 Cl 3.5 copper ion conductive solid electrolyte as a solid electrolyte and Cu 2 Mo 6 S 7.8 copper chebrel as an electrode material were added with 20% by weight of the above copper ion conductive solid electrolyte, and under reduced pressure,
Described below is the case where the product treated at 200 ° C. for 17 hours is used.

先ず、ドライ不活性ガス気流中で電極材料粉末に2重
量%のポリスチレン(80℃減圧乾燥)と300℃減圧乾燥
処理したモレキュラシーブ0.3nmを用いて脱水処理した
シクロヘキサノンを加え攪拌混合して有機結着剤を溶解
した後、脱水エチレングリコールを加え超音波処理後塗
布し易い粘度に調整して固体電解質インクを作成した。
First, 2 wt% polystyrene (80 ° C vacuum drying) and cyclohexanone dehydrated using 300 nm vacuum drying molecular sieve 0.3 nm were added to the electrode material powder in a dry inert gas stream, and the mixture was stirred and mixed to form an organic binder. After the agent was dissolved, dehydrated ethylene glycol was added and ultrasonic treatment was performed to adjust the viscosity so that it could be easily applied to prepare a solid electrolyte ink.

次に、上記固体電解質インクを洗浄、乾燥したナイロ
ンメッシュ布に塗布した後、130℃で減圧乾燥して固体
電解質シートを作成し、以下実施例2と同様の方法で固
体電解質電池を作成した。この電池を実施例2と同様の
充放電を行い、第3図にその放電特性を示した。
Next, the solid electrolyte ink was washed and applied to a dried nylon mesh cloth, and then dried under reduced pressure at 130 ° C. to prepare a solid electrolyte sheet, and a solid electrolyte battery was prepared in the same manner as in Example 2 below. This battery was charged and discharged in the same manner as in Example 2, and its discharge characteristics are shown in FIG.

上記固体電解質インクを用いて作成した固体電解質電
池でも第1図に示した電極材料粉末および固体電解質粉
末を用いて作成した固体電解質電池とほぼ同様の放電特
性を示した。
The solid electrolyte battery prepared by using the above solid electrolyte ink also showed almost the same discharge characteristics as the solid electrolyte battery prepared by using the electrode material powder and the solid electrolyte powder shown in FIG.

(実施例5) 固体電解質としてRbCu4I1.5Cl3.5銅イオン導電性固体
電解質、電極材料としてCu2Mo6S7.8銅シェブレルに上記
銅イオン導電性固体電解質を20重量%添加し、減圧下、
200℃で17時間処理したものを用いた場合について述べ
る。
(Example 5) RbCu 4 I 1.5 Cl 3.5 copper ion conductive solid electrolyte as a solid electrolyte and Cu 2 Mo 6 S 7.8 copper chebrel as an electrode material were added with 20% by weight of the above copper ion conductive solid electrolyte, and under reduced pressure,
Described below is the case where the product treated at 200 ° C. for 17 hours is used.

先ず、ドライ不活性ガス気流中で電極材料粉末に2重
量%の乾燥スチレン−ブタジエン共重合体、トルエン:
脱水メチルプロピルケトン=1:1を加え攪拌混合して有
機結着剤を溶解した後、脱水フタルル酸ジエチルを加え
超音波処理後、塗布し易い粘度に調整して固体電解質イ
ンクを作成した。
First, 2% by weight of dry styrene-butadiene copolymer and toluene were added to the electrode material powder in a dry inert gas stream.
Dehydrated methyl propyl ketone = 1: 1 was added and mixed by stirring to dissolve the organic binder, and then dehydrated diethyl phthalate was added and subjected to ultrasonic treatment, and the viscosity was adjusted to be easy to apply to prepare a solid electrolyte ink.

次に、上記固体電解質インクを洗浄、乾燥した平織ガ
ラス布に塗布した後、130℃で減圧乾燥して固体電解質
シートを作成し、以下実施例2と同様の方法で固体電解
質電池を作成した。この電池を実施例2と同様の充放電
を行い、第4図にその放電特性を示した。
Next, the above solid electrolyte ink was washed and applied to a dried plain woven glass cloth, and then dried under reduced pressure at 130 ° C. to prepare a solid electrolyte sheet, and a solid electrolyte battery was prepared in the same manner as in Example 2 below. This battery was charged and discharged in the same manner as in Example 2, and the discharge characteristics are shown in FIG.

上記固体電解質インクを用いて作成した固体電解質電
池でも第1図に示した電極材料粉末および固体電解質粉
末を用いて作成した固体電解質電池とほぼ同様の放電特
性を示した。
The solid electrolyte battery prepared by using the above solid electrolyte ink also showed almost the same discharge characteristics as the solid electrolyte battery prepared by using the electrode material powder and the solid electrolyte powder shown in FIG.

(実施例6) 固体電解質としてRbAg4I5銀イオン導電性固体電解
質、電極材料としてAg2Mo6S7.8銀シェブレルに上記銀イ
オン導電性固体電解質を20重量%添加し、減圧下、200
℃で17時間処理したものを用いた場合について述べる。
(Example 6) RbAg 4 I 5 silver ion conductive solid electrolyte as a solid electrolyte, Ag 2 Mo 6 S 7.8 silver electrode as an electrode material, 20% by weight of the above silver ion conductive solid electrolyte was added, and the pressure was reduced to 200
Described below is the case where the product treated at 17 ° C for 17 hours is used.

先ず、ドライ不活性ガス気流中で固体電解質粉末に2.
6重量%のスチレン−エチレン−ブタジエン−スチレン
共重合体(80℃減圧乾燥)有機結着剤と有機溶剤として
トルエンを加え攪拌混合して有機結着剤を溶解した後、
シクロヘキサノールを加え超音波処理後、塗布し易い粘
度に調整して固体電解質インクを作成した。
First, solid electrolyte powder in a dry inert gas stream 2.
6% by weight of styrene-ethylene-butadiene-styrene copolymer (drying at 80 ° C under reduced pressure) After adding an organic binder and toluene as an organic solvent with stirring to dissolve the organic binder,
Cyclohexanol was added and ultrasonic treatment was performed, and then the viscosity was adjusted to be easy to apply to prepare a solid electrolyte ink.

次に、上記固体電解質インクを用いて固体電解質電池
を下記のように作成し、この電池を実施例2と同様の充
放電を行い、その放電特性を第5図に示した。
Next, a solid electrolyte battery was prepared as follows using the above solid electrolyte ink, and this battery was charged and discharged in the same manner as in Example 2, and the discharge characteristics are shown in FIG.

次に、固体電解質インクを洗浄、乾燥したポリプロピ
レン不織布に塗布し、約100℃で減圧乾燥して固体電解
質シートを作成し、以下実施例2と同様の方法で固体電
解質電池を作成した。また、電極材料粉末および固体電
解質粉末を3トン/cm2でプレス成型して作成した固体電
解質電池を同様の充放電し、その放電特性も第5図に示
した。
Next, the solid electrolyte ink was applied to a washed and dried polypropylene non-woven fabric and dried under reduced pressure at about 100 ° C. to prepare a solid electrolyte sheet, and a solid electrolyte battery was prepared in the same manner as in Example 2 below. Further, a solid electrolyte battery prepared by press molding the electrode material powder and the solid electrolyte powder at 3 ton / cm 2 was similarly charged and discharged, and its discharge characteristics are also shown in FIG.

上記固体電解質インクを用いて作成した固体電解質電
池でも電極材料粉末および固体電解質粉末を用いて作成
した固体電解質電池とほぼ同様の放電特性を示した。
The solid electrolyte battery prepared using the above solid electrolyte ink also showed almost the same discharge characteristics as the solid electrolyte battery prepared using the electrode material powder and the solid electrolyte powder.

発明の効果 以上、本発明の固体電解質インクを用いることにより
固体電解質電池の作成が容易になるとともに固体電解質
の薄型化が可能になり、また、個々の固体電解質電池の
特性を安定にすることができるものである。
EFFECTS OF THE INVENTION As described above, by using the solid electrolyte ink of the present invention, it is possible to easily prepare a solid electrolyte battery and to reduce the thickness of the solid electrolyte, and it is possible to stabilize the characteristics of each solid electrolyte battery. It is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図は、本発明の実施例の銅イオン導電性
固体電解質インクを用いた固体電解質電池および銅イオ
ン導電性固体電解質粉末と電極材料粉末を用いた固体電
解質電池の放電特性図、第5図は、本発明の他の実施例
の銀イオン導電性固体電解質インクを用いた固体電解質
電池および銀イオン導電性固体電解質粉末と電極材料粉
末を用いて作成した固体電解質電池の放電特性図であ
る。
1 to 4 are discharge characteristic diagrams of a solid electrolyte battery using a copper ion conductive solid electrolyte ink and a solid electrolyte battery using a copper ion conductive solid electrolyte powder and an electrode material powder according to an embodiment of the present invention. FIG. 5 shows the discharge characteristics of a solid electrolyte battery using the silver ion conductive solid electrolyte ink of another embodiment of the present invention and a solid electrolyte battery prepared using the silver ion conductive solid electrolyte powder and the electrode material powder. It is a figure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 和典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazunori Takada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Shigeo Kondo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】銅イオン固体電解質あるいは銀イオン固体
電解質と、無水または脱水処理した可塑性を有する有機
結着剤と、無水または脱水処理した有機溶剤もしくは高
沸点有機物より成ることを特徴とする固体電解質イン
ク。
1. A solid electrolyte comprising a copper ion solid electrolyte or a silver ion solid electrolyte, an anhydrous or dehydrated organic binder having plasticity, and an anhydrous or dehydrated organic solvent or a high boiling point organic substance. ink.
【請求項2】有機結着剤、有機溶媒、高沸点有機物は、
化学的に活性な状態にある水素、酸素、ハロゲン元素の
イオンあるいは分子、または水素、炭素、窒素、酸素、
硫黄、ハロゲン元素のうち少なくとも二種以上の元素よ
り成る活性なイオン、遊離基または分子を解離しないま
たは含まない有機物より成ることを特徴とする特許請求
の範囲第1項記載の固体電解質インク。
2. The organic binder, the organic solvent, and the high-boiling organic matter are
Ions or molecules of hydrogen, oxygen, halogen elements in a chemically active state, or hydrogen, carbon, nitrogen, oxygen,
The solid electrolyte ink according to claim 1, wherein the solid electrolyte ink is composed of an organic substance that does not dissociate or contain active ions, free radicals or molecules composed of at least two or more elements of sulfur and halogen elements.
【請求項3】有機溶剤、高沸点有機物が、アルコール、
ケトンまたはエステルの極性有機物を含むことを特徴と
する特許請求の範囲第1項または第2項記載の固体電解
質インク。
3. An organic solvent, a high-boiling organic substance is alcohol,
The solid electrolyte ink according to claim 1 or 2, comprising a polar organic substance such as a ketone or an ester.
【請求項4】銅イオン固体電解質がRbCl、RbI、CuCl、C
uIを主体として成ることを特徴とする特許請求の範囲第
1項、第2項または第3項記載の固体電解質インク。
4. The copper ion solid electrolyte is RbCl, RbI, CuCl, C.
The solid electrolyte ink according to claim 1, 2, or 3, which is mainly composed of uI.
【請求項5】銀イオン固体電解質がRbI、AgIを主体とし
て成ることを特徴とする特許請求の範囲第1項、第2項
または第3項記載の固体電解質インク。
5. The solid electrolyte ink according to claim 1, 2, or 3, wherein the silver ion solid electrolyte is mainly composed of RbI and AgI.
JP62262118A 1987-10-16 1987-10-16 Solid electrolyte ink Expired - Fee Related JPH0815085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262118A JPH0815085B2 (en) 1987-10-16 1987-10-16 Solid electrolyte ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262118A JPH0815085B2 (en) 1987-10-16 1987-10-16 Solid electrolyte ink

Publications (2)

Publication Number Publication Date
JPH01104677A JPH01104677A (en) 1989-04-21
JPH0815085B2 true JPH0815085B2 (en) 1996-02-14

Family

ID=17371298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262118A Expired - Fee Related JPH0815085B2 (en) 1987-10-16 1987-10-16 Solid electrolyte ink

Country Status (1)

Country Link
JP (1) JPH0815085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716381B2 (en) * 2007-09-04 2011-07-06 ヒロセ電機株式会社 Electrical connector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129325A (en) * 1978-03-29 1979-10-06 Matsushita Electric Ind Co Ltd Method of producing cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129325A (en) * 1978-03-29 1979-10-06 Matsushita Electric Ind Co Ltd Method of producing cell

Also Published As

Publication number Publication date
JPH01104677A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
DE3613237C2 (en) Metal element depolarized with air
CN110289452B (en) Flexible zinc ion micro battery and preparation method thereof
DE2817076A1 (en) BATTERY WITH AN ALKALINE ELECTROLYTE
DE2951167A1 (en) ELECTROCHEMICAL PRIMARY CELL AND METHOD FOR PRODUCING A CATHODE CURRENT COLLECTOR THEREFOR
DE112007000203T5 (en) A highly hydrophilized support, catalyst-supporting support, fuel cell electrode, method of making the same, and self-equipped polymer electrolyte fuel cell
JPH0815085B2 (en) Solid electrolyte ink
DE102018114195A1 (en) PEO-PVA-based binder for lithium-sulfur batteries
JP6638939B2 (en) Zinc electrode and storage battery provided with the zinc electrode
CN113851696B (en) C4N quantum dot material, preparation method thereof and lithium-sulfur battery diaphragm
JP2006278308A (en) Positive pole for ultra-thin manganese battery, and its manufacturing method
JPH01104678A (en) Ink for forming electrode
CN113991058A (en) Negative pole piece, solid-state battery and preparation method thereof
DE2263636A1 (en) FUEL ELEMENT
KR100329670B1 (en) Method of manufacturing a battery electrode
CN1691375A (en) Method for making auxiliary adhesive contained electrode
CN117691116B (en) Negative electrode conductive agent of sodium ion battery and sodium ion battery
JPS5857866B2 (en) Zinc cathode for alkaline batteries
RU2686115C1 (en) Method of producing composite material for active electrode of supercapacitor
RU2783755C1 (en) Method for producing a cathode of a lithium-ion battery
JPS62222568A (en) Manufacture of lithium battery
CN116779791A (en) Flexible self-supporting negative electrode material Sn/MoO for lithium battery x @CNFs@rGo and preparation method thereof
JPS62128443A (en) Manufacture of electrode for battery
JPS63190261A (en) Battery
CN113517431A (en) Preparation method of positive electrode composite material, positive electrode composite material and secondary battery
CN114566642A (en) Novel graphite cathode, preparation method thereof and lithium ion battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees