JP6638939B2 - Zinc electrode and storage battery provided with the zinc electrode - Google Patents

Zinc electrode and storage battery provided with the zinc electrode Download PDF

Info

Publication number
JP6638939B2
JP6638939B2 JP2016069350A JP2016069350A JP6638939B2 JP 6638939 B2 JP6638939 B2 JP 6638939B2 JP 2016069350 A JP2016069350 A JP 2016069350A JP 2016069350 A JP2016069350 A JP 2016069350A JP 6638939 B2 JP6638939 B2 JP 6638939B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
metal adsorbent
zinc electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069350A
Other languages
Japanese (ja)
Other versions
JP2017183110A (en
Inventor
忠司 掛谷
忠司 掛谷
中田 明良
明良 中田
創 荒井
創 荒井
小久見 善八
善八 小久見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
GS Yuasa International Ltd
Original Assignee
Kyoto University
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, GS Yuasa International Ltd filed Critical Kyoto University
Priority to JP2016069350A priority Critical patent/JP6638939B2/en
Publication of JP2017183110A publication Critical patent/JP2017183110A/en
Application granted granted Critical
Publication of JP6638939B2 publication Critical patent/JP6638939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、亜鉛電極、及びその亜鉛電極を備えた蓄電池に関する。   The present invention relates to a zinc electrode and a storage battery provided with the zinc electrode.

近年、電子機器や車載用の蓄電池として、高エネルギー密度化、低コスト化の要請が増々高まっている。負極活物質して亜鉛種を含む電極(以下、「亜鉛負極」という。)を備える蓄電池は、単位質量当りのエネルギー密度や出力密度が高いという利点を有し魅力ある電池系であるが、サイクル寿命が短いことが課題となっている。これは、亜鉛負極の放電生成物である亜鉛酸イオン(Zn(OH) 2−)の電解液への溶解性が高く、充電時には負極上に亜鉛が不均一に析出するため、サイクルを繰返すと負極の形状変化(シェイプチェンジ)が進行し、さらに、セパレータの細孔部分に対向する負極部分に形成された種からデンドライトが成長し、セパレータを貫通して正極に達し、内部短絡を起こしてしまうことが原因である。 In recent years, demands for higher energy density and lower cost as storage batteries for electronic devices and vehicles have been increasing. A storage battery including an electrode containing a zinc species as a negative electrode active material (hereinafter, referred to as a “zinc negative electrode”) is an attractive battery system having an advantage of high energy density per unit mass and high output density. Short life is an issue. This is because the zincate ion (Zn (OH) 4 2− ), which is the discharge product of the zinc negative electrode, has high solubility in the electrolytic solution, and the zinc is deposited unevenly on the negative electrode during charging, so the cycle is repeated. And the shape change of the negative electrode (shape change) progresses, and further, dendrites grow from seeds formed in the negative electrode portion facing the pore portion of the separator, penetrate the separator and reach the positive electrode, causing an internal short circuit. It is the cause.

亜鉛負極の形状変化を抑制する手段は、種々検討されている。
特許文献1には、亜鉛種を含有する活物質粒子と、等電点が7よりも大きい化合物とを含む電池用電極組成物(請求項1,8)について、「当該化合物が負極の近傍において正に帯電して、放電時に溶出したアニオンを引きつけ、アニオンが負極近傍で過飽和状態となり、活物質が負極の近傍で再析出するように制御でき、その結果亜鉛負極のシェイプチェンジの抑制効果を顕著に発揮できる」(段落[0009])と記載されている。
そして、亜鉛負極の実施例として、「負極活物質として、活物質である酸化亜鉛、正帯電粒子である酸化マンガン(MgO)、ポリテトラフルオロエチレンを93:3:4の割合で混錬し、銅メッシュに圧延したあと乾燥させ、亜鉛負極を作製した。」(段落[0076])、「正帯電粒子として酸化イットリウム(Y)を用いた以外は、実施例1と同様」(段落[0078])、「正帯電粒子として水酸化ニッケル(Ni(OH))を用いた以外は、実施例1と同様」(段落[0079])と記載されている。
Various means for suppressing the shape change of the zinc negative electrode have been studied.
Patent Literature 1 discloses a battery electrode composition including active material particles containing a zinc species and a compound having an isoelectric point of greater than 7 (claims 1 and 8). Positively charged and attracts anions eluted during discharge, the anions become supersaturated near the negative electrode, and the active material can be controlled to reprecipitate near the negative electrode.As a result, the effect of suppressing the shape change of the zinc negative electrode is remarkable. Can be exerted on the subject "(paragraph [0009]).
As an example of the zinc negative electrode, "As the negative electrode active material, zinc oxide as an active material, manganese oxide (MgO) as positively charged particles, and polytetrafluoroethylene are kneaded at a ratio of 93: 3: 4. Rolled into a copper mesh and dried to prepare a zinc negative electrode. "(Paragraph [0076]), and" Same as in Example 1 except that yttrium oxide (Y 2 O 3 ) was used as positively charged particles. " [0078]) and "Same as Example 1 except that nickel hydroxide (Ni (OH) 2 ) was used as the positively charged particles" (paragraph [0079]).

特許文献2には、亜鉛種を含有する活物質粒子を含む活物質層内及び/又は活物質層上に、電気的に絶縁性の材料から構成される構造体を有し、該構造体は、活物質由来のイオンの活物質層からの離脱を阻害する構造をもつ電池用電極(請求項1,7)について、「当該構造体が当該イオンの活物質層からの離脱を物理的に阻害したり、イオンが電極近傍で過飽和状態となり、活物質が電極の近傍で再析出するように制御したりすることができ、その結果電極のシェイプチェンジの抑制効果を顕著に発揮できる」と記載されている。
そして、電池用電極の実施例として、「ポリオレフィン水分散液(三井化学 ケミパールS100)とポリテトラフルオロエチレンと酸化亜鉛(平均粒子径1μm)を1:3:96の質量割合(固形分割合)で混錬し、ペースト化したものを銅メッシュに圧延して張付けた後、乾燥させ負極とした。」(段落[0085])、「ポリテトラフルオロエチレンと酸化亜鉛(平均粒子径1μm)を4:96の質量割合(固形分割合)で混錬し、ペースト化したもの(厚さ200μm)の片面にポリアミドからなる厚さ100μmの不織布を貼り付け負極活物質層及び該層上の構造体を構成した。‥初期状態は活物質層/不織布層/集電体と分かれていたが、充放電をするに従い、活物質入りの不織布層/電極と活物質の位置が移る。」(段落[0086]、[0087])が示されている。
Patent Literature 2 has a structure made of an electrically insulating material in and / or on an active material layer containing active material particles containing a zinc species. Regarding a battery electrode having a structure in which ions derived from the active material are prevented from desorbing from the active material layer (claims 1 and 7), "the structure physically inhibits the desorption of the ions from the active material layer. Or the ions become supersaturated in the vicinity of the electrode, and the active material can be controlled to re-deposit in the vicinity of the electrode.As a result, the effect of suppressing the shape change of the electrode can be remarkably exerted. '' ing.
As an example of a battery electrode, “a polyolefin aqueous dispersion (Mitsui Chemicals Chemipearl S100), polytetrafluoroethylene, and zinc oxide (average particle diameter 1 μm) in a mass ratio (solid content ratio) of 1: 3: 96. The kneaded and pasted material was rolled and pasted on a copper mesh, and then dried to form a negative electrode. ”(Paragraph [0085]),“ Polytetrafluoroethylene and zinc oxide (average particle diameter 1 μm): A nonwoven fabric of 100 μm thick made of polyamide is attached to one surface of a paste (200 μm thick) kneaded at a mass ratio of 96 (solid content ratio) to form a negative electrode active material layer and a structure on the layer {In the initial state, the active material layer / nonwoven fabric layer / current collector were separated, but the positions of the active material-containing nonwoven fabric layer / electrode and active material shift as the battery is charged / discharged.] (Paragraph [008] ], It has been shown [0087]) is.

特開2015−170390号公報JP 2015-170390 A 特開2015−185260号公報JP 2015-185260 A

特許文献1,2に記載の技術は、負極活物質層内に混練された化合物、又は負極活物質層内及び/又は負極活物質層上の構造物により、亜鉛負極の放電生成物である亜鉛酸イオンを、電気的、又は構造的に負極近傍に捕捉し、充電時に再析出させることにより、負極の形状変化を抑制するものである。
しかし、上記の先行技術において、形状変化の抑制は必ずしも十分ではなく、また、上記のような化合物又は構造物は、亜鉛負極中に一定以上の量比で存在することが必要であるため、体積当たり又は質量当たりの電池容量に影響が出ていた。
The techniques described in Patent Literatures 1 and 2 disclose zinc, which is a discharge product of a zinc negative electrode, due to a compound kneaded in the negative electrode active material layer or a structure in the negative electrode active material layer and / or on the negative electrode active material layer. The acid ions are electrically or structurally captured in the vicinity of the negative electrode and are reprecipitated during charging, thereby suppressing a change in shape of the negative electrode.
However, in the above-described prior art, the suppression of shape change is not always sufficient, and the compound or structure as described above needs to be present in the zinc anode in a quantitative ratio of a certain value or more. The battery capacity per unit or mass was affected.

本発明者らは、上記の課題に鑑み、電池容量に影響を与えない程度の添加で負極の形状変化を抑制し得る物質を探求したところ、亜鉛吸着能を有する金属吸着剤を選択することにより、上記課題を解決し得ることを見出した。金属吸着剤は市販されており、主に化学合成に必要な金属触媒の金属成分の吸着除去に用いられ、化合物の収率を飛躍的に向上させることが知られている。しかし、本発明のように、金属吸着剤を亜鉛電極に含ませることにより、電池反応に伴う遊離イオンが再析出する形態を制御し、電極の形状変化を抑制することができるという効果は、本発明者らが初めて見出したものである。   In view of the above problems, the present inventors have sought a substance capable of suppressing a change in the shape of the negative electrode by adding an amount that does not affect the battery capacity, and by selecting a metal adsorbent having zinc adsorption ability. It has been found that the above problem can be solved. Metal adsorbents are commercially available, and are used mainly for adsorption and removal of metal components of metal catalysts required for chemical synthesis, and are known to dramatically improve the yield of compounds. However, by including a metal adsorbent in the zinc electrode as in the present invention, the form in which free ions are reprecipitated due to the battery reaction can be controlled, and the effect that the shape change of the electrode can be suppressed can be achieved by the present invention. The inventors have found it for the first time.

上記の課題を解決するための手段である本発明は、以下のとおりである。
(1)本第一発明は、亜鉛種からなる活物質と、金属吸着剤を含む亜鉛電極であって、前記金属吸着剤は、亜鉛吸着能を有し、Nを含む官能基を担体に結合したものであり、平均粒径(D50)が150μm以下であり、前記亜鉛電極内に均一に分散していることを特徴とする。
(2)本第二発明は、前記(1)において、前記担体がシリカゲルであることを特徴とする。
(3)本第三発明は、前記(1)において、前記担体がポリマーであることを特徴とする。
(4)本第四発明は、前記(3)において、前記前記ポリマーがポリオレフィン又はポリスチレンであることを特徴とする
(5)本第発明は、前記(1)〜()のいずれかにおいて、前記金属吸着剤は、前記活物質の亜鉛金属換算量に対して5質量%未満含まれていることを特徴とする
(6)本第発明は、前記(1)〜()のいずれかの亜鉛電極からなる負極と、正極と、前記負極側の領域と前記正極側の領域とを区切るセパレータと、電解質と、を有することを特徴とする。
The present invention, which is means for solving the above problems, is as follows.
(1) The present first invention, the active material consisting of zinc species, a zinc electrode comprising a metal adsorbent, the metal adsorbent have a zinc adsorption capacity, bonding the functional groups containing N on the carrier all SANYO was an average particle size (D50) is at 150μm or less, and wherein that you have uniformly dispersed in the zinc electrode.
(2) The second invention is characterized in that in (1), the carrier is silica gel.
(3) The third invention is characterized in that in (1), the carrier is a polymer.
(4) The fourth invention is characterized in that in (3), the polymer is polyolefin or polystyrene .
(5 ) The fifth invention is characterized in that, in any one of the above (1) to ( 4 ), the metal adsorbent is contained in an amount of less than 5% by mass based on a zinc metal equivalent of the active material. to.
(6 ) The sixth invention provides a negative electrode comprising the zinc electrode according to any one of (1) to ( 5 ), a positive electrode, a separator for separating the negative electrode side region and the positive electrode side region, and an electrolyte. , Is characterized by having.

本発明により、形状変化を抑制し得る亜鉛電極、及び該亜鉛電極よりなる負極を有する蓄電池を提供することができる。   According to the present invention, it is possible to provide a zinc electrode capable of suppressing a shape change and a storage battery having a negative electrode composed of the zinc electrode.

本発明に係る亜鉛電極のSEM写真及び概念図SEM photograph and conceptual diagram of a zinc electrode according to the present invention 本発明に係る亜鉛電極のサイクル試験結果を示すグラフThe graph which shows the cycle test result of the zinc electrode which concerns on this invention. 本発明に係る亜鉛電極の交流抵抗を示すグラフGraph showing the AC resistance of the zinc electrode according to the present invention

(亜鉛電極)
本発明に係る亜鉛電極は、亜鉛種からなる活物質を含む活物質と、金属吸着剤とを含み、前記金属吸着剤が、亜鉛吸着能を有する官能基を担体に結合したものであることを特徴とする。なお、本明細書において、「亜鉛電極」は、集電体を除いた部分を指す。
図1に集電体である発泡基材に担持された亜鉛電極のSEM写真と、拡大した概念図を示す。亜鉛種からなる活物質の近傍には、金属吸着剤が存在しており、充放電サイクルに伴う亜鉛電極の形状変化を抑制する。
亜鉛種からなる活物質は、亜鉛を含有し、酸化・還元を繰り返すことができる化合物(合金、金属)であればよく、例えば、亜鉛、酸化亜鉛、水酸化亜鉛、硫化亜鉛、テトラヒドロキシ亜鉛アルカリ金属塩、亜鉛合金、亜鉛固溶体等が挙げられる。
(Zinc electrode)
The zinc electrode according to the present invention includes an active material containing an active material composed of a zinc species, and a metal adsorbent, wherein the metal adsorbent has a functional group having zinc adsorption ability bonded to a carrier. Features. In addition, in this specification, a "zinc electrode" points out the part except the collector.
FIG. 1 shows an SEM photograph of a zinc electrode supported on a foamed base material as a current collector, and an enlarged conceptual diagram. A metal adsorbent is present in the vicinity of the active material made of zinc species, and suppresses a change in shape of the zinc electrode due to a charge / discharge cycle.
The active material composed of zinc species may be any compound containing zinc and capable of repeating oxidation and reduction (alloys, metals), such as zinc, zinc oxide, zinc hydroxide, zinc sulfide, and tetrahydroxy zinc alkali. Examples thereof include metal salts, zinc alloys, and zinc solid solutions.

金属吸着剤の担体には、シリカ骨格を有するシリカゲル、又はポリマーが好ましい。中でも、本発明の電極を電解液がアルカリ性である蓄電池に用いる場合、担体には、アルカリ溶液に不要なポリマーであるポリオレフィン樹脂又はポリスチレン樹脂を用いることがより好ましい。   The carrier of the metal adsorbent is preferably a silica gel having a silica skeleton or a polymer. In particular, when the electrode of the present invention is used for a storage battery in which the electrolyte is alkaline, it is more preferable to use, as the carrier, a polyolefin resin or a polystyrene resin that is a polymer unnecessary for an alkaline solution.

亜鉛吸着能を有する官能基は、亜鉛と錯体を形成する官能基であることが好ましく、特にNを含む官能基であることが好ましい。Nを含む官能基として、アミノ基(アミノプロピル(AP)、エチレンジアミン(EDA)、トリアミン(TA))、トリアミン四酢酸四ナトリウム基(TAAcONa)チオウレア基(TU)、イミノジアセテート基(IDA)、アミノメチルリン酸基(AMPA)等が例示される。
これらの金属吸着剤は、例えば、Sigma−Aldrich社のQuadraPure(商標)、関東化学(株)のR−Cat−Sil、富士シリシア化学(株)のスカベンジャーシリカゲル、SILICYCLE社のSiliaMetS(商標)、及びBiotage社製の金属スカベンジャー等の中から適宜選択して入手することができるが、これらに限定されない。
The functional group having the ability to adsorb zinc is preferably a functional group that forms a complex with zinc, and particularly preferably a functional group containing N. Examples of N-containing functional groups include amino group (aminopropyl (AP), ethylenediamine (EDA), triamine (TA)), tetrasodium triaminetetraacetate group (TAAcONa), thiourea group (TU), iminodiacetate group (IDA), An aminomethyl phosphate group (AMPA) and the like are exemplified.
These metal adsorbents include, for example, QuadraPure (trademark) of Sigma-Aldrich, R-Cat-Sil of Kanto Chemical Co., Ltd., scavenger silica gel of Fuji Silysia Chemical Ltd., SiliaMetS (trademark) of SILICYCLE, and It can be appropriately selected and obtained from a metal scavenger manufactured by Biotage, but is not limited thereto.

本発明に係る金属吸着剤は、活物質の亜鉛金属換算質量に対して、0.05質量%以上含まれることが好ましく、0.1質量%以上含まれることがより好ましい。また、含有量が多すぎない方が、凝集等による吸着能の低下や導電性の低下を抑制することができるので、5質量%を超えないことが好ましい。3質量%以下であることがより好ましい。   The metal adsorbent according to the present invention is preferably contained in an amount of 0.05% by mass or more, more preferably 0.1% by mass or more, based on the mass of the active material in terms of zinc metal. Further, when the content is not too large, it is preferable that the content does not exceed 5% by mass, because a decrease in adsorption ability and a decrease in conductivity due to aggregation or the like can be suppressed. More preferably, it is 3% by mass or less.

また、その粒径は、亜鉛電極内に均一に分散し、電極作製が容易に行えるように、平均粒径(D50)が500μm以下であることが好ましく、150μm以下であることがより好ましい。
金属吸着剤の分布が均一であると、担体に結合した官能基の分布も均一になるので、充電時の亜鉛の析出が亜鉛電極全体で均一に起こるようになると考えられる。亜鉛の形状変化は、充放電に伴って亜鉛が偏在化し、偏在化した部分が元の状態よりも厚みも増すことによって起こる。厚みが厚い部分では、亜鉛粒子が大きな塊になって中心部が充放電に使用できなくなったり、基材から脱落して導電性が悪化したりするため、サイクル特性の劣化を引き起こす。
本発明においては、金属吸着剤が亜鉛電極中に均一に分布していることにより、担体に結合した官能基を起点として亜鉛が均一に析出しやすくなることで、亜鉛の偏在がもたらす電極の形状変化を抑制することができると推測される。金属吸着剤の粒径が大きい場合は、粉砕して所望の粒径とすることが好ましい。
Further, the average particle diameter (D50) is preferably 500 μm or less, more preferably 150 μm or less, so that the particle diameter can be uniformly dispersed in the zinc electrode and the electrode can be easily manufactured.
It is considered that if the distribution of the metal adsorbent is uniform, the distribution of the functional groups bonded to the carrier is also uniform, so that zinc deposition during charging will occur uniformly throughout the zinc electrode. The change in shape of zinc occurs when zinc is unevenly distributed due to charge and discharge, and the unevenly distributed portion is thicker than the original state. In the thick portion, the zinc particles become large lumps and the central portion cannot be used for charge / discharge, or fall off from the base material to deteriorate the conductivity, thereby deteriorating the cycle characteristics.
In the present invention, since the metal adsorbent is uniformly distributed in the zinc electrode, the zinc easily precipitates uniformly from the functional group bonded to the carrier as a starting point. It is assumed that the change can be suppressed. When the particle size of the metal adsorbent is large, it is preferable to pulverize the metal adsorbent to a desired particle size.

亜鉛電極は、上記の亜鉛種と、金属吸着剤に、例えば、アセチレンブラック、PbO等の粉末に、水、及びポリテトラフルオロエチレン、スチレンブタジエンラバー等のバインダを加えてペーストを作製し、このペーストを発泡銅、発泡ニッケル等の基材に充填もしくは穿孔鋼板に塗布して、充分に乾燥させた後、ロール加工を施し、裁断することにより、作製することができる。   The zinc electrode, the above zinc species and the metal adsorbent, for example, acetylene black, powder such as PbO, water, and a binder such as polytetrafluoroethylene, styrene butadiene rubber is added to make a paste, this paste Can be produced by filling or perforating a steel sheet with a base material such as foamed copper or foamed nickel, and then drying it sufficiently, followed by roll processing and cutting.

本発明に係る蓄電池は、上記の亜鉛電極よりなる負極と、正極と、前記負極側の領域と前記正極側の領域とを区切るセパレータと、電解質と、を有する。   A storage battery according to the present invention includes a negative electrode composed of the zinc electrode described above, a positive electrode, a separator that divides the region on the negative electrode side from the region on the positive electrode side, and an electrolyte.

(正極)
本発明に係る蓄電池の正極は、ニッケル、酸化銀、二酸化マンガン、空気等であることが好ましく、最大作動電圧がHg/HgOの電極の電位に対して0.4V以上であることが好ましい。例えば、オキシ水酸化ニッケルを主たる成分とする金属水酸化物と発泡ニッケルなどの集電体とで構成されたニッケル極、炭素材料と酸素還元触媒と結着剤で構成された空気極等を用いることができる。
(Positive electrode)
The positive electrode of the storage battery according to the present invention is preferably made of nickel, silver oxide, manganese dioxide, air, or the like, and the maximum operating voltage is preferably 0.4 V or more with respect to the potential of the Hg / HgO electrode. For example, a nickel electrode composed of a metal hydroxide containing nickel oxyhydroxide as a main component and a current collector such as foamed nickel, and an air electrode composed of a carbon material, an oxygen reduction catalyst, and a binder are used. be able to.

(セパレータ)
本発明に係るセパレータは、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン基材フィルムに、電子線加速装置によって加速された電子線を窒素雰囲気下で照射してラジカルを発生させた後、脱酸素されたアクリル酸溶液に浸漬してグラフト重合することにより得られた半透膜とすることが好ましいが、これに限られない。
ポリオレフィンを基材とすることにより、高い耐酸化性、耐アルカリ性を有するセパレータとすることができる。また、透水度や透気度を調整するために、この膜に不織布や微多孔膜等を積層したセパレータとしてもよい。
(Separator)
The separator according to the present invention is, for example, a polyolefin base film such as polyethylene, polypropylene, etc., irradiated with an electron beam accelerated by an electron beam accelerator under a nitrogen atmosphere to generate radicals, and then deoxygenated acrylic. It is preferable to obtain a semipermeable membrane obtained by immersing in an acid solution and performing graft polymerization, but is not limited thereto.
By using a polyolefin as a base material, a separator having high oxidation resistance and alkali resistance can be obtained. Further, in order to adjust the water permeability and the air permeability, a separator in which a nonwoven fabric, a microporous film, or the like is laminated on this film may be used.

(電解質)
本発明に係る電解質としては、例えば、水にアルカリ金属の水酸化物を溶解させたものを用いることができ、アルカリ金属の水酸化物としては、KOH、NaOH、LiOH等が挙げられ、これらは1種又は2種以上を組み合わせて用いることができる。水酸化物の濃度は、下限として3M以上であることが好ましく、4M以上であることがより好ましい。上限としては、9M以下であることが好ましく、6M以下であることがより好ましい。3M以上とすることにより、自己放電を抑制することができ、9M以下とすることにより、電解質の粘度の増大を抑制することができる。
(Electrolytes)
As the electrolyte according to the present invention, for example, a solution obtained by dissolving an alkali metal hydroxide in water can be used.Examples of the alkali metal hydroxide include KOH, NaOH, and LiOH. One type or a combination of two or more types can be used. The lower limit of the hydroxide concentration is preferably 3M or more, more preferably 4M or more. The upper limit is preferably 9M or less, more preferably 6M or less. By setting it to 3M or more, self-discharge can be suppressed, and by setting it to 9M or less, an increase in the viscosity of the electrolyte can be suppressed.

電解質は、酸化亜鉛を飽和濃度で含むことが好ましい。酸化亜鉛を含むことによって、負極に含まれる亜鉛の溶出を抑制することができる。   The electrolyte preferably contains zinc oxide at a saturated concentration. By containing zinc oxide, elution of zinc contained in the negative electrode can be suppressed.

(蓄電池の組立)
本発明に係る蓄電池は、電池容器内をセパレータで区切り、一方の領域に負極を、他方の領域に正極を挿入し、容器内に電解液を注入することで組み立てることができる。セパレータを袋状にして一方の電極、好ましくは負極を袋内に収納してもよい。
(Assembly of storage battery)
The storage battery according to the present invention can be assembled by separating the inside of the battery container with a separator, inserting the negative electrode into one region and inserting the positive electrode into the other region, and injecting the electrolytic solution into the container. The separator may be formed in a bag shape and one electrode, preferably the negative electrode, may be housed in the bag.

(実施例1)
<アルカリ電解液の作製>
純水にKOH粉末を溶解し、4M濃度となるようにアルカリ溶液を作製した。さらに、ZnO粉末を過剰量投入して、25℃にて24h撹拌した。その後、濾過して余剰分のZnOを取り除くことによって、亜鉛飽和アルカリ電解液とした。
(Example 1)
<Preparation of alkaline electrolyte>
KOH powder was dissolved in pure water to prepare an alkaline solution to a concentration of 4M. Further, an excessive amount of ZnO powder was charged and the mixture was stirred at 25 ° C. for 24 hours. Then, it filtered and removed the surplus ZnO, and was set as the zinc saturated alkaline electrolyte.

<亜鉛負極の作製>
金属吸着剤として、Sigma−Aldrich社のQuadraPure(商標)IDA(ポリスチレン担体にイミノジアセテート基が結合)を乳鉢にて粉砕し、平均粒径が118μmの粉末を得た。平均粒径は粒度分布測定装置(日機装(株)製、商品名:マイクロトラックMT3000)を用いて測定し、D50(粉体をある粒子径から2つにわけたとき、大きい側と小さい側が等量となる径)の値を用いた。
ZnO粉末、アセチレンブラック(AB)、PbO粉末、及び前記金属吸着剤を所定量秤量して撹拌した。その後、水およびポリテトラフルオロエチレン(PTFE)ディスパージョンを加えて、さらに撹拌してペーストを作製した。固形分は、それぞれ、ZnO:AB:PTFE:PbO:金属吸着剤=87:5:5:2:1(質量%)となるようにして、水分率はペースト全体の65質量%程度となるように調整した。そのペーストを厚み1mm、面積当たりの密度が0.45g/cmの発泡銅基材に充填して、充分に乾燥させた後、ロール加工を施した。これにより、厚さが0.35mmの電極シート基材を得た。この基材を2cm×2cmに裁断することによって、亜鉛負極が得られた。この亜鉛負極(極板)の理論容量が100mAhとなるように、ペースト充填量を調整した。
<Preparation of zinc anode>
As a metal adsorbent, QuadraPure (trademark) IDA manufactured by Sigma-Aldrich (iminodiacetate group bonded to a polystyrene carrier) was ground in a mortar to obtain a powder having an average particle diameter of 118 µm. The average particle size is measured using a particle size distribution analyzer (trade name: Microtrac MT3000, manufactured by Nikkiso Co., Ltd.), and D50 (when the powder is divided into two from a certain particle size, the large side and the small side are equal). Value).
A predetermined amount of ZnO powder, acetylene black (AB), PbO powder, and the metal adsorbent were weighed and stirred. Thereafter, water and a polytetrafluoroethylene (PTFE) dispersion were added, and the mixture was further stirred to produce a paste. The solid content is set to ZnO: AB: PTFE: PbO: metal adsorbent = 87: 5: 5: 2: 1 (mass%), and the water content is set to about 65% by mass of the whole paste. Was adjusted. The paste was filled into a foamed copper base material having a thickness of 1 mm and a density per area of 0.45 g / cm 2 , dried sufficiently, and then rolled. Thus, an electrode sheet base material having a thickness of 0.35 mm was obtained. This substrate was cut into 2 cm × 2 cm to obtain a zinc negative electrode. The paste filling amount was adjusted so that the theoretical capacity of the zinc negative electrode (electrode plate) was 100 mAh.

<対極の作製>
対極による亜鉛負極への影響を少なくするために、対極は、金属吸着剤を含まない上記の亜鉛負極の原料にZn粉末を加えて、ペースト固形分の配合比をZn:ZnO:AB:PTFE:PbO=54:34:5:5:2(質量%)となるようにした。また、極板面積を2.5cm×3.0cmとして、電極容量を亜鉛負極に対して過剰になるようにペーストを充填したこと以外は亜鉛負極と同様に作製した。
<Preparation of counter electrode>
In order to reduce the influence of the counter electrode on the zinc negative electrode, the counter electrode was prepared by adding Zn powder to the raw material of the zinc negative electrode containing no metal adsorbent and adjusting the mixing ratio of the paste solids to Zn: ZnO: AB: PTFE: PbO was set to be 54: 34: 5: 5: 2 (% by mass). The electrode was manufactured in the same manner as the zinc negative electrode, except that the electrode area was 2.5 cm × 3.0 cm and the paste was filled so that the electrode capacity was excessive with respect to the zinc negative electrode.

<セルの作製>
上記のように作製した亜鉛負極及び対極の両側にポリプロピレンの微多孔膜セパレータを配置して、さらにその上にポリプロピレンおよびポリプロピレンを使用した繊維で構成された不織布セパレータを重ねて配置した。亜鉛負極の両側に対極を配置して、容器にセットした。また、参照極としてHg/HgO電極を設けた。上記のように調製したアルカリ電解液を電極が充分に満たされる程度に注いだ(2.5mL)。その後、電解液が充分に電極に浸透するまで静置した。これにより、作製した開放型のセルを実施例1に係る電池とした。
<Preparation of cell>
A microporous polypropylene separator made of polypropylene was placed on both sides of the zinc negative electrode and the counter electrode produced as described above, and a nonwoven fabric separator made of polypropylene and fibers using polypropylene was further placed thereon. Counter electrodes were arranged on both sides of the zinc negative electrode and set in a container. An Hg / HgO electrode was provided as a reference electrode. The alkaline electrolyte prepared as described above was poured to the extent that the electrode was sufficiently filled (2.5 mL). Thereafter, the sample was allowed to stand until the electrolyte sufficiently permeated the electrodes. In this way, the fabricated open cell was used as the battery according to Example 1.

(実施例2)
金属吸着剤として、QuadraPure(商標)IDAに代えて、QuadraPure(商標)EDA(ポリスチレン担体にエチレンジアミンが結合)の粉砕物(D50=118μm)を使用した以外は、実施例1と同様にして実施例電池2を作製した。
(Example 2)
The same procedure as in Example 1 was carried out except that a ground product (D50 = 118 μm) of QuadraPure ™ EDA (ethylenediamine bonded to a polystyrene carrier) was used in place of QuadraPure ™ IDA as the metal adsorbent. Battery 2 was produced.

(実施例3)
金属吸着剤として、関東化学(株)のR−Cat−Sil−AP(シリカゲル担体にアミノプロピルが結合、D50=48μm)を粉砕せずにそのまま使用した以外は実施例1と同様にして、実施例電池3を作製した。
(Example 3)
The same procedure as in Example 1 was carried out except that R-Cat-Sil-AP of Kanto Chemical Co., Ltd. (aminopropyl bonded to a silica gel carrier, D50 = 48 μm) was used as a metal adsorbent without pulverization. Example battery 3 was produced.

(実施例4)
金属吸着剤として、R−Cat−Sil−TA(シリカゲル担体にトリアミンが結合、D50=51μm)をそのまま使用した以外は実施例1と同様にして、実施例電池4を作製した。
(Example 4)
Example battery 4 was produced in the same manner as in Example 1 except that R-Cat-Sil-TA (triamine bonded to a silica gel carrier, D50 = 51 μm) was used as a metal adsorbent as it was.

(比較例1)
金属吸着剤を使用せず、ZnO:AB:PTFE:PbO=88:5:5:2(質量%)とした以外は、実施例1と同様にして、比較例電池1を作製した。
(Comparative Example 1)
Comparative Example Battery 1 was produced in the same manner as in Example 1 except that the metal adsorbent was not used and ZnO: AB: PTFE: PbO was 88: 5: 5: 2 (% by mass).

(比較例2)
金属吸着剤に代えて、和光純薬社製のシリカ粉末(D50=70nm)を使用した以外は、実施例1と同様にして、比較例電池2を作製した。
(Comparative Example 2)
Comparative Example Battery 2 was produced in the same manner as in Example 1, except that silica powder (D50 = 70 nm) manufactured by Wako Pure Chemical Industries, Ltd. was used instead of the metal adsorbent.

(比較例3)
金属吸着剤に代えて、ポリビニルアルコール(PVA)(日本酢ビポバール製 平均分子量 5800)を使用した以外は、実施例1と同様にして、比較例電池3を作製した。
(Comparative Example 3)
Comparative Example Battery 3 was produced in the same manner as in Example 1, except that polyvinyl alcohol (PVA) (average molecular weight: 5800, manufactured by Nippon Vinegar Vivovar) was used instead of the metal adsorbent.

(比較例4)
金属吸着剤に代えて、ポリエチレングリコール(PEG)(Aldrich製(445878,平均分子量 250)を使用した以外は、実施例1と同様にして、比較例電池4を作製した。
(Comparative Example 4)
Comparative Example Battery 4 was produced in the same manner as in Example 1 except that polyethylene glycol (PEG) (manufactured by Aldrich (445858, average molecular weight 250)) was used instead of the metal adsorbent.

(比較例5)
金属吸着剤に代えて、スチレンブタジエンラバー(SBR)(日本エイアンドエル株式会社製)を活物質の亜鉛金属換算質量に対して1質量%使用した以外は、実施例1と同様にして、比較例電池5を作製した。
(Comparative Example 5)
Comparative Example Battery In the same manner as in Example 1, except that styrene-butadiene rubber (SBR) (manufactured by Nippon A & L Co., Ltd.) was used in an amount of 1% by mass relative to the zinc metal equivalent mass of the active material instead of the metal adsorbent. 5 was produced.

(比較例6)
金属吸着剤として、R−Cat−Sil−MP(シリカゲル担体にチオールが結合、D50=50μm)をそのまま使用した以外は実施例1と同様にして、比較例電池6を作製した。
(Comparative Example 6)
Comparative Example Battery 6 was produced in the same manner as in Example 1 except that R-Cat-Sil-MP (thiol bonded to a silica gel carrier, D50 = 50 μm) was used as a metal adsorbent as it was.

<金属吸着剤の亜鉛吸着能の測定>
上記の実施例1〜4、及び比較例1〜6にて使用した金属吸着剤の亜鉛吸着能は、硝酸亜鉛6水和物の0.0005Mの水溶液を作製し、そこに各金属吸着剤を加えて30分拡散した後、それぞれの液を取り出し、ICP分析を行うことにより求めた。
<Measurement of zinc adsorption capacity of metal adsorbent>
The zinc adsorbing ability of the metal adsorbent used in Examples 1 to 4 and Comparative Examples 1 to 6 described above was prepared by preparing a 0.0005 M aqueous solution of zinc nitrate hexahydrate, and adding each metal adsorbent thereto. After diffusion for an additional 30 minutes, each liquid was taken out and subjected to ICP analysis.

<サイクル特性評価>
実施例電池1〜4、及び比較例電池1〜6について、以下の条件で、25℃の環境下にてサイクル試験を行った。
1サイクル目は以下の条件にて充放電を行った。
電流を0.25CmA(25mA)として、1時間充電、5分間休止した後、参照極に対して−0.8Vとなるように放電した。
2サイクル目以降は以下の条件を繰り返した。
電流を0.5CmA(50mA)として、1時間充電、5分間休止した後、参照極に対して−0.8Vとなるように放電した。
上記の条件にてサイクル試験を行い、放電容量が急激に減少し始めたところのサイクル数をサイクル寿命とした。また、デンドライド生成によるショートが生じた場合においても、サイクル寿命とした。
以上の結果を、表1に示す。また、実施例4と比較例1のサイクル試験の結果を、図2に示す。
<Cycle characteristics evaluation>
A cycle test was performed on the batteries of Examples 1 to 4 and the batteries of Comparative Examples 1 to 6 under the following conditions in an environment of 25 ° C.
In the first cycle, charging and discharging were performed under the following conditions.
The current was set to 0.25 CmA (25 mA), the battery was charged for 1 hour, paused for 5 minutes, and then discharged to −0.8 V with respect to the reference electrode.
The following conditions were repeated after the second cycle.
The current was set to 0.5 CmA (50 mA), the battery was charged for 1 hour, paused for 5 minutes, and then discharged to −0.8 V with respect to the reference electrode.
A cycle test was performed under the above conditions, and the number of cycles at which the discharge capacity began to rapidly decrease was defined as the cycle life. In addition, even when a short circuit occurred due to dendride generation, the cycle life was taken as the cycle life.
Table 1 shows the above results. FIG. 2 shows the results of the cycle tests of Example 4 and Comparative Example 1.

実施例電池1〜4は、いずれも亜鉛吸着能を有する金属吸着剤を亜鉛電極に使用しており、サイクル寿命が優れることがわかる。
比較例電池1〜5は、いずれも亜鉛電極に金属吸着剤を使用しておらず、サイクル寿命が短い。
比較例電池6は、亜鉛吸着能を有さない金属吸着剤を使用している例であり、サイクル寿命の向上に寄与していない。
It can be seen that the batteries of Examples 1 to 4 all use a metal adsorbent having a zinc adsorption ability for a zinc electrode, and have excellent cycle life.
The batteries of Comparative Examples 1 to 5 do not use a metal adsorbent for the zinc electrode, and have a short cycle life.
Comparative Example Battery 6 is an example in which a metal adsorbent having no zinc adsorption ability is used, and does not contribute to an improvement in cycle life.

(実施例5〜7、比較例7)
実施例1,2,4及び比較例6における金属吸着剤の添加量を、ペースト配合比で、0.5質量%とした場合の実施例5〜7及び比較例7について、上記と同様のサイクル特性評価を行った。結果を実施例1,2,4及び比較例6とともに表2に示す。
(Examples 5 to 7, Comparative Example 7)
Cycles similar to the above for Examples 5 to 7 and Comparative Example 7 when the amount of the metal adsorbent added in Examples 1, 2, 4, and Comparative Example 6 was 0.5% by mass in the paste mixing ratio. Characteristic evaluation was performed. The results are shown in Table 2 together with Examples 1, 2, 4, and Comparative Example 6.

表2の結果から、金属吸着剤は、ペースト固形分に0.5質量%含まれていれば、サイクル寿命の向上に十分効果があることがわかる。   From the results in Table 2, it can be seen that when the metal adsorbent is contained in the paste solid content at 0.5% by mass, the metal adsorbent is sufficiently effective in improving the cycle life.

(実施例8,9)
金属吸着剤の含有量と亜鉛電極の導電性の関係について、金属吸着剤の含有量以外は実施例1と同様にして作製したアルカリ蓄電池を実施例8,9とし、充放電試験及び交流抵抗の測定を、東洋システム(株)製の充放電評価装置(TOSCAT−3000)を用い、1kHz(測定レンジ1〜1500mΩ)にて、3サイクル後の交流抵抗を測定した。結果を、図3に示す。
図3から、金属吸着剤の含有量が5質量%では、交流抵抗が増大したことがわかる。含有量が3%質量%以下では、金属吸着剤による抵抗増加が小さく、導電助剤(AB)の添加効果により、十分に導電パスが確保されていたことがわかる。
(Examples 8 and 9)
Regarding the relationship between the content of the metal adsorbent and the conductivity of the zinc electrode, the alkaline storage batteries produced in the same manner as in Example 1 except for the content of the metal adsorbent were referred to as Examples 8 and 9, and the charge / discharge test and the AC resistance were evaluated. The measurement was performed using a charge / discharge evaluation device (TOSCAT-3000) manufactured by Toyo System Co., Ltd., and the AC resistance after three cycles was measured at 1 kHz (measurement range: 1 to 1500 mΩ). The results are shown in FIG.
FIG. 3 shows that the AC resistance increased when the content of the metal adsorbent was 5% by mass. When the content is 3% by mass or less, the increase in resistance due to the metal adsorbent is small, and it can be seen that the conductive path is sufficiently secured by the effect of adding the conductive additive (AB).

本発明に係る亜鉛電極は、充放電サイクルに伴う形状変化を抑制することができるから、これを負極に用いる蓄電池の充放電サイクル特性を向上することができる。したがって、亜鉛電極を負極とする高エネルギー密度を有する蓄電池の実用化を可能とし、電子機器、電気自動車等の電源としての利用を推進することが期待される。   ADVANTAGE OF THE INVENTION Since the zinc electrode which concerns on this invention can suppress the shape change accompanying a charge / discharge cycle, the charge / discharge cycle characteristic of the storage battery which uses this for a negative electrode can be improved. Therefore, it is expected that a storage battery having a high energy density with a zinc electrode as a negative electrode can be put to practical use, and its use as a power source for electronic devices, electric vehicles, and the like is promoted.

Claims (6)

亜鉛種からなる活物質と、金属吸着剤を含む亜鉛電極であって、
前記金属吸着剤は、亜鉛吸着能を有し、Nを含む官能基を担体に結合したものであり、平均粒径(D50)が150μm以下であり、前記亜鉛電極内に均一に分散していることを特徴とする亜鉛電極。
An active material comprising a zinc species and a zinc electrode containing a metal adsorbent,
The metal adsorbent have a zinc adsorption capacity state, and are not linked to a functional group containing N to the carrier, an average particle diameter (D50) is at 150μm or less, it is uniformly dispersed in the zinc electrode A zinc electrode.
前記担体がシリカゲルであることを特徴とする請求項1に記載の亜鉛電極。   The zinc electrode according to claim 1, wherein the carrier is silica gel. 前記担体がポリマーであることを特徴とする請求項1に記載の亜鉛電極。   The zinc electrode according to claim 1, wherein the carrier is a polymer. 前記ポリマーが、ポリオレフィン又はポリスチレンであることを特徴する請求項3に記載の亜鉛電極。   The zinc electrode according to claim 3, wherein the polymer is polyolefin or polystyrene. 前記金属吸着剤は、前記活物質の亜鉛金属換算量に対して5質量%未満含まれていることを特徴とする請求項1からのいずれかに記載の亜鉛電極。 The zinc electrode according to any one of claims 1 to 4 , wherein the metal adsorbent is contained in an amount of less than 5% by mass with respect to a zinc metal equivalent of the active material. 請求項1〜のいずれかに記載の亜鉛電極よりなる負極と、
正極と、
電解質と、
を有することを特徴する蓄電池。
A negative electrode comprising the zinc electrode according to any one of claims 1 to 5 ,
A positive electrode,
An electrolyte,
A storage battery comprising:
JP2016069350A 2016-03-30 2016-03-30 Zinc electrode and storage battery provided with the zinc electrode Active JP6638939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069350A JP6638939B2 (en) 2016-03-30 2016-03-30 Zinc electrode and storage battery provided with the zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069350A JP6638939B2 (en) 2016-03-30 2016-03-30 Zinc electrode and storage battery provided with the zinc electrode

Publications (2)

Publication Number Publication Date
JP2017183110A JP2017183110A (en) 2017-10-05
JP6638939B2 true JP6638939B2 (en) 2020-02-05

Family

ID=60007593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069350A Active JP6638939B2 (en) 2016-03-30 2016-03-30 Zinc electrode and storage battery provided with the zinc electrode

Country Status (1)

Country Link
JP (1) JP6638939B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049902A1 (en) 2018-09-03 2020-03-12 日本碍子株式会社 Negative electrode and zinc secondary battery
CN110265748B (en) * 2019-06-24 2021-06-11 上海空间电源研究所 Hydrogen-nickel storage battery for space
WO2023038033A1 (en) * 2021-09-09 2023-03-16 エナジーウィズ株式会社 Zinc battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176564A (en) * 1999-10-07 2001-06-29 Sekisui Chem Co Ltd Air battery
JP2003297347A (en) * 2002-04-03 2003-10-17 Sony Corp Alkaline zinc battery
JP2008186703A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Alkaline battery
CN101702430A (en) * 2009-11-03 2010-05-05 华南师范大学 Alkaline zinc battery composite additive and preparation method and application thereof
JP2011183376A (en) * 2010-02-10 2011-09-22 Gunma Univ Metal adsorbing material and method for separating metal
JP6053724B2 (en) * 2014-06-26 2016-12-27 国立大学法人九州大学 Ion exchange resin and metal adsorption separation method

Also Published As

Publication number Publication date
JP2017183110A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR101537138B1 (en) Binder composition for secondary battery electrode and method for producing same
US8293419B2 (en) Method for preparing hydrogen absorbing electrode and nickel metal-hydride battery
CN103636058A (en) Lithium-air battery
JP6638939B2 (en) Zinc electrode and storage battery provided with the zinc electrode
JP2001313066A (en) Alkaline storage battery
JP2012227106A (en) Nickel-metal hydride battery
CN110880575A (en) Composite diaphragm, preparation and application thereof in lithium-sulfur battery
JP2016186895A (en) Anion conductive membrane, electrode and battery
US20180366730A1 (en) Peo-pva based binder for lithium-sulfur batteries
JP2017091964A (en) Positive electrode active material for nickel hydrogen secondary battery, nickel hydrogen secondary battery containing positive electrode active material, and evaluation method of positive electrode active material
JP6535950B2 (en) Alkaline storage battery
US9972875B2 (en) Alkaline storage battery
KR101485483B1 (en) Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same
JP2022544975A (en) Lithium-sulfur secondary battery capsule and lithium-sulfur secondary battery containing the same
JP7141809B2 (en) Anode Materials, Anodes, and Iron-Air Batteries
JP2017147082A (en) Positive electrode active material for alkaline secondary battery, and alkaline secondary battery including the positive electrode active material
JP6269949B2 (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
JP2015022960A (en) Slurry for electrode of electricity storage device
RU2691974C1 (en) Positive electrode and alkaline storage battery containing it
JP6589439B2 (en) Alkaline storage battery
JP2008123770A (en) Battery
JP2010108875A (en) Positive electrode for alkaline storage battery, and method of manufacturing positive electrode for alkaline storage battery
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JP2023095566A (en) secondary battery
JP2004127590A (en) Hydrogen storing alloy electrode and alkaline storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6638939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250