JPH08148182A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH08148182A
JPH08148182A JP6286607A JP28660794A JPH08148182A JP H08148182 A JPH08148182 A JP H08148182A JP 6286607 A JP6286607 A JP 6286607A JP 28660794 A JP28660794 A JP 28660794A JP H08148182 A JPH08148182 A JP H08148182A
Authority
JP
Japan
Prior art keywords
positive electrode
flange
sodium
plastic deformation
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6286607A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugiyama
浩 杉山
Saburo Usami
三郎 宇佐美
Yoshimi Sato
善美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6286607A priority Critical patent/JPH08148182A/en
Publication of JPH08148182A publication Critical patent/JPH08148182A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide an inexpensive and highly reliable sodium-sulfur battery by simplifying a structure and preventing the occurrence of a shortcircuit between electrodes through the absorption of displacement resulting from a thermal expansion and shrinkage difference between a solid electrolyte and an electrode vessel via plastic deformation. CONSTITUTION: This battery is equipped with a negative electrode vessel 8 having a negative electrode flange 3 and sealing sodium 7, a solid electrolyte 4 having an insulation ring 2 jointed with glass or the like and sealing the sodium 7 as well as the vessel 8, and a positive electrode vessel 6 having a positive electrode flange 1 and sealing sulfur 5 as well as the electrolyte 4. The vessel 8 is laid at an inner position and the vessel 6 at an outer position via the electrolyte 4, and the flange 3 and the ring 2 are jointed to each other via a negative electrode joint 10. In addition, the flange 1 and the ring 2 are jointed to each other via a positive electrode joint 9, and the vessels 8 and 6 are insulated from each other. Also, a plastic deformation absorbing section has a stepped structure formed out of a low rigidity flange section 1a, a vertical flange section 1c and a high rigidity flange section 1b, and is provided on the flange 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質と電極容器
との熱膨張収縮差による変位を吸収する変位吸収部位を
有するナトリウム−硫黄電池に係わり、特にフランジに
変位吸収部位を設けたナトリウム−硫黄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery having a displacement absorbing portion for absorbing a displacement due to a difference in thermal expansion and contraction between a solid electrolyte and an electrode container, and particularly to a sodium-sulfur battery having a displacement absorbing portion on a flange. Regarding sulfur batteries.

【0002】[0002]

【従来の技術】変位吸収部位が独立した吸収部位として
別個に設けられた例を図8に示し、固体電解質と電極容
器との熱膨張収縮差による変位を吸収する従来技術につ
いて説明する。
2. Description of the Related Art FIG. 8 shows an example in which displacement absorption sites are provided as independent absorption sites, and a conventional technique for absorbing displacement due to a difference in thermal expansion and contraction between a solid electrolyte and an electrode container will be described.

【0003】ナトリウムイオン伝導性を有するセラミッ
クス製の固体電解質4に、絶縁リング2がガラス等を介
して接合され、この絶縁リング2に、正極フランジ1と
負極フランジ3が熱圧接により接合される。固体電解質
4の内側には、負極容器8と負極活物質であるナトリウ
ム7とが封入され、さらに金属製の正極容器6の内側に
は、固体電解質4と正極活物質である硫黄5とが封入さ
れナトリウム−硫黄電池が構成される。
An insulating ring 2 is bonded to a solid electrolyte 4 made of ceramics having sodium ion conductivity via glass or the like, and a positive electrode flange 1 and a negative electrode flange 3 are bonded to the insulating ring 2 by thermocompression bonding. A negative electrode container 8 and sodium 7 which is a negative electrode active material are enclosed inside the solid electrolyte 4, and a solid electrolyte 4 and sulfur 5 which is a positive electrode active material are enclosed inside a positive electrode container 6 made of metal. And a sodium-sulfur battery is constructed.

【0004】ところで、ナトリウム−硫黄電池の降温運
転過程において、約350℃から約120℃、さらに室
温まで下がると、硫黄5が凝固する。凝固した硫黄5に
より固体電解質4と正極容器6とが拘束され、固体電解
質4と正極容器6との線膨張係数の差による熱収縮変位
δ(以下、熱変位と言う)が、正極の接合部9に生じ
る。
By the way, in the temperature-decreasing operation process of a sodium-sulfur battery, when the temperature drops from about 350 ° C. to about 120 ° C. and further to room temperature, sulfur 5 solidifies. The solid electrolyte 4 and the positive electrode container 6 are constrained by the solidified sulfur 5, and the thermal contraction displacement δ (hereinafter referred to as thermal displacement) due to the difference in the linear expansion coefficient between the solid electrolyte 4 and the positive electrode container 6 is a positive electrode joint portion. 9 occurs.

【0005】そして、熱膨張係数は一般にセラミックス
製の固体電解質4よりも金属製の正極容器6の方が大き
いので、収縮による熱変位は、正極の接合部9に対し図
8に示したように下方向に生じる。この熱変位は、正極
フランジ1を変形させ、正極フランジ1の剛性により正
極の接合部9を下方向に引っ張る引張荷重Pを発生させ
る。そして、この引張荷重Pが正極の接合部9の剥離強
度Pcを超えると、剥離が発生する。この温度変化と引
張荷重Pとの関係を図9に示す。図は約350℃から室
温まで降温してきたときの引張荷重Pの変化を示し、変
位吸収部位がなく引張荷重Pが剥離強度Pcを超える場
合を示している。
Since the coefficient of thermal expansion of the positive electrode container 6 made of metal is generally larger than that of the solid electrolyte 4 made of ceramics, the thermal displacement due to contraction is as shown in FIG. It occurs in the downward direction. This thermal displacement causes the positive electrode flange 1 to be deformed, and the rigidity of the positive electrode flange 1 causes a tensile load P that pulls the joining portion 9 of the positive electrode downward. When the tensile load P exceeds the peel strength Pc of the positive electrode joint portion 9, peeling occurs. The relationship between this temperature change and the tensile load P is shown in FIG. The figure shows the change in the tensile load P when the temperature is lowered from about 350 ° C. to room temperature, and shows the case where there is no displacement absorption site and the tensile load P exceeds the peel strength Pc.

【0006】従って、従来のナトリウム−硫黄電池に、
Pcを超えないように熱変位を弾性変形でもって吸収し
引張荷重Pを低減する変位吸収部位11が設けられてい
る。
Therefore, in the conventional sodium-sulfur battery,
A displacement absorbing portion 11 is provided which absorbs thermal displacement by elastic deformation so as not to exceed Pc and reduces the tensile load P.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術において
は、変位吸収部位11は、低剛性を確保し熱変位を弾性
変形で吸収するように、別個に独立した吸収部位となっ
ており、例えば、図8のようなフランジに溶接された複
雑なベローズ構造となっている。且つ、低剛性を確保す
るため内外径差を広げ、絶縁リング2の上部空間を長く
大きくオーバーハングする構造となっている。その結
果、正極フランジ1または変位吸収部位11と、負極フ
ランジ3との間隔が狭くなり、変形させたときに両電極
が接触し短絡する虞れがある。
In the above-mentioned prior art, the displacement absorbing portion 11 is a separate and independent absorbing portion so as to secure low rigidity and absorb thermal displacement by elastic deformation. It has a complicated bellows structure welded to a flange as shown in FIG. In addition, the structure is such that the difference between the inner and outer diameters is widened to secure low rigidity, and the upper space of the insulating ring 2 is overhanged for a long time. As a result, the gap between the positive electrode flange 1 or the displacement absorbing portion 11 and the negative electrode flange 3 becomes narrow, and there is a possibility that both electrodes may come into contact with each other when they are deformed, resulting in a short circuit.

【0008】従って、本発明の目的は、変位吸収部位の
構造を簡素化し正極と負極との間隔を広げ短絡を防止し
て、安価で信頼性の高いナトリウム−硫黄電池を提供す
ることにある。
Therefore, an object of the present invention is to provide a low-cost and highly reliable sodium-sulfur battery by simplifying the structure of the displacement absorbing portion and widening the gap between the positive electrode and the negative electrode to prevent a short circuit.

【0009】[0009]

【課題を解決するための手段】上記目的は、負極容器
と、該負極容器とナトリウムとを内封しナトリウムイオ
ン伝導性を有する固体電解質と、該固体電解質と硫黄と
を内封する正極容器と、固体電解質と負極容器と正極容
器とを絶縁接合する絶縁リングとを含むナトリウム−硫
黄電池において、絶縁リングと、正極容器または負極容
器のいずれか一方の電極容器との間に、いずれか一方の
電極容器と固体電解質との熱膨張収縮差による変位を塑
性変形によって吸収する塑性変形吸収部位を設けること
により達成される。
The above object is to provide a negative electrode container, a solid electrolyte containing the negative electrode container and sodium and having sodium ion conductivity, and a positive electrode container containing the solid electrolyte and sulfur. In the sodium-sulfur battery including a solid electrolyte, an insulating ring for insulatingly joining the negative electrode container and the positive electrode container, between the insulating ring and either one of the positive electrode container and the negative electrode container, either one of This is achieved by providing a plastic deformation absorbing portion that absorbs the displacement due to the difference in thermal expansion and contraction between the electrode container and the solid electrolyte by plastic deformation.

【0010】具体的には、例えば、正極容器は正極フラ
ンジを有し該正極フランジを介して絶縁リングに絶縁接
合され、塑性変形吸収部位は該正極フランジに設けられ
るものである。
Specifically, for example, the positive electrode container has a positive electrode flange and is insulated and joined to the insulating ring via the positive electrode flange, and the plastic deformation absorbing portion is provided on the positive electrode flange.

【0011】[0011]

【作用】上記構成とすれば、塑性変形吸収部位が正極フ
ランジ自体の塑性変形で熱変位を吸収するので、弾性変
形で吸収する従来に比べ変位吸収部位の構造が簡素化さ
れ、また正極フランジと負極フランジとの間隔が広く取
れるので、短絡防止も為される。
With the above structure, since the plastic deformation absorbing portion absorbs the thermal displacement by the plastic deformation of the positive electrode flange itself, the structure of the displacement absorbing portion is simplified as compared with the conventional structure in which the elastic deformation absorbs the positive displacement. Since the gap with the negative electrode flange can be wide, short circuit can be prevented.

【0012】[0012]

【実施例】本発明による実施例について、以下、図面を
参照し説明する。図1は、本発明による一実施例のナト
リウム−硫黄電池の構造を示す半断面図である。図2
は、図1の部分拡大断面図であり、一実施例の塑性変形
吸収部位を示す図である。図2は、正極フランジに設け
られた場合の一実施例の塑性変形吸収部位を示す断面図
でもある。図1と図2を同時に参照し構成を説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a half sectional view showing the structure of a sodium-sulfur battery according to an embodiment of the present invention. Figure 2
FIG. 3 is a partially enlarged cross-sectional view of FIG. 1, showing a plastic deformation absorbing portion of one embodiment. FIG. 2 is also a cross-sectional view showing a plastic deformation absorbing portion of one embodiment when it is provided on the positive electrode flange. The configuration will be described with reference to FIGS. 1 and 2 at the same time.

【0013】本実施例のナトリウム−硫黄電池は、負極
フランジ3を有しナトリウム7を内封する負極容器8
と、ガラスなどで接合された絶縁リング2を有しナトリ
ウム7と負極容器8とを内封する固体電解質4と、正極
フランジ1を有し硫黄5と固体電解質4とを内封する正
極容器6とを備え、固体電解質4を間に挾み、負極容器
8を内側に正極容器6を外側に配置し、負極フランジ3
と絶縁リング2とを負極の接合部10で接合し、且つ正
極フランジ1と絶縁リング2とを正極の接合部9で接合
し、負極容器8と正極容器6とを絶縁した構成である。
The sodium-sulfur battery of the present embodiment has a negative electrode container 8 having a negative electrode flange 3 and containing sodium 7.
And a solid electrolyte 4 having an insulating ring 2 joined by glass or the like for enclosing sodium 7 and a negative electrode container 8, and a positive electrode container 6 having a positive electrode flange 1 for enclosing sulfur 5 and solid electrolyte 4. And the solid electrolyte 4 is sandwiched therebetween, the negative electrode container 8 is arranged inside, and the positive electrode container 6 is arranged outside.
And the insulating ring 2 are joined at the negative electrode joint portion 10 and the positive electrode flange 1 and the insulating ring 2 are joined at the positive electrode joint portion 9 to insulate the negative electrode container 8 and the positive electrode container 6 from each other.

【0014】そして、本実施例の正極フランジ1に設け
られた塑性変形吸収部位は、低剛性フランジ部1aと垂
直フランジ部1cと高剛性フランジ部1bとからなる段
付を有する段付構造である。そして、この段付構造を図
1に示した矢印方向Rに塑性変形させ、熱変位を吸収す
るものである。
The plastic deformation absorbing portion provided on the positive electrode flange 1 of this embodiment has a step structure having a step made up of a low-rigidity flange portion 1a, a vertical flange portion 1c and a high-rigidity flange portion 1b. . Then, this stepped structure is plastically deformed in the arrow direction R shown in FIG. 1 to absorb the thermal displacement.

【0015】ところで、従来の変形吸収部位は、変形吸
収部位の応力が弾性変形域内の応力となるように弾性変
形し、熱変位を吸収するものであった。従って、変形吸
収部位の応力を弾性変形域内に抑えるため、従来の変形
吸収部位は、図8に示したように絶縁リング2の上部空
間を長く大きくオーバーハングする構造のものであっ
た。これに対し本発明による塑性変形吸収部位の段付構
造は、塑性変形域内の応力とするので、従来のように長
く大きくオーバーハングする構造とする必要がない。そ
の結果、塑性変形吸収部位の構造は簡単になり、また、
負極フランジ3と正極フランジ1(図示の場合は低剛性
フランジ部1a)との間に、図2に示すように広く間隔
Dが設けられ、負極フランジ3と正極フランジ1間の短
絡の虞れがなくなる。
By the way, the conventional deformation absorbing portion has been elastically deformed so that the stress of the deformation absorbing portion becomes a stress within the elastic deformation region to absorb the thermal displacement. Therefore, in order to suppress the stress at the deformation absorbing portion within the elastic deformation region, the conventional deformation absorbing portion has a structure in which the upper space of the insulating ring 2 is overhanged largely and largely as shown in FIG. On the other hand, the stepped structure of the plastic deformation absorbing portion according to the present invention uses the stress in the plastic deformation region, and therefore does not need to have a structure that overhangs long and large as in the conventional case. As a result, the structure of the plastic deformation absorption site is simplified, and
As shown in FIG. 2, a wide gap D is provided between the negative electrode flange 3 and the positive electrode flange 1 (the low rigidity flange portion 1a in the figure), which may cause a short circuit between the negative electrode flange 3 and the positive electrode flange 1. Disappear.

【0016】尚、図2において、絶縁リング2の外周面
と垂直フランジ部1cの内周面との間に、ギャップGが
設けられている。このギャップGを設けるのは、製造時
に熱圧接温度500〜600℃で加熱された正極フラン
ジ1が室温まで降温し、絶縁リング2との熱収縮差によ
り内側に倒れ込んだとき、正極フランジ1に曲げモーメ
ントMを発生させるためである。この曲げモーメントM
は、正極の接合部9に剥離方向とは逆方向の圧縮荷重Q
を付加させるので、正極の接合部9の剥離防止の一助と
なる効果がある。ギャップGがない場合、正極フランジ
1の倒れ込みが阻止され圧縮荷重Qが発生しないので上
記の効果は得られない。
In FIG. 2, a gap G is provided between the outer peripheral surface of the insulating ring 2 and the inner peripheral surface of the vertical flange portion 1c. The gap G is provided so that when the positive electrode flange 1 heated at the hot press contact temperature of 500 to 600 ° C. during the manufacturing process is cooled to room temperature and is collapsed inward due to the difference in thermal contraction with the insulating ring 2, the positive electrode flange 1 is bent. This is to generate the moment M. This bending moment M
Is the compressive load Q in the direction opposite to the peeling direction on the joining portion 9 of the positive electrode.
Is added, there is an effect of helping to prevent the peeling of the bonding portion 9 of the positive electrode. If there is no gap G, the positive electrode flange 1 is prevented from collapsing and the compressive load Q is not generated, so that the above effect cannot be obtained.

【0017】図3は、図1に示す実施例の正極フランジ
1の有限要素法による応力解析結果「その1」を示す図
である。正極容器6に負荷される引張荷重Pと、低剛性
フランジ部1aの低剛性フランジ応力σ1、ならびに高
剛性フランジ部1bの高剛性フランジ応力σ2との関係
を示したものである。図3の解析結果から、6(kN)の
引張荷重Pが負荷されると、低剛性フランジ応力σ1
は、正極フランジ1の材料の降伏応力σyの1.5倍と
なり低剛性フランジ部1aが全断面塑性変形する状態に
到達することが判った。
FIG. 3 is a diagram showing a stress analysis result "No. 1" of the positive electrode flange 1 of the embodiment shown in FIG. 1 by the finite element method. 4 shows the relationship between the tensile load P applied to the positive electrode container 6, the low-rigidity flange stress σ1 of the low-rigidity flange portion 1a, and the high-rigidity flange stress σ2 of the high-rigidity flange portion 1b. From the analysis result of FIG. 3, when the tensile load P of 6 (kN) is applied, the low rigidity flange stress σ1
Was 1.5 times the yield stress σy of the material of the positive electrode flange 1, and it was found that the low-rigidity flange portion 1a was plastically deformed in all sections.

【0018】図4は、正極フランジ1の有限要素法によ
る応力解析結果「その2」を示す図である。正極フラン
ジ1の熱変位δと、低剛性フランジ応力σ1ならびに引
張荷重Pとの関係を示したものである。
FIG. 4 is a diagram showing a stress analysis result "2" of the positive electrode flange 1 by the finite element method. 3 shows the relationship between the thermal displacement δ of the positive electrode flange 1, the low-rigidity flange stress σ1 and the tensile load P.

【0019】図4に示すように熱変位δが大きくなり、
低剛性フランジ応力σ1も徐々に大きくなって降伏応力
σyの1.5倍の全断面塑性変形状態に達したときに、
引張荷重Pmax=6(kN)の荷重が発生している。
この引張荷重Pmaxは、正極の接合部9にも作用して
いる。そしてさらに、それ以上に熱変位が増えても、低
剛性フランジ部1aが全断面塑性変形しているため、P
max以上の荷重は発生しないし、正極の接合部9にそ
れ以上の荷重は作用しない。従って、この引張荷重Pm
ax(kN)を正極の接合部9の剥離強度Pc(kN)
よりも小さくなるように設計すれば、剥離には至らない
ことが判る。
As shown in FIG. 4, the thermal displacement δ becomes large,
When the low-rigidity flange stress σ1 also gradually increases and reaches the full-section plastic deformation state of 1.5 times the yield stress σy,
A load of tensile load Pmax = 6 (kN) is generated.
This tensile load Pmax also acts on the positive electrode joint portion 9. Further, even if the thermal displacement is further increased, since the low-rigidity flange portion 1a is plastically deformed in the entire cross section, P
No load of more than max is generated, and no more load acts on the positive electrode joint portion 9. Therefore, this tensile load Pm
ax (kN) is the peeling strength Pc (kN) of the positive electrode joint portion 9.
It can be seen that peeling does not occur if the design is made smaller.

【0020】本発明では上記の通り、正極フランジ1の
塑性変形によって変位を吸収する方法により、変位吸収
部位の構造が簡素化される。それにより正極フランジ1
と負極フランジ3の間隔が広く取れ、短絡が防止され
る。
In the present invention, as described above, the structure of the displacement absorbing portion is simplified by the method of absorbing the displacement by the plastic deformation of the positive electrode flange 1. Thereby, the positive flange 1
A wide space is provided between the negative electrode flange 3 and the negative electrode flange 3 to prevent a short circuit.

【0021】尚、一般に、本方式のナトリウム−硫黄電
池における設計電池寿命は約10年であり、この間の昇
降温運転耐久サイクルは約60回であるので、例えば、
正極フランジ1の材料を鉄鋼材とすれば、塑性変形の場
合の繰返し疲労強度の許容回数は約10000回であり、こ
れに対し、十分な繰返し疲労強度を有しており、強度上
の問題はないと言える。
In general, the designed battery life of the sodium-sulfur battery of this system is about 10 years, and the heating / cooling operation endurance cycle during this period is about 60 times.
If steel is used as the material of the positive electrode flange 1, the allowable number of repeated fatigue strengths in the case of plastic deformation is about 10,000, whereas the cyclic fatigue strength is sufficient. I can say no.

【0022】図5は、正極フランジに設けられた場合の
他の実施例の塑性変形吸収部位を示す断面図である。
FIG. 5 is a sectional view showing a plastic deformation absorbing portion of another embodiment when it is provided on the positive electrode flange.

【0023】本実施例の正極フランジ1に設けられた塑
性変形吸収部位は、高剛性フランジ部1bと垂直フラン
ジ部1cと低剛性フランジ部1aとからなる段付を有す
る構造であり、図1とは逆に絶縁リング2から離れるよ
うに、下方向に設けられている段付構造である。そし
て、その段付構造の塑性変形によって熱変位が吸収され
る。また、本実施例の場合は、正極フランジ1と負極フ
ランジ3との間隔が、図1の段付構造よりもさらに広く
取れる構造であり、短絡防止に対しより優れていると言
う効果がある。
The plastic deformation absorbing portion provided on the positive electrode flange 1 of this embodiment has a stepped structure composed of a high-rigidity flange portion 1b, a vertical flange portion 1c, and a low-rigidity flange portion 1a. On the contrary, is a stepped structure that is provided downward so as to be separated from the insulating ring 2. Then, the thermal displacement is absorbed by the plastic deformation of the stepped structure. Further, in the case of the present embodiment, the gap between the positive electrode flange 1 and the negative electrode flange 3 can be made wider than that of the stepped structure of FIG. 1, and there is an effect that it is more excellent in prevention of short circuit.

【0024】図6は、正極フランジに設けられた場合の
もう一つ別の実施例の塑性変形吸収部位を示す断面図で
ある。
FIG. 6 is a sectional view showing a plastic deformation absorbing portion of another embodiment provided on the positive electrode flange.

【0025】本実施例の正極フランジ1に設けられた塑
性変形吸収部位は、正極フランジ1のフランジ外周部位
を部分的に薄肉にした薄肉低剛性フランジ部1dを有す
る段付構造となっている。そして、その薄肉低剛性フラ
ンジ部1dの塑性変形によって熱変位は吸収される。図
5の実施例と同様に、本実施例の場合は、正極フランジ
1と負極フランジ3との間隔は広く、短絡防止に適して
いる。
The plastic deformation absorbing portion provided on the positive electrode flange 1 of the present embodiment has a stepped structure having a thin low rigidity flange portion 1d in which the outer peripheral portion of the positive electrode flange 1 is partially thinned. The thermal displacement is absorbed by the plastic deformation of the thin low rigidity flange portion 1d. Similar to the embodiment of FIG. 5, in the case of this embodiment, the distance between the positive electrode flange 1 and the negative electrode flange 3 is wide, and it is suitable for preventing a short circuit.

【0026】図7は、他の実施例の塑性変形吸収部位を
示す部分断面図である。負極フランジに設けられた場合
の一実施例の塑性変形吸収部位を示す断面図でもある。
本実施例の負極フランジ3に設けられた塑性変形吸収部
位は、低剛性フランジ部3aと垂直フランジ部3cと高
剛性フランジ部3bとからなる段付を、絶縁リング2に
対し上方向に向けた構造としたものである。尚、この場
合の段付構造は膨張による熱変位を吸収するものであ
る。
FIG. 7 is a partial sectional view showing a plastic deformation absorbing portion of another embodiment. It is also sectional drawing which shows the plastic deformation absorption site | part of one Example at the time of being provided in a negative electrode flange.
In the plastic deformation absorbing portion provided on the negative electrode flange 3 of this embodiment, a step made up of a low-rigidity flange portion 3a, a vertical flange portion 3c, and a high-rigidity flange portion 3b is directed upward with respect to the insulating ring 2. It is structured. The step structure in this case absorbs thermal displacement due to expansion.

【0027】ところで、上記実施例はフランジを有する
構造のナトリウム−硫黄電池であったが、正極フランジ
1と正極容器6とが一体化された構造の電池があり、こ
の場合、フランジではなく正極容器6自体に塑性変形吸
収部位が設けられる。
By the way, the sodium-sulfur battery having a structure having a flange is used in the above embodiment, but there is a battery having a structure in which the positive electrode flange 1 and the positive electrode container 6 are integrated. In this case, not the flange but the positive electrode container. 6 itself is provided with a plastic deformation absorbing portion.

【0028】[0028]

【発明の効果】本発明によれば、変形吸収部位の構造が
簡素化され、また、正極フランジと負極フランジとの短
絡(電極間の短絡)が防止されるので、安価で信頼性の
高いナトリウム−硫黄電池が得られる効果がある。
According to the present invention, the structure of the deformation absorbing portion is simplified and the short circuit between the positive electrode flange and the negative electrode flange (short circuit between the electrodes) is prevented, so that the sodium is inexpensive and highly reliable. There is an effect that a sulfur battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例のナトリウム−硫黄電池
の構造を示す半断面図である。
FIG. 1 is a half sectional view showing the structure of a sodium-sulfur battery according to an embodiment of the present invention.

【図2】図1の部分拡大断面図であり、一実施例の塑性
変形吸収部位を示す図である。
FIG. 2 is a partially enlarged cross-sectional view of FIG. 1, showing a plastic deformation absorbing portion of an embodiment.

【図3】図1に示す実施例の正極フランジ1の有限要素
法による応力解析結果「その1」を示す図である。
FIG. 3 is a diagram showing a stress analysis result “No. 1” of the positive electrode flange 1 of the embodiment shown in FIG. 1 by the finite element method.

【図4】正極フランジ1の有限要素法による応力解析結
果「その2」を示す図である。
FIG. 4 is a diagram showing a stress analysis result “No. 2” of the positive electrode flange 1 by the finite element method.

【図5】正極フランジに設けられた場合の他の実施例の
塑性変形吸収部位を示す断面図である。
FIG. 5 is a sectional view showing a plastic deformation absorbing portion of another embodiment when it is provided on the positive electrode flange.

【図6】正極フランジに設けられた場合のもう一つ別の
実施例の塑性変形吸収部位を示す断面図である。
FIG. 6 is a sectional view showing a plastic deformation absorbing portion of another embodiment when it is provided on the positive electrode flange.

【図7】他の実施例の塑性変形吸収部位を示す断面図で
ある。
FIG. 7 is a sectional view showing a plastic deformation absorbing portion of another embodiment.

【図8】変位吸収部位が独立した吸収部位として別個に
設けられた従来例を示す図である。
FIG. 8 is a diagram showing a conventional example in which displacement absorption parts are separately provided as independent absorption parts.

【図9】温度変化と引張荷重Pとの関係を示す図であ
る。
FIG. 9 is a diagram showing a relationship between temperature change and tensile load P.

【符号の説明】[Explanation of symbols]

1…正極フランジ、1a,3a…低剛性フランジ部、1
b,3b…高剛性フランジ部、1c,3c…垂直フラン
ジ部、1d…薄肉低剛性フランジ部、2…絶縁リング、
3…負極フランジ、4…固体電解質、5…硫黄、6…正
極容器、7…ナトリウム、8…負極容器、9…正極の接
合部、10…負極の接合部、11…変位吸収部位。
1 ... Positive electrode flange, 1a, 3a ... Low rigidity flange portion, 1
b, 3b ... High-rigidity flange portion, 1c, 3c ... Vertical flange portion, 1d ... Thin-walled low-rigidity flange portion, 2 ... Insulation ring,
3 ... Negative electrode flange, 4 ... Solid electrolyte, 5 ... Sulfur, 6 ... Positive electrode container, 7 ... Sodium, 8 ... Negative electrode container, 9 ... Positive electrode joint part, 10 ... Negative electrode joint part, 11 ... Displacement absorption site | part.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】負極容器と、該負極容器とナトリウムとを
内封しナトリウムイオン伝導性を有する固体電解質と、
該固体電解質と硫黄とを内封する正極容器と、前記固体
電解質と前記負極容器と前記正極容器とを絶縁接合する
絶縁リングとを含むナトリウム−硫黄電池において、 前記絶縁リングと、前記正極容器または前記負極容器の
いずれか一方の電極容器との間に、 前記いずれか一方の電極容器と前記固体電解質との熱膨
張収縮差による変位を塑性変形によって吸収する塑性変
形吸収部位を設けたことを特徴とするナトリウム−硫黄
電池。
1. A negative electrode container, and a solid electrolyte having a sodium ion conductivity by enclosing the negative electrode container and sodium therein.
In a sodium-sulfur battery including a positive electrode container for enclosing the solid electrolyte and sulfur, and an insulating ring for insulatingly joining the solid electrolyte, the negative electrode container and the positive electrode container, the insulating ring and the positive electrode container or Between any one of the electrode containers of the negative electrode container, a plastic deformation absorption portion for absorbing the displacement due to the difference in thermal expansion and contraction between the one of the electrode containers and the solid electrolyte by plastic deformation is provided. Sodium-sulfur battery.
【請求項2】請求項1において、前記正極容器は正極フ
ランジを有し該正極フランジを介して前記絶縁リングに
絶縁接合され、前記塑性変形吸収部位は前記正極フラン
ジに設けられたことを特徴とするナトリウム−硫黄電
池。
2. The positive electrode container according to claim 1, wherein the positive electrode container has a positive electrode flange and is insulated and joined to the insulating ring through the positive electrode flange, and the plastic deformation absorbing portion is provided on the positive electrode flange. Sodium-sulfur battery.
【請求項3】請求項1または請求項2において、前記塑
性変形吸収部位が全断面塑性変形する荷重Pmaxを、
前記絶縁リングとの接合部の剥離強度Pc以下にするこ
とを特徴とするナトリウム−硫黄電池。
3. The load Pmax according to claim 1 or 2, wherein the plastic deformation absorbing portion is plastically deformed in full section,
A sodium-sulfur battery characterized by having a peel strength Pc of a joint portion with the insulating ring or less.
【請求項4】請求項2において、前記塑性変形吸収部位
は前記正極フランジのフランジ外周部位を部分的に薄肉
にした段付であることを特徴とするナトリウム−硫黄電
池。
4. The sodium-sulfur battery according to claim 2, wherein the plastic deformation absorbing portion is a step having a partially thinned outer peripheral portion of the positive electrode flange.
【請求項5】絶縁リングを介して接合拘束されている固
体電解質と電極容器との両者間に発生する熱膨張収縮差
による変位を、変位吸収部位を設けて吸収するナトリウ
ム−硫黄電池の変位吸収方法において、 前記変位吸収部位が塑性変形によって前記変位を吸収す
ることを特徴とするナトリウム−硫黄電池の変位吸収方
法。
5. Displacement absorption of a sodium-sulfur battery for absorbing a displacement due to a difference in thermal expansion and contraction generated between both the solid electrolyte and the electrode container, which are jointly restrained via an insulating ring, by providing a displacement absorbing portion. The method for absorbing displacement of a sodium-sulfur battery, wherein the displacement absorbing portion absorbs the displacement by plastic deformation.
JP6286607A 1994-11-21 1994-11-21 Sodium-sulfur battery Pending JPH08148182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6286607A JPH08148182A (en) 1994-11-21 1994-11-21 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286607A JPH08148182A (en) 1994-11-21 1994-11-21 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH08148182A true JPH08148182A (en) 1996-06-07

Family

ID=17706608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286607A Pending JPH08148182A (en) 1994-11-21 1994-11-21 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH08148182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451409B1 (en) * 2012-12-27 2014-10-16 주식회사 포스코 CATHODE ELECTRODE PLATE COVER OF sodium sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451409B1 (en) * 2012-12-27 2014-10-16 주식회사 포스코 CATHODE ELECTRODE PLATE COVER OF sodium sulfur battery

Similar Documents

Publication Publication Date Title
JPH08148182A (en) Sodium-sulfur battery
KR890702275A (en) Alkaline metal energy conversion device and method of manufacturing the same
JP2023015619A (en) Secondary battery, electrode component thereof, and assembled battery
JP2961100B2 (en) Sodium secondary battery
JPH10208771A (en) Sodium-sulfur battery
JPH11176399A (en) Airtight terminal for nonaqueous electrolyte battery
JP2000195543A (en) Jointing method and bonding structure of insulation ring to negative electrode fitting and sodium-sulfur battery using them
JPH03187160A (en) Sodium-sulfur battery
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JPH01258356A (en) Constitution method for airtight terminal part of storage battery
JP2000133303A (en) Sodium sulfur battery
JP3085910B2 (en) Sodium-sulfur battery
JPH01173787A (en) Hermetically sealed vessel and manufacture thereof
JP2000294271A (en) Sodium-sulfur battery
JPH0214120Y2 (en)
JPH09199165A (en) Sodium secondary battery
JPS5943737Y2 (en) semiconductor equipment
JPS6273555A (en) Sealing of electrolyte cell
JPS6218047Y2 (en)
JPH0626135B2 (en) Sodium-sulfur battery
JP2546178B2 (en) Leadless diode
JPS6359059B2 (en)
JP3015929B2 (en) Sodium-sulfur battery
JPH04206166A (en) Sodium-solfur battery and manufacture thereof
JP3613837B2 (en) Metal vacuum insulated container