JP3704241B2 - Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery - Google Patents

Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery Download PDF

Info

Publication number
JP3704241B2
JP3704241B2 JP26349798A JP26349798A JP3704241B2 JP 3704241 B2 JP3704241 B2 JP 3704241B2 JP 26349798 A JP26349798 A JP 26349798A JP 26349798 A JP26349798 A JP 26349798A JP 3704241 B2 JP3704241 B2 JP 3704241B2
Authority
JP
Japan
Prior art keywords
insulating ring
anode
sodium
cylindrical
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26349798A
Other languages
Japanese (ja)
Other versions
JP2000090967A (en
Inventor
光広 庄村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP26349798A priority Critical patent/JP3704241B2/en
Publication of JP2000090967A publication Critical patent/JP2000090967A/en
Application granted granted Critical
Publication of JP3704241B2 publication Critical patent/JP3704241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ナトリウム−硫黄電池における絶縁リングと陽極筒状金具との接合構造に係り、特に、電池昇降温時に固体電解質管と陽極容器との熱収縮膨張差により生じる荷重に対する、絶縁リングと陽極筒状金具との接合部の強度信頼性を向上することができる接合構造に関する。
【0002】
【従来の技術】
ナトリウム−硫黄電池は、一方に陰極活性物質である溶融金属ナトリウム、他方には陽極活性物質である溶融硫黄を配し、両者をナトリウムイオンに対して選択的な透過性を有するβ−アルミナ固体電解質で隔離し、300〜350℃で作動させる高温二次電池である。
【0003】
このようなナトリウム−硫黄電池の構造は、例えば図2に示すように、カーボンフェルト等に含浸された溶融硫黄Sを収容する円筒状の陽極容器1と、溶融金属ナトリウムNaを収容するカートリッジ(ナトリウム保護管)6と、このカートリッジ6を内部に収納し、ナトリウムイオンNa+を選択的に透過させる機能を有する有底円筒状の固体電解質管5と、カートリッジ6と固体電解質管5の間の間隙部に、そのカートリッジ6及び固体電解質管5からそれぞれ所定の間隔をおいて配設された有底円筒状の隔壁管11とからなる。
【0004】
固体電解質管5はその開口端にガラス接合されたα−アルミナ製の絶縁リング4及び陽極筒状金具3を介して陽極容器1と結合されている。また、絶縁リング4の上端面には陰極金具8が熱圧接合され、この陰極金具8に陰極蓋9が溶接固定されている。陽極容器1の外周上部と陰極蓋9の上面には、それぞれ陽極側端子2と陰極側端子10が設けられている。カートリッジ6の上部空間には、窒素ガスやアルゴンガス等の不活性ガスGが所定の圧力で封入され、この不活性ガスGによりカートリッジ6内のナトリウムNaがカートリッジ底部に設けられた小孔7から流出する方向へ加圧されている。
【0005】
かかる構造を有するナトリウム−硫黄電池において、放電時にはカートリッジ6の小孔7から供給されるナトリウムNaが、隔壁管11とカートリッジ6との間隙内で上方に移動した後、隔壁管11の上端を乗り越えて、隔壁管11と固体電解質管5との間隙内で下方に移動し、更に、固体電解質管5をナトリウムイオンとなって透過して、陽極容器1内の硫黄S及び外部回路を通ってきた電子と反応し多硫化ナトリウムを生成する。充電時には放電とは逆にナトリウム及び硫黄の生成反応が起こる。
【0006】
図3は、このような従来のナトリウム−硫黄電池における絶縁リングと陽極筒状金具との接合構造を示す要部断面図である。陽極筒状金具3は、円筒部3aと円筒部3a下端から円筒部3aの内部方向に張り出したフランジ部3bとを有する。絶縁リング4は、この陽極筒状金具3の円筒部3a内に挿入され、金属ロウ材等の接合材12を介して、フランジ部3bの上面と絶縁リング4の下端面とが熱圧接合されている。
【0007】
ここで、陽極筒状金具3の円筒部3a内への絶縁リング4の挿入については、円筒部3aの内周面と絶縁リング4の外周面とのクリアランス13の値Cが大きい方が作業が容易であり、特に大量生産や組立作業の自動化等を考慮した場合に好ましい。ただし、このクリアランス13の値Cが大きすぎる場合には、芯ズレ等の問題が生じるので、従来はクリアランス13の値Cを1mm程度となるように設定していた。
【0008】
ところで、ナトリウム−硫黄電池は、電池作動時と停止時の間に温度差があり、停止時の低温状態においては、多硫化ナトリウム又は硫黄が固化し、固体電解質管5と陽極容器1とは相互に拘束することになる。そして、電池降温時には、固体電解質管5及び陽極容器1はともに熱収縮するが、金属である陽極容器1の熱収縮は大きく、この陽極容器1の収縮が熱収縮の小さい固体電解質管5に抑制されるため、固体電解質管5と陽極容器1とを結合させている絶縁リング4と陽極筒状金具3との接合部に下方への荷重が働く(図3の矢印方向)。
【0009】
そこで、従来においては、この荷重に起因する絶縁リング4と陽極筒状金具3の接合部の破損を防止するため、陽極容器1の周面の一部に軸方向に収縮する内周面方向へのくびれを形成してバネ効果を持たせ、荷重を低減する等の対策が行われていた。
【0010】
【発明が解決しようとする課題】
しかしながら、上記のような対策を施した場合であっても、絶縁リング4の陽極筒状金具3との結合端部が強度的に弱かったりすると割れが生じることがあり、また、この問題はナトリウム−硫黄電池の大型化が進むにつれより一層顕著になってきている。
【0011】
本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、電池降温時の固体電解質管と陽極容器との熱収縮差により生じる荷重に対する、絶縁リングと陽極筒状金具との結合部の強度信頼性を向上し、結合部の損傷を防止することができる接合構造を提供することにある。
【0012】
【課題を解決するための手段】
本発明によれば、固体電解質管の開口端に絶縁リングを接合し、当該絶縁リングに、陽極容器と結合した円筒部と当該円筒部下端から当該円筒部の内部方向に張り出したフランジ部とを有する陽極筒状金具を、前記フランジ部の上面が前記絶縁リングの下端面に接合されるように接合材を介して熱圧接合したナトリウム−硫黄電池の絶縁リングと陽極筒状金具との接合構造において、前記陽極筒状金具の円筒部の内周面と、前記絶縁リングの外周面とのクリアランスの値が、0.15mm以下であることにより、前記接合材が前記クリアランスの高い位置まで染み上がっていることを特徴とするナトリウム−硫黄電池における絶縁リングと陽極筒状金具との接合構造、が提供される。
【0013】
【発明の実施の形態】
本発明のナトリウム−硫黄電池における絶縁リングと陽極筒状金具との接合構造においては、図1の要部断面図に示すように、陽極筒状金具3の円筒部3aの内周面と、絶縁リング4の外周面とのクリアランス13の値Cが、0.15mm以下、好ましくは0.025〜0.15mmとなるようにしている。
【0014】
そして、クリアランス13の値Cをこのように設定したことにより、本発明の接合構造は、このクリアランスの値を1mm程度に設定していた従来の接合構造に比して、高い接合強度を示す。この理由は定かではないが、クリアランス13の値Cを0.15mm以下となるように狭く設定すると、図1のように、陽極筒状金具3と絶縁リング4との熱圧接合の際に、陽極筒状金具3のフランジ部3bの上面と絶縁リング4の下端面の間に介在させた金属ロウ材等の接合材12が、垂直方向に延びるクリアランス13の高い位置まで染み上がってきて、円筒部3aの内周面と、絶縁リング4の外周面とを接合し、陽極筒状金具3と絶縁リング4との接合面積が増大するためと考えられる。
【0015】
なお、上記のように、陽極筒状金具3の円筒部3aの内周面と絶縁リング4の外周面とのクリアランス13の値Cを、0.15mm以下となるように設定した以外、本発明の接合構造は上述の従来の接合構造と変わるところはない。すなわち、従来と同様に、絶縁リング4は、陽極筒状金具3の円筒部3a内に挿入され、陽極筒状金具3のフランジ部13bの上面と絶縁リング4の下端面とが、金属ロウ材等の接合材12を介して熱圧接合される。
【0016】
【実施例】
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0017】
(実施例)
図1に示す円筒部3aの内周面と絶縁リング4の外周面とのクリアランス13の値Cが、表1に示すように0.025〜0.3mmとなるように種々の寸法で陽極筒状金具3及び絶縁リング4を作製し、それらを熱圧接合して試験片を作製した。こうして作製した各試験片について、図4のように陽極筒状金具3の上部から押し治具20を介して荷重をかけるとともに、絶縁リング4の下部において受け治具21により荷重を受けるようにして、陽極筒状金具3と絶縁リング4との接合部の破壊強度を測定した。結果を表1及び図5に示す。
【0018】
【表1】

Figure 0003704241
【0019】
表1及び図5に示すとおり、破壊強度はクリアランスの値Cが大きくなるにつれて低下しており、当該クリアランスの値Cを0.15mm以下にすることにより高い接合強度が得られることが判明した。
【0020】
【発明の効果】
以上説明したように、本発明によれば、絶縁リングと陽極筒状金具との接合部の強度信頼性を向上させることができ、この接合構造を採用することにより、ナトリウム−硫黄電池の信頼性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の接合構造の一実施形態を示す要部断面図である。
【図2】 ナトリウム−硫黄電池の一般的な構造を示す断面図である。
【図3】 従来の接合構造を示す要部断面図である。
【図4】 実施例における接合部の破壊強度の測定法を示す説明図である。
【図5】 実施例の結果を示すグラフである。
【符号の説明】
1…陽極容器、2…陽極側端子、3…陽極筒状金具、4…絶縁リング、5…固体電解質管、6…カートリッジ、7…小孔、8…陰極金具、9…陰極蓋、10…陰極側端子、11…隔壁管、12…接合材、13…クリアランス。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining structure of an insulating ring and an anode cylindrical metal fitting in a sodium-sulfur battery, and more particularly to an insulating ring and an anode against a load caused by a difference in thermal contraction and expansion between a solid electrolyte tube and an anode container when the battery is heated and lowered. The present invention relates to a joint structure that can improve the strength reliability of a joint portion with a cylindrical metal fitting.
[0002]
[Prior art]
A sodium-sulfur battery is a β-alumina solid electrolyte that has molten metal sodium as a cathode active material on one side and molten sulfur as an anodic active material on the other side, and both have selective permeability to sodium ions. It is a high-temperature secondary battery that is isolated at a temperature of 300 to 350 ° C.
[0003]
For example, as shown in FIG. 2, the structure of such a sodium-sulfur battery includes a cylindrical anode container 1 that contains molten sulfur S impregnated with carbon felt or the like, and a cartridge that contains molten metal sodium Na (sodium). Protective tube) 6, this cartridge 6 is housed inside, and a bottomed cylindrical solid electrolyte tube 5 having a function of selectively permeating sodium ions Na +, and a gap between the cartridge 6 and the solid electrolyte tube 5 And a bottomed cylindrical partition tube 11 disposed at a predetermined distance from the cartridge 6 and the solid electrolyte tube 5.
[0004]
The solid electrolyte tube 5 is coupled to the anode container 1 via an α-alumina insulating ring 4 and an anode cylindrical fitting 3 which are glass-bonded to the open end thereof. A cathode fitting 8 is hot-pressure bonded to the upper end surface of the insulating ring 4, and a cathode lid 9 is welded and fixed to the cathode fitting 8. An anode-side terminal 2 and a cathode-side terminal 10 are provided on the outer periphery of the anode container 1 and the upper surface of the cathode lid 9, respectively. An inert gas G such as nitrogen gas or argon gas is sealed in the upper space of the cartridge 6 at a predetermined pressure, and sodium Na in the cartridge 6 is passed through the small hole 7 provided at the bottom of the cartridge by the inert gas G. Pressurized in the outflow direction.
[0005]
In the sodium-sulfur battery having such a structure, sodium Na supplied from the small hole 7 of the cartridge 6 at the time of discharging moves upward in the gap between the partition tube 11 and the cartridge 6 and then climbs over the upper end of the partition tube 11. Then, it moved downward in the gap between the partition wall tube 11 and the solid electrolyte tube 5, further passed through the solid electrolyte tube 5 as sodium ions, and passed through the sulfur S in the anode container 1 and the external circuit. Reacts with electrons to produce sodium polysulfide. When charging, contrary to discharging, sodium and sulfur are formed.
[0006]
FIG. 3 is a cross-sectional view of a principal part showing a joining structure between an insulating ring and an anode cylindrical fitting in such a conventional sodium-sulfur battery. The anode cylindrical metal fitting 3 includes a cylindrical portion 3a and a flange portion 3b projecting from the lower end of the cylindrical portion 3a toward the inside of the cylindrical portion 3a. The insulating ring 4 is inserted into the cylindrical portion 3a of the anode cylindrical metal fitting 3, and the upper surface of the flange portion 3b and the lower end surface of the insulating ring 4 are hot-pressure bonded through a bonding material 12 such as a metal brazing material. ing.
[0007]
Here, the insertion of the insulating ring 4 into the cylindrical portion 3a of the anode cylindrical metal fitting 3 is performed with a larger value C of the clearance 13 between the inner peripheral surface of the cylindrical portion 3a and the outer peripheral surface of the insulating ring 4. It is easy, and is particularly preferable when considering mass production and automation of assembly work. However, if the value C of the clearance 13 is too large, problems such as misalignment occur, and conventionally, the value C of the clearance 13 has been set to be about 1 mm.
[0008]
By the way, the sodium-sulfur battery has a temperature difference between when the battery is operated and when it is stopped. In a low temperature state when the battery is stopped, sodium polysulfide or sulfur is solidified, and the solid electrolyte tube 5 and the anode container 1 are mutually restrained. Will do. When the battery is cooled down, both the solid electrolyte tube 5 and the anode container 1 are thermally shrunk, but the heat shrinkage of the metal anode container 1 is large, and the shrinkage of the anode container 1 is suppressed to the solid electrolyte tube 5 having a small heat shrinkage. Therefore, a downward load is applied to the joint between the insulating ring 4 and the anode cylindrical fitting 3 that join the solid electrolyte tube 5 and the anode container 1 (in the direction of the arrow in FIG. 3).
[0009]
Therefore, conventionally, in order to prevent damage to the joint between the insulating ring 4 and the anode cylindrical fitting 3 due to this load, the inner circumferential surface contracts in the axial direction to a part of the circumferential surface of the anode container 1. Measures such as forming a constriction to provide a spring effect and reducing the load have been taken.
[0010]
[Problems to be solved by the invention]
However, even when the above measures are taken, cracks may occur if the joint end of the insulating ring 4 to the anode tubular fitting 3 is weak in strength. -It has become even more prominent as the size of sulfur batteries increases.
[0011]
The present invention has been made in view of such a situation, and an object of the present invention is to provide an insulating ring and an anode cylindrical shape against a load caused by a thermal contraction difference between the solid electrolyte tube and the anode container when the temperature of the battery is lowered. An object of the present invention is to provide a joint structure capable of improving the strength reliability of the joint portion with the metal fitting and preventing the joint portion from being damaged.
[0012]
[Means for Solving the Problems]
According to the present invention, an insulating ring is joined to the open end of the solid electrolyte tube, and a cylindrical portion coupled to the anode container and a flange portion protruding from the lower end of the cylindrical portion toward the inside of the cylindrical portion are connected to the insulating ring. A joining structure of an anode cylindrical fitting and an insulating ring of a sodium-sulfur battery, wherein the anode cylindrical fitting has a hot-pressure bonding through a bonding material so that the upper surface of the flange portion is joined to the lower end surface of the insulating ring. In this case, the value of the clearance between the inner peripheral surface of the cylindrical portion of the anode cylindrical metal fitting and the outer peripheral surface of the insulating ring is 0.15 mm or less, so that the bonding material soaks up to a position where the clearance is high. sodium and wherein the are - a structure for joining the insulating ring and the anode tubular fitting at sulfur battery, is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the joining structure of the insulating ring and the anode cylindrical metal fitting in the sodium-sulfur battery of the present invention, as shown in the cross-sectional view of the main part of FIG. 1, the inner peripheral surface of the cylindrical portion 3a of the anode cylindrical metal fitting 3 is insulated. The value C of the clearance 13 with the outer peripheral surface of the ring 4 is set to 0.15 mm or less, preferably 0.025 to 0.15 mm.
[0014]
Then, by setting the value C of the clearance 13 in this way, the joint structure of the present invention exhibits higher joint strength than the conventional joint structure in which the clearance value is set to about 1 mm. Although the reason for this is not clear, when the value C of the clearance 13 is set to be narrow so as to be 0.15 mm or less, as shown in FIG. 1, during the hot-pressure bonding between the anode cylindrical fitting 3 and the insulating ring 4, A joining material 12 such as a metal brazing material interposed between the upper surface of the flange portion 3b of the anode cylindrical metal fitting 3 and the lower end surface of the insulating ring 4 soaks up to a high position of the clearance 13 extending in the vertical direction, This is probably because the inner peripheral surface of the portion 3a and the outer peripheral surface of the insulating ring 4 are joined, and the joining area between the anode tubular fitting 3 and the insulating ring 4 increases.
[0015]
As described above, the present invention except that the value C of the clearance 13 between the inner peripheral surface of the cylindrical portion 3a of the anode cylindrical metal fitting 3 and the outer peripheral surface of the insulating ring 4 is set to be 0.15 mm or less. This joint structure is not different from the conventional joint structure described above. That is, as in the prior art, the insulating ring 4 is inserted into the cylindrical portion 3a of the anode cylindrical fitting 3, and the upper surface of the flange portion 13b of the anode cylindrical fitting 3 and the lower end surface of the insulating ring 4 are made of metal brazing material. Hot-pressure bonding is performed through a bonding material 12 such as the above.
[0016]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
[0017]
(Example)
Anode cylinders having various dimensions such that the value C of the clearance 13 between the inner peripheral surface of the cylindrical portion 3a and the outer peripheral surface of the insulating ring 4 shown in FIG. 1 is 0.025 to 0.3 mm as shown in Table 1. The metal fitting 3 and the insulating ring 4 were produced, and they were hot-pressure bonded to produce a test piece. As shown in FIG. 4, a load is applied from the upper part of the anode cylindrical fitting 3 to the test piece thus produced through the pushing jig 20, and the load is received by the receiving jig 21 at the lower part of the insulating ring 4. The fracture strength of the joint between the anode cylindrical metal fitting 3 and the insulating ring 4 was measured. The results are shown in Table 1 and FIG.
[0018]
[Table 1]
Figure 0003704241
[0019]
As shown in Table 1 and FIG. 5, the fracture strength decreases as the clearance value C increases, and it has been found that a high bonding strength can be obtained by setting the clearance value C to 0.15 mm or less.
[0020]
【The invention's effect】
As described above, according to the present invention, the strength reliability of the joint portion between the insulating ring and the anode cylindrical metal fitting can be improved, and by adopting this joint structure, the reliability of the sodium-sulfur battery can be improved. Can be increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a bonding structure according to the present invention.
FIG. 2 is a cross-sectional view showing a general structure of a sodium-sulfur battery.
FIG. 3 is a cross-sectional view of a main part showing a conventional joining structure.
FIG. 4 is an explanatory diagram showing a method for measuring the fracture strength of a joint in an example.
FIG. 5 is a graph showing the results of Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Anode container, 2 ... Anode side terminal, 3 ... Anode cylindrical metal fitting, 4 ... Insulation ring, 5 ... Solid electrolyte tube, 6 ... Cartridge, 7 ... Small hole, 8 ... Cathode metal fitting, 9 ... Cathode lid, 10 ... Cathode side terminal, 11 ... partition wall tube, 12 ... bonding material, 13 ... clearance.

Claims (1)

固体電解質管の開口端に絶縁リングを接合し、当該絶縁リングに、陽極容器と結合した円筒部と当該円筒部下端から当該円筒部の内部方向に張り出したフランジ部とを有する陽極筒状金具を、前記フランジ部の上面が前記絶縁リングの下端面に接合されるように接合材を介して熱圧接合したナトリウム−硫黄電池の絶縁リングと陽極筒状金具との接合構造において、
前記陽極筒状金具の円筒部の内周面と、前記絶縁リングの外周面とのクリアランスの値が、0.15mm以下であることにより、前記接合材が前記クリアランスの高い位置まで染み上がっていることを特徴とするナトリウム−硫黄電池における絶縁リングと陽極筒状金具との接合構造。
An insulating ring is joined to the open end of the solid electrolyte tube, and an anode cylindrical fitting having a cylindrical portion coupled to the anode container and a flange portion projecting from the lower end of the cylindrical portion toward the inside of the cylindrical portion is attached to the insulating ring. In the joining structure between the insulating ring of the sodium-sulfur battery and the anode cylindrical fitting that are hot-pressure joined via a joining material so that the upper surface of the flange portion is joined to the lower end surface of the insulating ring,
When the value of the clearance between the inner peripheral surface of the cylindrical portion of the anode cylindrical metal fitting and the outer peripheral surface of the insulating ring is 0.15 mm or less, the bonding material soaks up to a position where the clearance is high. sodium and wherein the - junction structure between the insulating ring and the anode tubular fitting at sulfur battery.
JP26349798A 1998-09-17 1998-09-17 Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery Expired - Fee Related JP3704241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26349798A JP3704241B2 (en) 1998-09-17 1998-09-17 Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26349798A JP3704241B2 (en) 1998-09-17 1998-09-17 Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2000090967A JP2000090967A (en) 2000-03-31
JP3704241B2 true JP3704241B2 (en) 2005-10-12

Family

ID=17390355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26349798A Expired - Fee Related JP3704241B2 (en) 1998-09-17 1998-09-17 Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3704241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574196B2 (en) * 2004-03-16 2010-11-04 日本碍子株式会社 Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
KR101361062B1 (en) 2011-10-19 2014-02-07 최영종 NaS battery with an elastic insulating ring and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000090967A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US3841912A (en) Sodium sulfur storage battery
US4419418A (en) Individual rechargeable electric cell
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JP4574196B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JP2005285384A (en) Sodium-sulfur battery and manufacturing method of the same
US3849200A (en) Sealed sodium-iodine battery
KR101322637B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JPS6116601Y2 (en)
US6461760B1 (en) Non-aqueous electrolyte secondary battery having a rolled body therein
KR101994167B1 (en) Header assembly for lithium battery
JP3532457B2 (en) Bonding structure between an insulating ring and an anode cylindrical metal fitting in a sodium-sulfur battery
US4035553A (en) Sodium-sulfur electric batteries with ceramic spacer in sulfur compartment
KR101353600B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JPS6366862A (en) Sodium-sulfur battery
JPH0650649B2 (en) Sodium-sulfur battery
JPH0723269B2 (en) Method of joining metal parts and ceramic parts in sodium-sulfur battery
JP3350507B2 (en) Sodium-sulfur battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JP3131125B2 (en) Anode container for sodium-sulfur battery and sodium-sulfur battery using the same
JPH0438463Y2 (en)
JPH0624153B2 (en) Manufacturing method of sodium-sulfur battery
JPH06275317A (en) Joint structure of insulator ring and metal fitting for sodium-sulfur battery
JP2000231932A (en) Method for assembling sodium-sulfer battery and positive electrode metal
JPS61233980A (en) Sodium-sulfur battery and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees