JPH0626135B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0626135B2
JPH0626135B2 JP62029169A JP2916987A JPH0626135B2 JP H0626135 B2 JPH0626135 B2 JP H0626135B2 JP 62029169 A JP62029169 A JP 62029169A JP 2916987 A JP2916987 A JP 2916987A JP H0626135 B2 JPH0626135 B2 JP H0626135B2
Authority
JP
Japan
Prior art keywords
sodium
container
solid electrolyte
mounting flange
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62029169A
Other languages
Japanese (ja)
Other versions
JPS63195974A (en
Inventor
貞夫 森
聡 宮崎
博以 辻
悟 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP62029169A priority Critical patent/JPH0626135B2/en
Publication of JPS63195974A publication Critical patent/JPS63195974A/en
Publication of JPH0626135B2 publication Critical patent/JPH0626135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は固体電解質管と絶縁板の接合変形による破損を
防止し、かつ製造工程における効率化を図ったナトリウ
ム−硫黄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention relates to a sodium-sulfur battery which prevents damage due to joint deformation of a solid electrolyte tube and an insulating plate and improves efficiency in a manufacturing process. Is.

(従来の技術) 近年、電気自動車用、夜間電力貯蔵用の二次電池の開発
が盛んに行われており、中でもナトリウム−硫黄電池は
性能面及び経済面から優れているので、重要視されてい
る。即ち、性能面では鉛蓄電池に比べて理論エネルギー
密度が高く、充放電時における水素や酸素の発生といっ
た副反応もなく、活物質の利用率も高く、また経済面で
はナトリウム及び硫黄が安価であるという特長を有して
いる。
(Prior Art) In recent years, secondary batteries for electric vehicles and night-time power storage have been actively developed. Above all, sodium-sulfur batteries have been regarded as important because they are superior in terms of performance and economy. There is. That is, in terms of performance, the theoretical energy density is higher than that of a lead storage battery, there are no side reactions such as the generation of hydrogen and oxygen during charging and discharging, the utilization rate of the active material is high, and economically, sodium and sulfur are inexpensive. It has the feature.

このようなナトリウム−硫黄電池は陽極に溶融硫黄、陰
極に溶融金属ナトリウム及びこの両者を隔離しナトリウ
ムイオンに対して選択的な透過性を有するβアルミナ製
の固体電解質管からなり、放電時には次のような反応に
よってナトリウムイオンが固体電解質を透過して陽極の
硫黄と反応し、多硫化ナトリウムを生成する。
Such a sodium-sulfur battery is composed of molten sulfur in the anode, molten metal sodium in the cathode, and a solid electrolyte tube made of β-alumina which separates both of them and has a selective permeability for sodium ions. By such a reaction, sodium ions permeate the solid electrolyte and react with sulfur in the anode to produce sodium polysulfide.

2Na +XS→Na2Sx また充電時には放電時とは逆の反応が起こり、ナトリウ
ム及び硫黄が生成される。
2Na + XS → Na 2 Sx During charging, a reaction opposite to that during discharging occurs, and sodium and sulfur are produced.

ナトリウム−硫黄電池の構造は、第9図に示すように1
は陽極端子、2は同陽極端子1の上端部に立設された円
筒状陽極容器、3は同円筒状陽極容器2の上端部に固着
されたαアルミナ製の絶縁板、4は同絶縁板3の内端部
に固着され、下方へ延びる円筒状の袋管を形成するβア
ルミナ製の円筒状固体電解質管であって、陰極作用物質
であるナトリウムイオンを透過させる機能を有してい
る。
The structure of the sodium-sulfur battery is as shown in FIG.
Is an anode terminal, 2 is a cylindrical anode container standing on the upper end of the anode terminal 1, 3 is an α-alumina insulating plate fixed to the upper end of the cylindrical anode container 2, 4 is the insulating plate A cylindrical solid electrolyte tube made of β-alumina that is fixed to the inner end portion of 3 and forms a cylindrical bag tube extending downward, and has a function of allowing sodium ions, which is a cathode acting substance, to permeate.

5は上記絶縁板3の上端部に固着された円筒状のリザー
バー(陰極容器)、6は同リザーバー5の上部蓋の中央
部に固着され、リザーバー5を通して円筒状固体電解質
管4底部まで延びた細長い陰極管で、陰極端子を兼ねて
いる。
5 is a cylindrical reservoir (cathode container) fixed to the upper end of the insulating plate 3, 6 is fixed to the center of the upper lid of the reservoir 5, and extends through the reservoir 5 to the bottom of the cylindrical solid electrolyte tube 4. An elongated cathode tube that also serves as the cathode terminal.

そして、7は陽極作用物質である硫黄を含んだカーボン
マット等の陽極用導電材、8は陰極作用物質である溶融
ナトリウムを含浸させたステンレス製のウイックであ
る。
Further, 7 is a conductive material for anode such as carbon mat containing sulfur which is an anode acting substance, and 8 is a stainless steel wick impregnated with molten sodium which is a cathode acting substance.

上記従来のナトリウム−硫黄電池の絶縁板3と固体電解
質管4との接合部付近の構造は、第10図に示すように
固体電解質4が絶縁板3にガラス接合され、これはさら
にアルミニウム板9を介して陰極容器2に接合されたも
のであった。
In the structure near the joint between the insulating plate 3 and the solid electrolyte tube 4 of the conventional sodium-sulfur battery, the solid electrolyte 4 is glass-bonded to the insulating plate 3 as shown in FIG. It was joined to the cathode container 2 via.

(発明が解決しようとする問題点) 前記した従来のナトリウム−硫黄電池においては、固体
電解質4と絶縁板3とがガラス接合されているため、ガ
ラス接合熱処理及び電池の昇温による熱歪に基づいて固
体電解質管4と絶縁板3の接合部を起点として破損する
という問題点があった。
(Problems to be Solved by the Invention) In the above-mentioned conventional sodium-sulfur battery, the solid electrolyte 4 and the insulating plate 3 are glass-bonded to each other. As a result, there is a problem that the solid electrolyte tube 4 and the insulating plate 3 are damaged from the joint.

また、ナトリウム−硫黄電池の固体電解質管4と絶縁板
3の部品数が2個となるばかりでなく、固体電解質管4
を絶縁板3にガラス接合するという工程があって、製造
工程上工程数が1つ多く、製造コストも上昇するという
問題点があった。
Moreover, not only the number of parts of the solid electrolyte tube 4 and the insulating plate 3 of the sodium-sulfur battery becomes two, but also the solid electrolyte tube 4
Since there is a step of glass bonding to the insulating plate 3, there is a problem that the number of steps is increased by one in the manufacturing process and the manufacturing cost is increased.

発明の構成 (問題点を解決するための手段) 本発明は前記問題点を解決するために、陰極容器の下端
と陽極容器の上端との間に固体電解質管上部の取付フラ
ンジを配したナトリウム−硫黄電池において、固定電解
質管上部の取付フランジをβアルミナにより固体電解質
管と一体成形し、前記取付フランジを、その上部及び/
又は下部に絶縁板を介して、陰極容器及び/又は陽極容
器を熱圧接合するようにしている。
Constitution of the Invention (Means for Solving the Problems) In order to solve the above problems, the present invention is directed to a sodium-containing mounting flange on the upper part of the solid electrolyte tube between the lower end of the cathode container and the upper end of the anode container. In a sulfur battery, the mounting flange on the upper part of the fixed electrolyte tube is integrally formed with β-alumina on the solid electrolyte tube, and the mounting flange is formed on the upper part and / or
Alternatively, the cathode container and / or the anode container is thermocompression-bonded to each other via an insulating plate at the bottom.

(作用) 上記構成を採用したことにより、ガラス接合熱処理によ
り発生していたフランジ取付部の内部応力を排除するこ
とができるとともに、固体電解質管と絶縁板とのガラス
接合の工程を省略することができ、更に陰極容器と陽極
容器は取付フランジを間に介して上下方向に熱圧接合す
ることにより、陰極容器、陽極容器及び固体電解質管の
三者がしっかりと接合し、昇降温時の膨張、収縮による
歪応力に対しても充分耐えることができる。
(Operation) By adopting the above configuration, it is possible to eliminate the internal stress of the flange mounting portion that has been generated by the glass bonding heat treatment, and to omit the glass bonding process between the solid electrolyte tube and the insulating plate. The cathode container and the anode container can be further joined by thermocompression bonding in the vertical direction with the mounting flange interposed therebetween, so that the cathode container, the anode container and the solid electrolyte tube are firmly joined together, and the expansion during temperature rise and fall, It can sufficiently withstand strain stress due to shrinkage.

(実施例) 以下に本発明を具体化した一実施例を第1図を用いて説
明する。
(Embodiment) An embodiment embodying the present invention will be described below with reference to FIG.

固体電解質管4及びこれと陽極容器2及び陰極容器5と
の接合部の構造は、従来のナトリウム−硫黄電池におい
ては絶縁板3の内周部に固体電解質管4がガラス接合さ
れていたのに対して、第1図に示すように上部にβアル
ミナ製の取付フランジ4a を有する同じくβアルミナ製
の固体電解質管4として一体化されたものが用いられて
いる。
The structure of the solid electrolyte tube 4 and the joint portion between the solid electrolyte tube 4 and the anode container 2 and the cathode container 5 is the same as that of the conventional sodium-sulfur battery in which the solid electrolyte tube 4 is glass-bonded to the inner peripheral portion of the insulating plate 3. On the other hand, as shown in FIG. 1, a solid electrolyte tube 4 also made of β-alumina, which has an attachment flange 4a made of β-alumina in the upper part, is used integrally.

なお、固体電解質管4と陽極容器2及び陰極容器5との
間又は陽極容器2と陰極容器5との間の熱圧接合工程に
おける歩留り及び気密性の点から、取付フランジ4a の
最大部の厚さは1mm以上であり、かつ固体電解質管4の
フランジ部の幅に対し0.2倍以上であることが望まし
い。
From the viewpoint of yield and airtightness in the thermocompression bonding process between the solid electrolyte tube 4 and the anode container 2 and the cathode container 5, or between the anode container 2 and the cathode container 5, the maximum thickness of the mounting flange 4a is The length is preferably 1 mm or more and 0.2 times or more the width of the flange portion of the solid electrolyte tube 4.

第5図にフランジ厚味のフランジ幅に対する比とフラン
ジ破壊確率について示す。同図に示すように0.2倍以
上の厚味が望ましいことがわかる。これは熱圧接合時の
破壊は特に熱圧接合後の冷却時に発生することから、接
合時の残留応力がフランジ幅に影響されている為このよ
うな結果になると思われる。
FIG. 5 shows the ratio of the flange thickness to the flange width and the flange breakage probability. As shown in the figure, it can be seen that a thickness of 0.2 times or more is desirable. This is considered to be the result because the residual stress at the time of joining is affected by the flange width, because the fracture at the time of hot-pressing occurs especially at the time of cooling after the hot-press joining.

また第6図にフランジ厚味とフランジの破壊確率につい
て示す。同図に示すように1mm以上の厚味が望ましいこ
とがわかる。熱圧接合は通常50〜500Kg/cm
加圧を行うが、この際フランジ厚味が1mm以下では破壊
される確率が高い。フランジ厚味が大きい事で特に重要
な問題は生じない。しかし実用上固体電解質袋管の長さ
に対してのフランジ厚味の比が2割以上であると固体電
解質と陽極の接する表面積が減少し電池の体積効率、重
量効率を低下させる等の問題が生ずる。
Fig. 6 shows the flange thickness and the flange breakage probability. As shown in the figure, it can be seen that a thickness of 1 mm or more is desirable. The heat-pressure bonding usually applies a pressure of 50 to 500 Kg / cm 2 , and at this time, if the flange thickness is 1 mm or less, the probability of breakage is high. Since the flange thickness is large, there is no particular problem. However, in practice, if the ratio of the flange thickness to the length of the solid electrolyte bag tube is 20% or more, the surface area where the solid electrolyte and the anode are in contact with each other is reduced, and the volume efficiency and weight efficiency of the battery are reduced. Occurs.

また、取付フランジ4a と陽極容器2との接合構造は、
両部材の間にαアルミナ製の絶縁板3a を介し、さらに
同絶縁板3a とフランジ4a との間及び陽極容器2との
間にアルミニウム板9を介在させて上下にアルミニウム
熱圧着法で接合することによって形成され、取付フラン
ジ4a と陰極容器5との接合構造も同じく両部材の間に
αアルミナ製の絶縁板3a を、さらに同絶縁板3a と取
付フランジ4a との間及び陰極容器5との間にアルミニ
ウム板9を介在させて上下にアルミニウム熱圧着法で接
合することにより形成されている。このアルミニウム熱
圧着法による接合は取付フランジ4a の上下で同時に行
なうことができる。
The joint structure between the mounting flange 4a and the anode container 2 is
An α-alumina insulating plate 3a is interposed between both members, and an aluminum plate 9 is interposed between the insulating plate 3a and the flange 4a and between the anode container 2 and the upper and lower parts are joined by aluminum thermocompression bonding. The joint structure of the mounting flange 4a and the cathode container 5 is also formed by an α-alumina insulating plate 3a between the two members, and between the insulating plate 3a and the mounting flange 4a and the cathode container 5. It is formed by joining the upper and lower parts by an aluminum thermocompression bonding method with an aluminum plate 9 interposed therebetween. The aluminum thermocompression bonding can be performed simultaneously above and below the mounting flange 4a.

その他の構造は従来のナトリウム−硫黄電池の構造と同
様であって、7は陽極容器2と固体電解質管4の間に充
填された陽極用導電剤、8は固体電解質管4内に充填さ
れたステンレス製ウイック、6はナトリウム−硫黄電池
の中心部に位置する陰極管である。
Other structures are the same as those of the conventional sodium-sulfur battery, 7 is an anode conductive agent filled between the anode container 2 and the solid electrolyte tube 4, and 8 is filled in the solid electrolyte tube 4. A stainless steel wick, 6 is a cathode tube located at the center of the sodium-sulfur battery.

次に上記のように構成されたナトリウム−硫黄電池の作
用について説明する。
Next, the operation of the sodium-sulfur battery configured as described above will be described.

上部に取付フランジ4a を有するβアルミナ製の固体電
解質管4は一体化されているので、電池が加熱されても
従来のようにαアルミナとβアルミナとの間の熱膨張率
の相違及び固体電解質管4と絶縁板3との間のガラス接
合に起因する熱歪が発生することはない。
Since the solid electrolyte tube 4 made of β-alumina having the mounting flange 4a on the upper part is integrated, even if the battery is heated, the difference in the coefficient of thermal expansion between α-alumina and β-alumina and the solid electrolyte are the same as in the conventional case. No thermal strain due to glass bonding between the tube 4 and the insulating plate 3 occurs.

また、ナトリウム−硫黄電池の製造における部品数及び
工程数を確実に減少させ効率化を図ることができる。
In addition, it is possible to reliably reduce the number of parts and the number of steps in manufacturing a sodium-sulfur battery, and to improve efficiency.

なお、本実施例では取付フランジ4a と陽極容器2との
間及び陰極容器5との間に絶縁材としてのαアルミナ板
3a を介在させ、固体電解質管4と陽極容器2及び陰極
容器5との間の絶縁をはかったので、フランジ部でのナ
トリウムイオンの移動は全くない。
In this embodiment, the α-alumina plate 3a as an insulating material is interposed between the mounting flange 4a and the anode container 2 and between the cathode container 5 to connect the solid electrolyte tube 4 to the anode container 2 and the cathode container 5. Since there was insulation between them, there was no migration of sodium ions at the flange.

本発明は上記実施例に限定されず、次のように構成する
こともできる。
The present invention is not limited to the above embodiment, but may be configured as follows.

(1)取付フランジ4a と陰極容器5との接合構造は、
前記実施例では両部材の間にαアルミナ製の絶縁板3a
を介し、さらに同絶縁板3a と取付フランジ4a との間
及び陰極容器5との間にアルミニウム板9を介在させて
上下に熱圧接合することにより形成されているが、第2
図に示すように取付フランジ4a と陰極容器5との間に
絶縁板3a 及びアルミニウム板9を介在させることなく
接合することも可能である。この場合でも本発明の目的
を達成することができる。
(1) The joint structure between the mounting flange 4a and the cathode container 5 is
In the above embodiment, an insulating plate 3a made of α-alumina is provided between both members.
The aluminum plate 9 is interposed between the insulating plate 3a and the mounting flange 4a, and between the cathode container 5 and the upper and lower sides by thermocompression bonding.
As shown in the figure, it is also possible to join the mounting flange 4a and the cathode container 5 without interposing the insulating plate 3a and the aluminum plate 9. Even in this case, the object of the present invention can be achieved.

(2)取付フランジ4a の形状は、前記実施例では平坦
な円環状のものであるが、第3図に示すように取付フラ
ンジ4a の内周側を厚く、外周側を薄く形成することも
できる。この場合には陽極容器2及び陰極容器5は取付
フランジ4a の外周側の薄く形成した部分に係合するよ
うに構成される。このようにすると取付フランジ4a に
対する陽極容器2及び陰極容器5の取付けが正確、確実
になる。なお、取付フランジ4a の外周側の薄肉部分の
厚さは1mm以上であることが好ましい。
(2) The mounting flange 4a has a flat annular shape in the above embodiment, but as shown in FIG. 3, the mounting flange 4a can be formed thicker on the inner peripheral side and thinner on the outer peripheral side. . In this case, the anode container 2 and the cathode container 5 are configured to engage with the thinly formed portion on the outer peripheral side of the mounting flange 4a. In this way, the attachment of the anode container 2 and the cathode container 5 to the mounting flange 4a is accurate and reliable. The thickness of the thin portion on the outer peripheral side of the mounting flange 4a is preferably 1 mm or more.

(3)取付フランジ4a の厚さを第4図に示すように前
記実施例のそれに比較して厚くすることにより、同取付
フランジ4a と陽極容器2及び陰極容器5とを直接係合
することができる。
(3) By making the thickness of the mounting flange 4a thicker than that of the embodiment as shown in FIG. 4, the mounting flange 4a and the anode container 2 and the cathode container 5 can be directly engaged with each other. it can.

この場合には、フランジ部の上下両面に電池電圧が印加
されるため、Na+イオンの分極が生じ熱圧接合部の気密
性が劣る。第8図は電圧印加時の熱サイクルを行った際
の気密性について示したものである。
In this case, since the battery voltage is applied to the upper and lower surfaces of the flange portion, polarization of Na + ions occurs and the airtightness of the thermocompression bonded portion is deteriorated. FIG. 8 shows the airtightness when a heat cycle is performed when a voltage is applied.

試験方法は、第7図に示すような熱圧接合したものの陰
極及び陽極容器に2V印加したまま室温と350℃との
熱サイクルを1回行った後He リーク速度を測定した。
In the test method, the He leak rate was measured after one thermal cycle between room temperature and 350 ° C. was performed while applying 2 V to the cathode and anode containers of the thermocompression bonded one as shown in FIG.

なお、試験には全て10-9以下のHe リーク速度のもの
を用いた。
In all the tests, a He leak rate of 10 -9 or less was used.

第8図からわかるように、フランジの厚さは5mm以上が
好ましいことがわかる。
As can be seen from FIG. 8, the flange thickness is preferably 5 mm or more.

(4)また、図1〜図4に示すように陰極容器5の下端
及び陽極容器2の上端は内側に曲折されたフランジ状と
されているが、この長さを固体電解質管4の取付フラン
ジ4aに併せて随時変更することは自由である。また、
陽極容器2及び陰極容器5の側壁を厚く形成して、取付
フランジ4aへの圧着代が取れれば特に陽極容器2の上
端及び陰極容器5の下端をフランジ状に形成せずともか
まわない。
(4) Further, as shown in FIGS. 1 to 4, the lower end of the cathode container 5 and the upper end of the anode container 2 are in the shape of flanges bent inward. It is free to change it in accordance with 4a at any time. Also,
It is not necessary to form the upper end of the anode container 2 and the lower end of the cathode container 5 in a flange shape particularly if the side walls of the anode container 2 and the cathode container 5 are formed thick and a margin for pressure bonding to the mounting flange 4a can be taken.

発明の効果 本発明のナトリウム−硫黄電池は、固体電解質管にβア
ルミナ製の取付フランジを一体形成し固体電解質管と取
付フランジとをガラス接合していないため、取付フラン
ジと固体電解質管の接合部分及びこの近辺における内部
応力を排除することができ、電池の加熱、冷却による熱
歪に基づいて生ずる取付フランジと固体電解質管の接合
部分及びこの近辺における破損が防止されて信頼性が高
められるとともに、ナトリウム−硫黄電地の製造工程に
おける部品数及び工程数が減少し、製造に要するコスト
の低減を図ることができる。
EFFECTS OF THE INVENTION The sodium-sulfur battery of the present invention has a solid electrolyte tube integrally formed with a β-alumina mounting flange so that the solid electrolyte tube and the mounting flange are not glass-bonded to each other. And, it is possible to eliminate the internal stress in the vicinity thereof, and the reliability is improved while preventing the damage at the joint between the mounting flange and the solid electrolyte tube and the vicinity thereof caused by the thermal strain due to the heating and cooling of the battery, and The number of parts and the number of steps in the manufacturing process of the sodium-sulfur electric field can be reduced, and the cost required for manufacturing can be reduced.

また、陰極容器と陽極容器は取付フランジを間に介して
熱圧接合されているため、陰極容器、陽極容器及び固体
電解管の三者がしっかりと接合し、昇降温時の膨張、収
縮による歪応力が発生してもこれら部材の接合部及び接
合部近辺のこれら部材の破損が防止され信頼性が高めら
れる。
Further, since the cathode container and the anode container are thermocompression bonded via the mounting flange, the cathode container, the anode container and the solid electrolytic tube are firmly joined together, and distortion due to expansion and contraction during temperature rise and fall. Even if a stress is generated, damage to these members and the vicinity of these members is prevented, and reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のナトリウム−硫黄電池の一実施例を示
す要部縦断面図、第2図〜第4図は本発明のナトリウム
−硫黄電池の別例を示す要部縦断面図、第5図はフラン
ジ厚味のフランジ幅に対する比とフランジ破壊確率を示
すグラフ、第6図はフランジ厚味とフランジ確率の関係
を示すグラフ、第7図は陽極容器と陰極容器との間に電
圧を印加した状態を示す縦断面図、第8図はフランジ部
の厚味とHe リーク速度の関係を示すグラフ、第9図は
従来のナトリウム−硫黄電池を示す縦断面図、第10図
は従来のナトリウム−硫黄電池の要部縦断面図である。 2……陽極容器、4……固体電解質管、4a ……取付フ
ランジ、5……陽極容器。
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of the sodium-sulfur battery of the present invention, and FIGS. 2 to 4 are longitudinal sectional views of an essential part showing another example of the sodium-sulfur battery of the present invention. Fig. 5 is a graph showing the ratio of flange thickness to flange width and flange breakage probability, Fig. 6 is a graph showing the relationship between flange thickness and flange probability, and Fig. 7 shows the voltage between the anode container and the cathode container. FIG. 8 is a vertical cross-sectional view showing the applied state, FIG. 8 is a graph showing the relationship between the flange thickness and He leak rate, FIG. 9 is a vertical cross-sectional view showing a conventional sodium-sulfur battery, and FIG. It is a principal part longitudinal cross-sectional view of a sodium-sulfur battery. 2 ... Anode container, 4 ... Solid electrolyte tube, 4a ... Mounting flange, 5 ... Anode container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 悟 愛知県名古屋市北区中丸町1丁目1番地 (56)参考文献 特開 昭62−26767(JP,A) 特開 昭57−187875(JP,A) 特公 昭61−41102(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Kato 1-1-1, Nakamaru-cho, Kita-ku, Nagoya-shi, Aichi (56) Reference JP-A-62-26767 (JP, A) JP-A-57-187875 (JP) , A) Japanese Patent Publication Sho 61-41102 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陰極容器(5)の下端と陽極容器(2)の
上端との間に固体電解質管(4)上部の取付フランジ
(4a)を配したナトリウム−硫黄電池において、固体
電解質管(4)上部の取付フランジ(4a)をβアルミ
ナにより固体電解質管(4)と一体成形し、前記取付フ
ランジ(4a)を、その上部及び/又は下部に絶縁板
(9)を介して、陰極容器(5)及び/又は陽極容器
(2)を熱圧接合したことを特徴とするナトリウム−硫
黄電池。
1. A sodium-sulfur battery in which a mounting flange (4a) above a solid electrolyte tube (4) is arranged between the lower end of a cathode container (5) and the upper end of an anode container (2). 4) The upper mounting flange (4a) is integrally molded with the solid electrolyte tube (4) by β-alumina, and the mounting flange (4a) is attached to the upper and / or lower part of the solid electrolyte tube (4) via an insulating plate (9) to form a cathode container. (5) and / or the anode container (2) is thermocompression bonded, a sodium-sulfur battery.
【請求項2】取付フランジ(4a)は、円環状又は外周
側を薄く内周側を厚くした円環状である特許請求の範囲
第1項に記載のナトリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the mounting flange (4a) has an annular shape or an annular shape in which the outer peripheral side is thin and the inner peripheral side is thick.
JP62029169A 1987-02-09 1987-02-09 Sodium-sulfur battery Expired - Lifetime JPH0626135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62029169A JPH0626135B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029169A JPH0626135B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS63195974A JPS63195974A (en) 1988-08-15
JPH0626135B2 true JPH0626135B2 (en) 1994-04-06

Family

ID=12268737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029169A Expired - Lifetime JPH0626135B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0626135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559943B2 (en) * 1992-03-23 1996-12-04 日本碍子株式会社 Sodium-sulfur battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141102A (en) * 1984-08-03 1986-02-27 Canon Inc Production of color separating filter
JPS6226767A (en) * 1985-07-29 1987-02-04 Tokyo Electric Power Co Inc:The Sodium-sulfur battery

Also Published As

Publication number Publication date
JPS63195974A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
JPH0322028B2 (en)
JPH07263025A (en) Chemical battery
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JPH0626135B2 (en) Sodium-sulfur battery
US4452871A (en) Alkali metal cells and batteries and the manufacture thereof
JPH0582716B2 (en)
JPH0723269B2 (en) Method of joining metal parts and ceramic parts in sodium-sulfur battery
JPH0633647Y2 (en) Bonding structure of insulating ring and electrode container in sodium-sulfur battery
JPH071735Y2 (en) Sodium-sulfur battery
KR100563029B1 (en) Cap assembly used in secondary battery and method for assembling the same
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JP2000331688A (en) Battery
RU2041516C1 (en) Double-electric-layer capacitor
JPS6146942B2 (en)
JPH0733378Y2 (en) Sodium-sulfur battery
JPH0650649B2 (en) Sodium-sulfur battery
JP3193283B2 (en) Sodium secondary battery
JPH01246772A (en) Sodium-sulfur battery
EP0517389A2 (en) An alkali metal energy conversion cell
JPH0624153B2 (en) Manufacturing method of sodium-sulfur battery
JPS6226768A (en) Sodium-sulfur battery
JP2002056887A (en) Method for manufacturing thermo-compression joining member for insulating ring constituting sodium-sulfur battery and positive electrode metal fitting
JPH0631649Y2 (en) Sodium-sulfur battery
JPH01221870A (en) Sodium-sulfur battery
JP3532457B2 (en) Bonding structure between an insulating ring and an anode cylindrical metal fitting in a sodium-sulfur battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term