JP2000133303A - Sodium sulfur battery - Google Patents

Sodium sulfur battery

Info

Publication number
JP2000133303A
JP2000133303A JP10306677A JP30667798A JP2000133303A JP 2000133303 A JP2000133303 A JP 2000133303A JP 10306677 A JP10306677 A JP 10306677A JP 30667798 A JP30667798 A JP 30667798A JP 2000133303 A JP2000133303 A JP 2000133303A
Authority
JP
Japan
Prior art keywords
flange
ring
negative electrode
positive electrode
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10306677A
Other languages
Japanese (ja)
Inventor
Saburo Usami
三郎 宇佐美
Yoshimi Sato
善美 佐藤
Ryujiro Udo
竜二郎 有働
Hisamitsu Hato
久光 波東
Shigeru Sakaguchi
繁 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10306677A priority Critical patent/JP2000133303A/en
Publication of JP2000133303A publication Critical patent/JP2000133303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve junction strength without requiring excess radial deformation of a brazing by providing a ring-shaped projection on a junction surface side an either of the brazing and flange portions at the bottom of a negative electrode lid and the top of a positive electrode container pipe which are connected through the brazing to an annular insulating ring and its upper and lower surfaces, and pressurizing the upper and lower surfaces of both flanges at high temperature for diffused junction. SOLUTION: Sulfur 11 is impregnated into carbon fibers between a negative electrode containing sodium 1 and jointed inside an insulating ring 3 made of α-alumina or the like at its upper portion and a positive electrode pipe 10 containing β-alumina-made bag-pipe-shaped solid electrolyte pipe 2. Annular aluminum brazings 9, 24 are installed between a negative electrode lower flange 6 of a negative electrode lid 4 and the upper surface of the insulating ring 3 and between a positive electrode flange 15 of a bellows 12 of the positive electrode pipe 10 and the lower surface of the insulating ring 3, and are subjected to the diffused junction by vacuum heating and pressurizing by a jig. They are jointed at high surface pressure at positions of inner and outer peripheral sides ring-shaped projections 7, 8 and 18, 19 projecting to joint surface side of the negative electrode and positive electrode flanges 6, 15, and durability of this battery during temperature increasing/decreasing is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はナトリウム硫黄電池
に関するものである。
The present invention relates to a sodium-sulfur battery.

【0002】[0002]

【従来の技術】ナトリウム硫黄電池は、一般に、袋管状
のベータアルミナ固体電解質管の内部に負極活物質のナ
トリウム、その外部に金属製正極管に保持された正極活
物質の硫黄を有し、固体電解質管の上部は円環状セラミ
ック製絶縁リングの内側に固定され、負極上部を密閉す
る負極蓋はその下端の円環板状フランジ部をブレージン
グを介して絶縁リング上面に拡散接合され、正極管上端
の円環板状フランジ部はブレージング材を介して絶縁リ
ングの下面に拡散接合される。
2. Description of the Related Art In general, a sodium-sulfur battery has a bag-shaped beta-alumina solid electrolyte tube having sodium as a negative electrode active material and sulfur outside as a positive electrode active material held by a metal cathode tube. The upper part of the electrolyte tube is fixed inside an annular ceramic insulating ring, and the negative electrode lid that seals the upper part of the negative electrode is diffusion bonded to the upper surface of the insulating ring through brazing at the lower annular plate-shaped flange, and the upper end of the positive electrode tube Is flanged to the lower surface of the insulating ring via a brazing material.

【0003】一般に、絶縁リング材にはアルファアルミ
ナ,ブレージング材にはアルミニウム合金、フランジ材
には鋼材等が用いられ、電池が昇降温等で温度変化する
と接合部には熱応力が繰り返される。負極蓋フランジの
接合部内周端はナトリウム蒸気に曝されるため、特開平
9−55222号公報に記載のように、この熱応力の繰り返し
によって接合部の剥離が徐々に進むおそれがある。
Generally, alpha-alumina is used for the insulating ring material, aluminum alloy is used for the brazing material, and steel material is used for the flange material. When the temperature of the battery changes due to temperature rise or fall, thermal stress is repeatedly applied to the joint. The inner peripheral edge of the joint of the negative electrode lid flange is exposed to sodium vapor,
As described in Japanese Patent Application Laid-Open No. 9-55222, the repetition of this thermal stress may cause the peeling of the joint to gradually progress.

【0004】一方、正極容器フランジには、熱応力に加
えて、正極下部に存在する多硫化ナトリウムが約250
℃以下で固化し固体電解質管と正極管を固着させること
によって、特許第2769284 号公報に記載のように、低温
では軸力が作用する。したがって、正極容器フランジ接
合部の軸力負担側は昇降温の繰り返しによるこれら負荷
に耐える必要がある。
On the other hand, in addition to thermal stress, about 250% of sodium polysulfide existing under the positive electrode is added to the positive electrode container flange.
By solidifying the solid electrolyte tube and the positive electrode tube at a temperature of not more than ° C., an axial force acts at a low temperature as described in Japanese Patent No. 2769284. Therefore, it is necessary that the axial force bearing side of the flange joint portion of the positive electrode container endure these loads caused by the repetition of temperature rise and fall.

【0005】これらの熱応力や軸力は、ナトリウム電池
の容量が大きく、したがって接合部の直径や正極管の長
さが増すほど顕著となる。拡散接合部の強度を向上させ
るためには、接合時の面圧を高くすることが有効である
が、過大な加圧力を加えるとブレージングが大きく潰さ
れて内径方向および外径方向に押し出されて短絡等の不
具合を生じるおそれがある。
[0005] These thermal stresses and axial forces become more remarkable as the capacity of the sodium battery increases and, therefore, the diameter of the joint and the length of the cathode tube increase. In order to improve the strength of the diffusion joint, it is effective to increase the surface pressure at the time of joining.However, when an excessive pressing force is applied, the brazing is greatly crushed and extruded in the inner diameter direction and the outer diameter direction. There is a possibility that a short circuit or other trouble may occur.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ブレ
ージングの過大な半径方向変形を生じることなく拡散接
合部の強度を向上させたナトリウム硫黄電池を提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sodium-sulfur battery in which the strength of the diffusion joint is improved without excessive radial deformation of the brazing.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明のナトリウム硫黄電池は、請求項1におい
て、ナトリウムを内部に保持して負極を構成する袋管状
固体電解質管の上部を円環状絶縁リングの内側に固定
し、負極上部を密閉する負極蓋はその下端のフランジ部
を前記絶縁リングの上面にブレージングを介して拡散接
合し、前記固体電解質管を包みその間に硫黄を保持する
正極容器管の上端フランジ部を前記絶縁リングの下面に
ブレージングを介して拡散接合してなるナトリウム硫黄
電池において、負極蓋のフランジ又は/および正極容器
のフランジ拡散接合部は、接合面側に突出するリング状
突起をフランジ,ブレージングまたは絶縁リングに有
し、これら負極蓋フランジの上面と正極容器フランジの
下面を高温で加圧し、拡散接合してなることを特徴とす
る。
In order to achieve this object, a sodium-sulfur battery according to the present invention is characterized in that, in the first aspect, the upper portion of the bag-shaped solid electrolyte tube which holds sodium therein and forms a negative electrode has an annular shape. A positive electrode container fixed to the inside of the insulating ring, and a negative electrode lid for sealing the upper part of the negative electrode, a flange portion at a lower end thereof is diffusion-bonded to the upper surface of the insulating ring via brazing, and the positive electrode container wraps the solid electrolyte tube and holds sulfur therebetween. In a sodium-sulfur battery in which the upper flange portion of the tube is diffusion-bonded to the lower surface of the insulating ring via brazing, the flange of the negative electrode lid and / or the flange diffusion bonding portion of the positive electrode container have a ring shape protruding toward the bonding surface. Protrusions are provided on the flange, brazing or insulating ring, and the upper surface of the negative electrode lid flange and the lower surface of the positive electrode container flange are pressurized at high temperature and diffused. Combined, characterized by comprising.

【0008】また、請求項2においては、請求項1にお
いて、リング状突起は負極蓋フランジの内周側又は/お
よび正極容器フランジの軸力負担側に有してなることを
特徴とする。
According to a second aspect of the present invention, in the first aspect, the ring-shaped projection is provided on the inner peripheral side of the negative electrode lid flange and / or on the axial force bearing side of the positive electrode container flange.

【0009】さらに、請求項3においては、請求項2に
おいて、接合面の内,外周側に各々リング状突起を有し
てなることを特徴とする。
[0009] Further, a third aspect of the present invention is characterized in that, in the second aspect, a ring-shaped projection is provided on each of the inner and outer peripheral sides of the joining surface.

【0010】このように構成することによって、拡散接
合時の加圧力はリング状突起部に集中するため、その部
分の接合面圧を増大させて強度の高い良好な接合が行わ
れ、ブレージングの半径方向の過大な変形も防止され
る。
[0010] With this configuration, the pressing force at the time of diffusion bonding is concentrated on the ring-shaped projection, so that the bonding surface pressure at that portion is increased to perform high-strength good bonding, and the brazing radius is increased. Excessive deformation in the direction is also prevented.

【0011】また、リング状突起の位置を負極蓋フラン
ジの内周側又は/および正極容器フランジの軸力負担側
とすることによって、強度上重要な部分が有効に強化さ
れる。さらに、接合面の内,外周側に各々リング状突起
を設けることにより、軸力による曲げモーメントや熱応
力を有効に負担することができる。
Further, by setting the position of the ring-shaped projection on the inner peripheral side of the negative electrode lid flange or / and on the axial force bearing side of the positive electrode container flange, a portion important in strength is effectively strengthened. Further, by providing the ring-shaped protrusions on the inner and outer peripheral sides of the joint surface, it is possible to effectively bear a bending moment and a thermal stress due to an axial force.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施例を、図1
に示す全体断面図、図2に示すベロー成型時の断面図お
よび図3に示す拡散接合前の部品配置断面図を用いて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIG.
2 will be described with reference to FIG. 2, a cross-sectional view at the time of bellows molding, and FIG. 3 is a cross-sectional view of parts arrangement before diffusion bonding.

【0013】ナトリウム1を内部に保持して負極を構成
する袋管状ベータアルミナ製固体電解質管2は、その上
端外表面を円環板状アルファアルミナ製絶縁リング3の
内側にガラス半田を用いて約1050℃で接合される。
この負極上部を密閉する負極蓋4は厚さ1.0mmのJIS S
US329J高強度ステンレス鋼板を冷間加工で成型したもの
で、その内側中央部には下端に連通孔を有して電解質管
2内に挿入される安全管5を溶接固定し、その外周は円
筒部として下方に延長して、その下端には円環板状フラ
ンジ6を形成している。
A bag-shaped beta-alumina solid electrolyte tube 2 holding a sodium 1 therein to form a negative electrode has an upper outer surface formed on the inside of a ring-shaped alpha alumina insulating ring 3 by using glass solder. Joined at 1050 ° C.
The anode cover 4 for sealing the upper part of the anode is made of JIS S 1.0 mm thick.
A US329J high-strength stainless steel sheet is formed by cold working, and has a communication hole at the lower end in the center of the inside, and a safety pipe 5 inserted into the electrolyte pipe 2 is fixed by welding. The ring-shaped flange 6 is formed at the lower end thereof.

【0014】このフランジ6には、後述の正極フランジ
と同様の方法で、内周側と外周側に下方の接合面方向に
突出するリング状突起部7,8を形成している。ブレー
ジング9は絶縁リング3の平坦な上面と負極フランジ6
下面間に配置され、JISA3003の両面にBA4004をクラッド
した厚さ0.7mmの円環板状をなしている。
In the same manner as a positive electrode flange described later, ring-shaped projections 7 and 8 are formed on the inner peripheral side and the outer peripheral side of the flange 6 so as to protrude toward the lower joint surface. The brazing 9 has a flat upper surface of the insulating ring 3 and the negative flange 6.
It is arranged between the lower surfaces and has a 0.7 mm-thick annular plate shape in which BA4004 is clad on both sides of JISA3003.

【0015】正極管10は耐食性を有しかつ線膨張係数
の小さいJIS SUS310鋼で製作したもので、有底円筒状を
なして前記固体電解質管2を包み、その間に炭素繊維に
含浸させた硫黄11を保持する。この電池は容量が10
00Ahと大容量であり、従って、正極容器10は外径
100mm,肉厚1.5mm で長さは700mmに達する。ベ
ータアルミナ固体電解質管2と正極管10の線膨張係数
はそれぞれ6×10-6/℃および16×10-6/℃である
から、250℃から20℃への冷却過程でのそれら間の
熱収縮差は1.6mm に達する。
The cathode tube 10 is made of JIS SUS310 steel having corrosion resistance and a small coefficient of linear expansion. The cathode tube 10 has a cylindrical shape with a bottom and encloses the solid electrolyte tube 2 and has a sulfur impregnated with carbon fiber therebetween. Hold 11 This battery has a capacity of 10
The capacity is as large as 00 Ah, so that the positive electrode container 10 has an outer diameter of 100 mm, a wall thickness of 1.5 mm, and a length of 700 mm. Since the linear expansion coefficients of the beta alumina solid electrolyte tube 2 and the cathode tube 10 are 6 × 10 −6 / ° C. and 16 × 10 −6 / ° C., respectively, the heat between them during the cooling process from 250 ° C. to 20 ° C. The difference in shrinkage amounts to 1.6 mm.

【0016】ベロー12はこの熱変位を弾性的に吸収す
るもので、厚さ0.6mmの薄板JISSUS329J高強度ステン
レス鋼を冷間加工で成型して降伏応力を1050MPaに上昇
させている。ベロー12の最終成型法を図2に示す。ベ
ロー12の下半部をプレス成型した後下型13内に挿入
する。円錐状の上型(図示せず)で上半分を拡大した
後、図示する上型14で押圧することにより、下型13
との間でベロー12のフランジ部15には1000MPa の高
面圧が与えられる。
The bellows 12 elastically absorbs this thermal displacement, and is formed by cold working a thin JISSUS329J high strength stainless steel sheet having a thickness of 0.6 mm to raise the yield stress to 1050 MPa. The final molding method of the bellows 12 is shown in FIG. The lower half of the bellows 12 is press-molded and then inserted into the lower mold 13. After the upper half is enlarged with a conical upper mold (not shown), the lower mold 13 is pressed by an upper mold 14 shown in the drawing.
Between them, a high surface pressure of 1000 MPa is applied to the flange portion 15 of the bellows 12.

【0017】このフランジ部15の内周と外周に板厚の
1.5倍の長さ0.9mmの平坦部16,17を残した位置
に、高さ0.1mm,曲率半径1.0mmの接合面側に突出す
るリング状突起18,19を形成するように、下型13
上面にはリング状突起20,21が、上型14下面には
リング状凹み22,23が形成されている。
At a position where flat portions 16 and 17 having a length of 0.9 mm and a length of 1.5 mm on the inner and outer circumferences of the flange portion 15 are left, a portion having a height of 0.1 mm and a radius of curvature of 1.0 mm is provided. Lower mold 13 is formed so as to form ring-shaped projections 18 and 19 protruding toward the joint surface.
Ring-shaped projections 20 and 21 are formed on the upper surface, and ring-shaped recesses 22 and 23 are formed on the lower surface of the upper mold 14.

【0018】円錐状の上型でフランジ部15の中央を予
め外側に折り曲げて置くと、上型に凹み22,23を設
けていなくても、フランジ部15を半径方向に波打たせ
ることによってフランジ部15にリング状突起部18,
19を形成することができる。ブレージング24は絶縁
リング3の平坦な下面とそれに平行な正極フランジ15
上面間に配置されるもので、前記ブレージング9と同一
である。
When the center of the flange portion 15 is bent outward in advance with a conical upper die, the flange portion 15 can be wavy in the radial direction even if the upper die is not provided with the recesses 22 and 23. A ring-shaped projection 18 on the portion 15;
19 can be formed. The brazing 24 has a flat lower surface of the insulating ring 3 and a positive flange 15 parallel thereto.
It is arranged between the upper surfaces and is the same as the brazing 9.

【0019】負極フランジ6と正極フランジ12を絶縁
リング3の上下面に拡散接合するに当たっては、図3に
示すように、それら間にJIS A3003の両面にBA4004 をク
ラッドした円環状アルミブレージング9,24をそれぞ
れ設置して、これら全体を真空中でA4004の固相線
545℃よりも若干低い530℃に昇温する。上下の加
圧治具25,26は耐熱鋼製で、フランジ6,15に対
向して加圧する面は平坦に仕上げている。上部加圧治具
25は円筒状で、下部加圧治具26は円環状のものを直
径で2分割してベロー12内への挿入を可能としてい
る。
In diffusion bonding the negative electrode flange 6 and the positive electrode flange 12 to the upper and lower surfaces of the insulating ring 3, as shown in FIG. And the whole is heated in vacuum to 530 ° C., which is slightly lower than the solidus 545 ° C. of A4004. The upper and lower pressing jigs 25 and 26 are made of heat-resistant steel, and the surfaces to be pressed against the flanges 6 and 15 are finished flat. The upper pressing jig 25 has a cylindrical shape, and the lower pressing jig 26 can be inserted into the bellows 12 by dividing an annular one into two parts by diameter.

【0020】ブレージング9,24の面積当たりの加圧
面圧は100MPaで、加圧時間も10min と制限して、この
加圧によってブレージング9,24が過度に潰されて内
径方向および外径方向に大きく押し出されることのない
ようにしている。この加圧時には、負極フランジ6のリ
ング状突起7,8および正極フランジ15のリング状突
起17,18が局所的にブレージング9,24を加圧す
る。
The pressurizing surface pressure per area of the brazings 9 and 24 is 100 MPa and the pressurizing time is also limited to 10 min. The brazings 9 and 24 are excessively crushed by this pressurization, and the brazings 9 and 24 become large in the inner and outer diameter directions. I try not to be pushed out. During this pressurization, the ring-shaped protrusions 7 and 8 of the negative electrode flange 6 and the ring-shaped protrusions 17 and 18 of the positive electrode flange 15 locally press the brazing 9 and 24.

【0021】この局所的加圧を確実とするため、フラン
ジ6,15は高強度鋼として突起部近傍が曲げ塑性変形
することを防止し、また、リング状突起18,19の外
側には、リング状の平坦部16,17を設けて、突起1
8,19が半径方向に広がって平坦化することを防止し
ている。
In order to ensure this local pressurization, the flanges 6 and 15 are made of high-strength steel to prevent bending plastic deformation in the vicinity of the projections. The flat portions 16 and 17 are provided, and the projection 1 is formed.
8 and 19 are prevented from spreading in the radial direction and flattening.

【0022】また、接合温度をブレージング材A400
4の固相線以下として加圧面圧と加圧時間を制限するこ
とにより、ブレージング9,24の塑性流動を抑制した
ため、局所加圧面圧を高く維持することと、その他の平
坦部も接合することを可能としている。この加圧によっ
て、ブレージング9,24は初期板厚0.7mmから0.5mm
に変形し、フランジ6,15のリング状突起部7,8,
18,19は初期形状を保っていた。
Further, the joining temperature is set to the brazing material A400.
By limiting the pressurized surface pressure and pressurization time below the solidus line of 4, the plastic flow of the brazing 9, 24 is suppressed, so that the local pressurized surface pressure is maintained high and other flat parts are also joined. Is possible. By this pressure, the brazing 9, 24 has an initial thickness of 0.7 mm to 0.5 mm.
And the ring-shaped projections 7, 8,
18 and 19 maintained the initial shape.

【0023】このようにして接合された接合部は、リン
グ状突起部7,8および18,19の存在する位置にお
いて高面圧接合が行われるため、絶縁リング3とブレー
ジング9,24およびブレージング9,24とフランジ
6,15の接合は、アルミニウム酸化物が良好に破壊さ
れ被接合材原子同志が近接するため、強固な接合とな
る。
The joints thus joined are subjected to high surface pressure joining at the positions where the ring-shaped projections 7, 8 and 18, 19 are present, so that the insulating ring 3 and the brazing 9, 24 and the brazing 9 are joined. , 24 and the flanges 6, 15 are solid because the aluminum oxide is satisfactorily destroyed and the atoms to be joined are close to each other.

【0024】以上の構成で電池の昇降温に対する耐久性
が向上する。すなわち、負極フランジ接合部のブレージ
ング9とアルファアルミナ製絶縁リング3間の接合面は
ナトリウム1蒸気雰囲気中で熱応力の繰り返しを受ける
が、内周側リング状突起7の下部に形成された強固な接
合面は、この状態での剥離に対して高い抵抗を示す。ま
た、外周側のリング状突起8下部の強固な接合面は、絶
縁リング3とブレージング9およびフランジ6との線膨
張係数の差に基づいて生じる半径方向のせん断力を良く
負担して、上記リング状突起7下部接合面へ発生する熱
応力を減少させる。
With the above structure, the durability of the battery against temperature rise and fall is improved. That is, the joining surface between the brazing 9 of the negative electrode flange joining portion and the alpha-alumina insulating ring 3 is repeatedly subjected to thermal stress in a sodium 1 steam atmosphere, but the solid surface formed at the lower portion of the inner peripheral side ring-shaped projection 7 is formed. The bonding surface shows high resistance to peeling in this state. In addition, the strong joint surface below the ring-shaped protrusion 8 on the outer peripheral side well bears the radial shear force generated based on the difference in linear expansion coefficient between the insulating ring 3 and the brazing 9 and the flange 6, and the ring The thermal stress generated on the lower joint surface of the projection 7 is reduced.

【0025】正極フランジ15接合部における耐熱応力
性は上記と同様であるが、降温時には、前記したよう
に、正極底部に存在する多硫化ナトリウム27が約25
0℃以下で固化し固体電解質管2と正極管10を固着さ
せることによって、低温では正極管10に軸力が作用す
る。
The heat stress resistance at the joint of the positive electrode flange 15 is the same as described above, but when the temperature is lowered, about 25% of the sodium polysulfide 27 existing at the bottom of the positive electrode is removed as described above.
By solidifying at 0 ° C. or lower and fixing the solid electrolyte tube 2 and the cathode tube 10, an axial force acts on the cathode tube 10 at a low temperature.

【0026】したがって、正極容器フランジ15接合部
の軸力負担側となる内周側は昇降温の繰り返しによるこ
れら負荷を受けるが、内周側のリング状突起18によっ
てその部分の絶縁リング3とグレージング24およびブ
レージング24とフランジ15の接合は強固であるた
め、これら負荷に十分耐える。
Therefore, the inner peripheral side, which bears the axial force at the joint of the positive electrode container flange 15, receives these loads due to the repetition of temperature rise and fall. Since the bonding between the flange 24 and the brazing 24 and the flange 15 is strong, the brazing 24 can sufficiently withstand these loads.

【0027】また、外周側のリング状突起19による強
固な接合部は、半径方向の熱応力を低減するのみなら
ず、軸力によって生じるフランジ15への曲げモーメン
トを有効に支持するため、これによる内側リング状突起
18部への曲げ剥離応力を減少させる。
The strong joints formed by the ring-shaped projections 19 on the outer peripheral side not only reduce the thermal stress in the radial direction but also effectively support the bending moment to the flange 15 caused by the axial force. The bending peel stress on the inner ring-shaped projection 18 is reduced.

【0028】本発明の他の実施例を図4に示す。正極ベ
ロー12とフランジ15を別に製作し、それらの外周端
を上方に折り曲げている。フランジ15を絶縁リング3
に、図3と同様の方法で拡散接合した後、それら端部を
溶接28するものである。この場合、正極フランジ15
接合部で軸力による剥離力をうけるのは外周部である。
この軸力負担側の強度は、外側のリング状突起部19の
高面圧作用による高接合力で確保され、曲げモーメント
は内側のリング状突起部18の作用によって得られた高
接合強度部で負担する。
FIG. 4 shows another embodiment of the present invention. The positive electrode bellows 12 and the flange 15 are separately manufactured, and their outer peripheral ends are bent upward. Insulation ring 3 for flange 15
Then, after diffusion bonding in the same manner as in FIG. 3, these ends are welded 28. In this case, the positive electrode flange 15
It is the outer peripheral portion that receives the peeling force due to the axial force at the joint.
The strength on the axial load bearing side is ensured by the high joining force due to the high surface pressure action of the outer ring-shaped projection 19, and the bending moment is obtained by the high joining strength part obtained by the action of the inner ring-shaped projection 18. bear.

【0029】本発明のさらに他の実施例を図5に示す。
負極接合部のリング状突起部7,8および正極接合部の
リング状突起部18,19は絶縁リング3のそれぞれ上
下面に、セラミック粉の高圧成型時に形成し、焼結して
いる。この場合、負極フランジ6,正極フランジ15は
平坦であるが、これらを拡散接合時に加圧すると、リン
グ状突起部7,8および18,19の部分には面圧が集
中して、前記の場合と同様に高強度接合部が得られる。
FIG. 5 shows still another embodiment of the present invention.
The ring-shaped projections 7 and 8 of the negative electrode junction and the ring-shaped projections 18 and 19 of the positive electrode junction are formed and sintered on the upper and lower surfaces of the insulating ring 3 at the time of high-pressure molding of ceramic powder. In this case, the negative electrode flange 6 and the positive electrode flange 15 are flat, but when they are pressurized at the time of diffusion bonding, the surface pressure is concentrated on the ring-shaped projections 7, 8 and 18, 19, so that in the above case, A high-strength joint can be obtained in the same manner as described above.

【0030】本発明の他の実施例を図6に示す。本実施
例では、負極接合部のリング状突起部7,8および正極
接合部のリング状突起部18,19をいずれもブレージ
ング6,24の両面にプレス加工で形成している。この
場合も、前記と同様に、拡散接合時の加圧面圧がリング
状突起部7,8および18,19に集中するため、それ
ら部分に高強度接合部が得られる。
FIG. 6 shows another embodiment of the present invention. In this embodiment, the ring-shaped protrusions 7 and 8 of the negative electrode joint and the ring-shaped protrusions 18 and 19 of the positive electrode joint are both formed on both surfaces of the brazings 6 and 24 by press working. Also in this case, similarly to the above, the pressing surface pressure at the time of diffusion bonding is concentrated on the ring-shaped projections 7, 8, 18, and 19, so that a high-strength bonded portion is obtained at those portions.

【0031】[0031]

【発明の効果】本発明のナトリウム硫黄電池によれば、
拡散接合時にリング状突起部に面圧が集中するため、ブ
レージングの過大な半径方向変形を生じることなく高強
度の接合部が得られ、負極側ではナトリウム蒸気中での
熱応力繰り返しに対する耐久性が向上し、正極側では繰
り返し軸力に対する耐久性が向上する。
According to the sodium-sulfur battery of the present invention,
Since surface pressure is concentrated on the ring-shaped protrusion during diffusion bonding, a high-strength joint can be obtained without excessive radial deformation of brazing, and the negative electrode has durability against repeated thermal stress in sodium vapor. The durability against repeated axial force is improved on the positive electrode side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のナトリウム硫黄電池縦断面
図である。
FIG. 1 is a longitudinal sectional view of a sodium-sulfur battery according to one embodiment of the present invention.

【図2】本発明の一実施例のベロー成型時断面図であ
る。
FIG. 2 is a sectional view at the time of bellows molding of one embodiment of the present invention.

【図3】本発明の一実施例の拡散接合前部品配置断面図
である。
FIG. 3 is a cross-sectional view of a part before diffusion bonding according to an embodiment of the present invention.

【図4】本発明の他の実施例における拡散接合部とベロ
ーの拡大断面図である。
FIG. 4 is an enlarged sectional view of a diffusion bonding portion and a bellow according to another embodiment of the present invention.

【図5】本発明のさらに他の実施例における拡散接合前
部品配置断面図である。
FIG. 5 is a sectional view showing the arrangement of components before diffusion bonding in still another embodiment of the present invention.

【図6】本発明のさらに他の実施例における拡散接合前
部品配置断面図である。
FIG. 6 is a cross-sectional view of a component arrangement before diffusion bonding according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ナトリウム、2…固体電解質管、3…絶縁リング、
4…負極蓋、6…負極フランジ、7…内周側リング状突
起部、8…外周側リング状突起部、9,24…ブレージ
ング、10…正極管、11…硫黄、15…正極フラン
ジ、18…内周側リング状突起部、19…外周側リング
状突起部、27…多硫化ナトリウム。
1 ... sodium, 2 ... solid electrolyte tube, 3 ... insulating ring,
DESCRIPTION OF SYMBOLS 4 ... Negative electrode cover, 6 ... Negative electrode flange, 7 ... Inner ring side protrusion, 8 ... Outer ring ring protrusion, 9, 24 ... Brazing, 10 ... Positive electrode tube, 11 ... Sulfur, 15 ... Positive electrode flange, 18 ... inner peripheral side ring-shaped projection, 19 ... outer peripheral side ring-shaped projection, 27 ... sodium polysulfide.

フロントページの続き (72)発明者 有働 竜二郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 波東 久光 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 坂口 繁 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 5H029 AJ11 AJ14 AK05 AL13 AM15 BJ02 CJ02 CJ03 CJ05 CJ25 DJ02 DJ14 EJ01 EJ08 Continued on the front page (72) Inventor Ryujiro Active 502 Kandachi-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. Hitachi, Ltd. Hitachi Plant (72) Inventor Shigeru Sakaguchi 3-1-1, Sachimachi, Hitachi, Ibaraki Prefecture F-term in Hitachi, Ltd. Hitachi Plant 5H029 AJ11 AJ14 AK05 AL13 AM15 BJ02 CJ02 CJ03 CJ05 CJ25 DJ02 DJ14 EJ01 EJ08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ナトリウムを内部に保持して負極を構成す
る袋管状固体電解質管の上部を円環状絶縁リングの内側
に固定し、負極上部を密閉する負極蓋はその下端のフラ
ンジ部を前記絶縁リングの上面にブレージングを介して
拡散接合し、前記固体電解質管を包みその間に硫黄を保
持する正極容器管の上端フランジ部を前記絶縁リングの
下面にブレージングを介して、拡散接合してなるナトリ
ウム硫黄電池において、負極蓋のフランジ又は/正極容
器のフランジ拡散接合部は、接合面側に突出するリング
状突起をフランジ,ブレージングまたは絶縁リングに有
し、これら負極蓋フランジの上面と正極容器フランジの
下面を高温で加圧し、拡散接合してなることを特徴とす
るナトリウム硫黄電池。
1. An upper portion of a bag-shaped solid electrolyte tube which forms a negative electrode while holding sodium therein is fixed inside an annular insulating ring, and a negative electrode lid for sealing the upper portion of the negative electrode has a flange at the lower end thereof insulated. Sodium sulfur that is diffusion bonded to the upper surface of the ring via brazing, and the upper flange portion of the positive electrode container tube that wraps the solid electrolyte tube and retains sulfur therebetween and is brazed to the lower surface of the insulating ring via brazing In the battery, the flange of the negative electrode lid or the flange diffusion joint of the positive electrode container has ring-shaped projections protruding toward the joint surface on the flange, brazing or insulating ring, and the upper surface of the negative electrode lid flange and the lower surface of the positive electrode container flange. A sodium-sulfur battery characterized by being pressurized at a high temperature and diffusion bonded.
【請求項2】リング状突起は負極蓋フランジの内周側又
は/および正極容器フランジの軸力負担側に有してなる
請求項1記載のナトリウム硫黄電池。
2. The sodium sulfur battery according to claim 1, wherein the ring-shaped projection is provided on an inner peripheral side of the negative electrode lid flange and / or on an axial force bearing side of the positive electrode container flange.
【請求項3】接合面の内,外周側に各々リング状突起を
有してなる請求項2記載のナトリウム硫黄電池。
3. The sodium-sulfur battery according to claim 2, wherein ring-shaped projections are provided on the inner and outer peripheral sides of the joining surface.
JP10306677A 1998-10-28 1998-10-28 Sodium sulfur battery Pending JP2000133303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10306677A JP2000133303A (en) 1998-10-28 1998-10-28 Sodium sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10306677A JP2000133303A (en) 1998-10-28 1998-10-28 Sodium sulfur battery

Publications (1)

Publication Number Publication Date
JP2000133303A true JP2000133303A (en) 2000-05-12

Family

ID=17960001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10306677A Pending JP2000133303A (en) 1998-10-28 1998-10-28 Sodium sulfur battery

Country Status (1)

Country Link
JP (1) JP2000133303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027618A (en) * 2009-10-02 2010-02-04 Toshiba Corp Airtight joint structure of electron tube
KR101182643B1 (en) 2010-12-01 2012-09-14 (주)아이비티 Method for Production of Prismatic Battery Case
EP2745340A4 (en) * 2011-08-19 2015-03-18 Basf Se Electrode material for rechargeable electrical cells comprising activated carbon fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027618A (en) * 2009-10-02 2010-02-04 Toshiba Corp Airtight joint structure of electron tube
KR101182643B1 (en) 2010-12-01 2012-09-14 (주)아이비티 Method for Production of Prismatic Battery Case
EP2745340A4 (en) * 2011-08-19 2015-03-18 Basf Se Electrode material for rechargeable electrical cells comprising activated carbon fibers

Similar Documents

Publication Publication Date Title
US4167351A (en) Metal-to-ceramic seals
US4294897A (en) Sealing of ceramic electrolyte tubes in electrochemical cells
US4530151A (en) Manufacture method of a sodium-sulfur storage battery
US4564568A (en) Electrochemical storage cell
JP2000133303A (en) Sodium sulfur battery
JP3353102B2 (en) Method for manufacturing sodium-sulfur battery
JP3526229B2 (en) Bonding method and bonding structure of insulating ring and cathode metal fitting for sodium-sulfur battery
US4236661A (en) Thermocompression methods of forming sodium-sulfur cell casings
JP2003146771A (en) Method of joining ceramics and metal, composite thereof and na-s battery
CN202423496U (en) Hot-pressing connecting structure and sodium-sulfur battery with same
GB1586073A (en) Metal-to-ceramic seal
JP2968929B2 (en) Bonding structure of insulating ring in sodium-sulfur battery and sodium-sulfur battery having the same
JP4289948B2 (en) Sodium-sulfur battery
JPH0275480A (en) Diffusion joining method for cylindrical laminated material
JP3315937B2 (en) Stainless steel cap for hot pressure bonding
JP3015929B2 (en) Sodium-sulfur battery
JP2000123862A (en) Sodium sulfur battery
JP2000323167A (en) Manufacture and manufacturing device of sodium-sulfur battery
KR101554336B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JP3193283B2 (en) Sodium secondary battery
JP2000294271A (en) Sodium-sulfur battery
JP3154669B2 (en) Thermo-pressure joining method between metal ring and insulation ring of sodium-sulfur battery
CN202534723U (en) Hot-pressing jointing structure of component for sodium-sulfur battery as well as sodium-sulfur battery with structure
JPS6273555A (en) Sealing of electrolyte cell
JP3652899B2 (en) battery