JPH08148141A - Manufacture of electrode for lithium secondary battery - Google Patents

Manufacture of electrode for lithium secondary battery

Info

Publication number
JPH08148141A
JPH08148141A JP6291457A JP29145794A JPH08148141A JP H08148141 A JPH08148141 A JP H08148141A JP 6291457 A JP6291457 A JP 6291457A JP 29145794 A JP29145794 A JP 29145794A JP H08148141 A JPH08148141 A JP H08148141A
Authority
JP
Japan
Prior art keywords
active material
electrode
material layer
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6291457A
Other languages
Japanese (ja)
Inventor
Koji Hattori
康次 服部
Kazuko Higaki
和子 檜垣
Maruhotora Karun
カルン・マルホトラ
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6291457A priority Critical patent/JPH08148141A/en
Publication of JPH08148141A publication Critical patent/JPH08148141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To improve the electron conductivity and charging/discharging characteristics without adding a conductive material by baking an active material layer obtained by applying the slurry containing an active material and a binder on a current collector board. CONSTITUTION: The slurry containing an active material having the grain size of 5μm or below and a binder is applied on a current collector board by the doctor blade method to obtain an active material layer. This active material layer is baked, and the active material layer is formed on the current collector board to obtain a positive electrode 3. The positive electrode 3 is arranged in a bottomed cylinder case 1, a separator 5 and a negative electrode 4 are laminated on it, then a seal plate 2 fitted with an insulating gasket 6 is inserted, and the edge section of the case 1 is integrally caulked to obtain a lithium secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池用電極
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】一般に、リチウム電池の電極は、活物質
にアセチレンブラックなどの炭素系導電剤と、ポリ4弗
化エチレンなどの結着剤を活物質に添加し、その合剤を
シート状に成形したり、メッシュ等の集電体基板に塗
布、圧着する方法により製造されている。
2. Description of the Related Art Generally, in an electrode of a lithium battery, a carbon-based conductive agent such as acetylene black and a binder such as polytetrafluoroethylene are added to the active material, and the mixture is formed into a sheet. It is manufactured by a method of molding, coating on a current collector substrate such as a mesh, and pressure bonding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記電
極の製造方法では、活物質に導電剤や結着剤等を添加し
ているため、活物質以外にそれらの材料の電気化学的安
定性や混合条件等について考慮して対策を講じなければ
ならず、必然的に製造コストの上昇につながるという問
題がある。しかも、導電剤や結着剤等が添加されている
ため電解液を余分に加えなければならず、活物質の充填
密度の低下により単位重量当たりの電池容量を低下させ
る原因ともなっている。他方、導電剤や結着剤を添加せ
ず、粉末活物質のみで電極を構成することも考えられる
が、活物質として導電性が余り高くない遷移金属複合酸
化物(例えば、LiCoO2、LiNiO2、LiMnO2)を
用いた場合、単位重量当たりの容量は大きくなっても、
過電圧が大きく電荷容量が減少するという問題があるこ
とが明らかとなった。
However, in the above method for manufacturing an electrode, a conductive agent, a binder, etc. are added to the active material. Therefore, in addition to the active material, electrochemical stability and mixing of these materials are added. It is necessary to take measures in consideration of the conditions, etc., which inevitably leads to an increase in manufacturing cost. In addition, since the conductive agent, the binder and the like are added, an extra electrolytic solution must be added, which also causes a decrease in the battery capacity per unit weight due to a decrease in the packing density of the active material. On the other hand, it is conceivable that the electrode is composed of only the powdered active material without adding a conductive agent or a binder, but a transition metal composite oxide (for example, LiCoO 2 , LiNiO 2) that does not have very high conductivity as an active material. , LiMnO 2 ) is used, even if the capacity per unit weight becomes large,
It became clear that there is a problem that the overvoltage is large and the charge capacity is reduced.

【0004】従って、本発明は、単位重量当たりの電池
容量を低下させる導電剤等を使用することなく、活物質
のみで構成しても十分な電子導電性が得られ、優れた充
放電特性を有する電池を安価に製造できるようにするこ
とを目的とするものである。
Therefore, according to the present invention, sufficient electronic conductivity can be obtained even when the active material alone is used without using a conductive agent or the like which reduces the battery capacity per unit weight, and excellent charge / discharge characteristics are obtained. The purpose of the present invention is to make it possible to inexpensively manufacture a battery included in the battery.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を達
成する手段として、活物質をバインダと共にスラリー化
し、ドクターブレード法により集電体基板上に焼成後の
膜厚が20μm以下になるように活物質層を形成した
後、該活物質層を焼成するようにしたものである。
Means for Solving the Problems As a means for achieving the above object, the present invention is to make an active material into a slurry together with a binder so that a film thickness after firing on a current collector substrate by a doctor blade method becomes 20 μm or less. After the active material layer is formed on the substrate, the active material layer is baked.

【0006】集電体基板の材料としては、ステンレス
鋼、アルミニウム、銅、ニッケルなどの金属、セラミッ
クス、合成樹脂などを使用でき、また、これらはプレー
ト、フイルム、箔、スクリーンなど従来公知の任意の形
態を採用することができる。
As the material of the collector substrate, metals such as stainless steel, aluminum, copper and nickel, ceramics, synthetic resins and the like can be used, and these are any conventionally known materials such as plates, films, foils and screens. A form can be adopted.

【0007】前記活物質としては、Fe23、MnO2
CuO2、V25、V613、LiOH-MnO2、LiCo
2、LiNiO2及びLiMn24などの酸化物系活物質が
挙げられるが、それらの中でもLiMn24や一般式:
LiNixCo1-x2(0≦x≦1)で表されるリチウム系
複合酸化物、即ち、LiCoO2、LiNiO2及びLiNix
Co1-xO2(0<x<1)を使用するのが好適である。
また、好ましい実施態様においては、活物質は5μm以
下の粒径をもつものが使用される。
Examples of the active material include Fe 2 O 3 , MnO 2 ,
CuO 2 , V 2 O 5 , V 6 O 13 , LiOH-MnO 2 , LiCo
Oxide active materials such as O 2 , LiNiO 2 and LiMn 2 O 4 may be mentioned. Among them, LiMn 2 O 4 and the general formula:
LiNi x Co 1-x O 2 (0 ≦ x ≦ 1), that is, a lithium-based composite oxide, that is, LiCoO 2 , LiNiO 2 and LiNi x
It is preferred to use Co 1- xO 2 (0 <x <1).
In a preferred embodiment, the active material used has a particle size of 5 μm or less.

【0008】[0008]

【作用】本発明は、酸化物系活物質の場合、通常の使用
方法では導電性を持たせるために導電剤を添加しなけれ
ばならないが、電極を非常に薄く、具体的には、20μ
m以下の膜厚にすると、導電剤を添加しなくても集電効
果を奏するようになり、活物質のみで十分な電子導電性
が得られる。
In the present invention, in the case of an oxide-based active material, a conductive agent must be added in order to give conductivity in a usual use method, but the electrode is very thin, specifically, 20 μm.
When the film thickness is less than or equal to m, a current collecting effect can be obtained without adding a conductive agent, and sufficient electronic conductivity can be obtained only with the active material.

【0009】[0009]

【実施例1】活物質原料として炭酸リチウム及びニ酸化
マンガンを用意し、これらをLiMn24となるように秤
量して混合し、800℃で10時間焼成した。次に、こ
の焼成粉末にトルエンを加え、ボールミルで粉砕し、マ
イクロトラック分析でのD50が1μmの活物質スラリー
を得た。このスラリーに3重量%のポリブチラールを添
加し、混合した後、ドクターブレード法により厚さ30
μmのステンレス鋼(SUS316)製集電体基板上に
直接塗布して厚さ30、20、10、5μmの活物質層
をそれぞれ形成した。
Example 1 Lithium carbonate and manganese dioxide were prepared as raw materials for the active material, and these were weighed and mixed so as to be LiMn 2 O 4, and calcined at 800 ° C. for 10 hours. Next, toluene was added to this calcined powder and the mixture was pulverized by a ball mill to obtain an active material slurry having a D50 of 1 μm in Microtrac analysis. After adding 3% by weight of polybutyral to this slurry and mixing, a thickness of 30% was obtained by the doctor blade method.
The active material layer having a thickness of 30, 20, 10, and 5 μm was formed by directly coating the current collector substrate made of μm stainless steel (SUS316).

【0010】この活物質層を自然雰囲気中、400℃で
熱処理し、添加したバインダを蒸発除去した後、17mm
φの円板状に打ち抜き、200℃で減圧乾燥して電極を
得た。この電極を正極として用い、セルを組み立てた。
このセルはコイン型電池で、図1に示すように、有底円
筒状ケース1内に集電体基板3a上に形成された活物質
層3bからなる正極3を配置し、その上にセパレータ5
及び負極4を順次積層した後、絶縁ガスケット6を装着
した封口板2を入れ、ケース1の縁部をかしめて一体化
した構造を有するものである。なお、電解液として、プ
ロピレンカーボネート(PC)と、1,2−ジメトキシ
エタン(DME)の容積比1:1の混合溶媒に過塩素酸
リチウム(LiClO4)を1モル/lで溶解させた非プロト
ン性有機電解液を用い、セパレータとしてセルガード2
502(商品名、ダイセル化学工業(株式会社))を、負極
として厚さ0.24mmのリチウム金属をそれぞれ用い
た。
This active material layer was heat-treated at 400 ° C. in a natural atmosphere to evaporate and remove the added binder, and then 17 mm
It was punched into a disk shape of φ and dried under reduced pressure at 200 ° C. to obtain an electrode. A cell was assembled using this electrode as a positive electrode.
This cell is a coin-type battery, and as shown in FIG. 1, a positive electrode 3 composed of an active material layer 3b formed on a current collector substrate 3a is placed in a bottomed cylindrical case 1, and a separator 5 is placed thereon.
After the negative electrode 4 and the negative electrode 4 are sequentially laminated, the sealing plate 2 fitted with the insulating gasket 6 is inserted, and the edge portion of the case 1 is caulked to be integrated. It should be noted that as the electrolytic solution, lithium perchlorate (LiClO 4 ) was dissolved at 1 mol / l in a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1. Celgard 2 as a separator using a protic organic electrolyte
502 (trade name, Daicel Chemical Industries, Ltd.) was used as a negative electrode with a lithium metal having a thickness of 0.24 mm.

【0011】得られた各セルについて、充放電電流密
度:1mA/cm2、充放終止電圧:4.5V、放電終止電
圧3.0Vの条件下で充放電サイクル試験を行った。そ
れらの結果を図2に示す。簡明化のため、図2の上側に
1サイクル目の充放電サイクル試験結果を、下側に10
0サイクル目の充放電サイクル試験結果をそれぞれ示
す。
A charging / discharging cycle test was conducted on each of the obtained cells under the conditions of a charging / discharging current density: 1 mA / cm 2 , a charging / discharging final voltage: 4.5V, and a discharge final voltage: 3.0V. The results are shown in FIG. For simplification, the charge / discharge cycle test result of the first cycle is shown on the upper side of FIG.
The charge / discharge cycle test results of the 0th cycle are shown.

【0012】図2から明らかなように、膜厚30μmの
活物質層を用いた比較例のセルは放電容量が小さくサイ
クル特性も悪いのに対して、本発明に係るセルは、放電
容量が比較例のものに比べて150%以上であり、サイ
クル特性も著しく向上していることが解る。
As is apparent from FIG. 2, the cell of the comparative example using the active material layer having a film thickness of 30 μm has a small discharge capacity and poor cycle characteristics, whereas the cell of the present invention has a comparative discharge capacity. It is 150% or more compared with the example, and it can be seen that the cycle characteristics are remarkably improved.

【0013】[0013]

【実施例2】活物質原料として炭酸リチウム及びニ酸化
マンガンを用意し、これらをLiMn24となるように秤
量して混合し、800℃で10時間焼成した。次に、こ
の焼成粉末にトルエンを加え、ボールミルで粉砕してマ
イクロトラック分析でのD50がそれぞれ2μm、5μm及
び7μmのLiMn24を含む活物質スラリーを得た。各
スラリーに3重量%のポリブチラールを添加し、混合し
た後、ドクターブレード法により厚さ30μmのステン
レス鋼(SUS316)製集電体基板上に直接塗布して
厚さ10μmの活物質層をそれぞれ形成した。
Example 2 Lithium carbonate and manganese dioxide were prepared as raw materials for the active material, and these were weighed and mixed so as to be LiMn 2 O 4, and calcined at 800 ° C. for 10 hours. Next, toluene was added to the calcined powder, and the mixture was pulverized by a ball mill to obtain an active material slurry containing LiMn 2 O 4 having D50s of 2 μm, 5 μm and 7 μm in Microtrack analysis. After adding 3% by weight of polybutyral to each slurry and mixing them, a doctor blade method was applied directly on a stainless steel (SUS316) current collector substrate having a thickness of 30 μm to form an active material layer having a thickness of 10 μm. Formed.

【0014】得られた各セルについて、実施例1と同条
件下で充放電サイクル試験を行った。それらの結果を図
3に示す。簡明化のため、図3の上側に1サイクル目の
充放電サイクル試験結果を、下側に100サイクル目の
充放電サイクル試験結果をそれぞれ示す。
A charge / discharge cycle test was conducted on each of the obtained cells under the same conditions as in Example 1. The results are shown in FIG. For simplification, the charge / discharge cycle test result of the first cycle is shown on the upper side of FIG. 3, and the charge / discharge cycle test result of the 100th cycle is shown on the lower side.

【0015】図3から明らかなように、粒径が本発明の
範囲外である7μmの活物質からなる比較例のセルは放
電容量が小さくサイクル特性も悪いのに対して、本発明
に係るセルは、比較例のものに比べて放電容量及びサイ
クル特性が著しく向上していることが解る。
As is apparent from FIG. 3, the cell of the comparative example having an active material having a particle size outside the range of the present invention and having a particle size of 7 μm has a small discharge capacity and a poor cycle characteristic, whereas the cell according to the present invention. It can be seen that the discharge capacity and the cycle characteristics are remarkably improved as compared with those of the comparative example.

【0016】なお、前記実施例では、活物質としてLi
Mn24を用いた例について説明したが、これのみに限
定されるものではなく、LiCoO2、LiNiO2、LiMn
2又はLiNixCo1-x2(0<x<1)を用いること
も可能であり、また、その合成温度及び混合溶媒はもち
ろんのこと、バインダの種類、バインダの添加量、集電
体基板材料、負極材料、電解液、セパレータなどについ
ても公知のものを任意に用いることができることは言う
までもない。
In the above embodiment, Li was used as the active material.
An example using Mn 2 O 4 has been described, but the present invention is not limited to this, and LiCoO 2 , LiNiO 2 , LiMn are used.
It is also possible to use O 2 or LiNix Co 1-x O 2 (0 <x <1), and, of course, the synthesis temperature and mixed solvent, the kind of binder, the amount of binder added, and the current collector substrate. Needless to say, known materials, negative electrode materials, electrolytic solutions, separators and the like can be arbitrarily used.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、活物質をバインダと共にスラリー化し、ドク
ターブレード法により集電体基板上に焼成後の膜厚が2
0μm以下になるように活物質層を形成し、これを焼成
するようにしたので、導電剤を添加することなく十分な
電子導電性が有する電極を製造でき、また、活物質をそ
の平均粒径が5μm以下になるように粉砕するようにし
たので、均一な厚みの膜を形成でき、セルのサイクル特
性を著しく向上させることができる。
As is apparent from the above description, according to the present invention, the active material is slurried together with the binder, and the film thickness after firing on the current collector substrate is 2 by the doctor blade method.
Since the active material layer is formed so as to have a thickness of 0 μm or less and is baked, an electrode having sufficient electronic conductivity can be manufactured without adding a conductive agent, and the active material has an average particle diameter of Since it was pulverized to have a particle size of 5 μm or less, a film having a uniform thickness can be formed and the cycle characteristics of the cell can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法による電極を用いたセルの断面図
である。
FIG. 1 is a cross-sectional view of a cell using an electrode according to the method of the present invention.

【図2】 本発明方法による電極を用いたリチウム二次
電池のセルの電圧容量特性図である。
FIG. 2 is a voltage capacity characteristic diagram of a cell of a lithium secondary battery using an electrode according to the method of the present invention.

【図3】 本発明方法による電極を用いたリチウム二次
電池のセルの電圧容量特性図である。
FIG. 3 is a voltage capacity characteristic diagram of a cell of a lithium secondary battery using an electrode according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 正極 3a 集電体基板 3b 活物質層 4 負極 5 セパレータ 6 絶縁ガスケット 1 Case 2 Sealing Plate 3 Positive Electrode 3a Current Collector Substrate 3b Active Material Layer 4 Negative Electrode 5 Separator 6 Insulation Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伴野 国三郎 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunizaburo Banno 2 26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活物質をバインダと共にスラリー化し、
ドクターブレード法により集電体基板上に焼成後の膜厚
が20μm以下になるように活物質層を形成した後、該
活物質層を焼成することを特徴とするリチウム二次電池
用電極の製造方法。
1. An active material is slurried together with a binder,
Manufacture of an electrode for a lithium secondary battery, which comprises forming an active material layer on a current collector substrate by a doctor blade method so that the film thickness after firing is 20 μm or less, and then firing the active material layer. Method.
【請求項2】 前記活物質が一般式:LiNixCo1-x2
(0≦x≦1)で表されるリチウム系複合酸化物である
請求項1記載のリチウム二次電池用電極の製造方法。
2. The active material has the general formula: LiNi x Co 1-x O 2.
The method for producing an electrode for a lithium secondary battery according to claim 1, which is a lithium-based composite oxide represented by (0 ≦ x ≦ 1).
【請求項3】 前記活物質がLiMn24である請求項1
記載のリチウム二次電池用電極の製造方法。
3. The active material is LiMn 2 O 4
A method for producing an electrode for a lithium secondary battery as described above.
【請求項4】 前記活物質が5μm以下の粒径である請
求項1〜3のいずれかに記載のリチウム二次電池用電極
の製造方法。
4. The method for producing an electrode for a lithium secondary battery according to claim 1, wherein the active material has a particle size of 5 μm or less.
JP6291457A 1994-11-25 1994-11-25 Manufacture of electrode for lithium secondary battery Pending JPH08148141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291457A JPH08148141A (en) 1994-11-25 1994-11-25 Manufacture of electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291457A JPH08148141A (en) 1994-11-25 1994-11-25 Manufacture of electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08148141A true JPH08148141A (en) 1996-06-07

Family

ID=17769123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291457A Pending JPH08148141A (en) 1994-11-25 1994-11-25 Manufacture of electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08148141A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062131A1 (en) * 1998-05-25 1999-12-02 Kao Corporation Method of manufacturing secondary battery negative electrode
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011025183A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Mixing apparatus and mixing method
JP2012059583A (en) * 2010-09-10 2012-03-22 Hitachi Vehicle Energy Ltd Electrode for secondary battery and method of manufacturing electrode
WO2016152833A1 (en) * 2015-03-25 2016-09-29 三井金属鉱業株式会社 Method for producing electrode for lithium secondary batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062131A1 (en) * 1998-05-25 1999-12-02 Kao Corporation Method of manufacturing secondary battery negative electrode
US6432579B1 (en) 1998-05-25 2002-08-13 Kao Corporation Method of manufacturing secondary battery negative electrode
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011025183A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Mixing apparatus and mixing method
JP2012059583A (en) * 2010-09-10 2012-03-22 Hitachi Vehicle Energy Ltd Electrode for secondary battery and method of manufacturing electrode
WO2016152833A1 (en) * 2015-03-25 2016-09-29 三井金属鉱業株式会社 Method for producing electrode for lithium secondary batteries

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5034136B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US20080193846A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
EP0696075A2 (en) Non-aqueous electrolyte secondary battery
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH08162114A (en) Lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
US7939207B2 (en) Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JPH08148141A (en) Manufacture of electrode for lithium secondary battery
KR100433592B1 (en) Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
WO2023026482A1 (en) Electrode, battery, and battery pack
JPH08180875A (en) Lithium secondary battery
JP2020166931A (en) Positive electrode active material for lithium ion secondary battery and method of manufacturing the same
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JPH10214629A (en) Lithium secondary battery
JPH05101827A (en) Non-aqueous secondary battery
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode
JPH11250936A (en) Lithium secondary battery
JPH11297309A (en) Nonaqueous electrolyte secondary battery