JPH11297309A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11297309A
JPH11297309A JP10102697A JP10269798A JPH11297309A JP H11297309 A JPH11297309 A JP H11297309A JP 10102697 A JP10102697 A JP 10102697A JP 10269798 A JP10269798 A JP 10269798A JP H11297309 A JPH11297309 A JP H11297309A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10102697A
Other languages
Japanese (ja)
Inventor
Naoki Shinoda
直樹 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10102697A priority Critical patent/JPH11297309A/en
Publication of JPH11297309A publication Critical patent/JPH11297309A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqeous electrolyte secondary battery of high capacity, without lowering productivity in the nonaquoeus electrolyte secondary battery using a negative active material with has high irreversible capacity. SOLUTION: In a nonaqueous electrolyte secondary battery having a positive electrode 1, a negative electrode 2 and a nonaqueous electrolyte and constituted by winding or layering the positive electrode 1 and the negative electrode 2 via a separator 3, a lithium compound metal oxide expressed by the formula Lix My Ni1-y Oz (where x>=0, 0<y<=0.5, 0.5<=z<=3.5, M represents at least one kind of alkali metal excepting Li or alkaline-earth metal, or a combination of at least one kind from among them and a metal excepting Ni) is used for a positive pole active material, when at least one kind out of negative active materials in an alloy, an oxide or a compound oxide selected from the IV group elements in the periodic table, except carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、さらに詳しくは、正極および負極がシート状
で、そのシート状の正極とシート状の負極をセパレータ
を介して巻回または積層して構成する非水電解液二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly, to a nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are sheet-shaped, and the sheet-shaped positive electrode and the sheet-shaped negative electrode are wound or separated via a separator. The present invention relates to a non-aqueous electrolyte secondary battery having a stacked configuration.

【0002】[0002]

【従来の技術】リチウムイオン二次電池に代表される非
水電解液二次電池の負極材料としては一般的にカーボン
が用いられているが、より高容量な材料としてリチウム
合金や金属または半金属の酸化物、硫化物、窒化物など
が検討されている。しかしながら、これらの材料の多く
は初回の充電で負極に挿入したリチウムの一部が以降の
放電において放出されず、不可逆容量として容量損失が
生ずる。従って、この不可逆分を余分に与えてやる必要
がある。
2. Description of the Related Art Carbon is generally used as a negative electrode material for non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries, but lithium alloys, metals or semimetals are used as higher capacity materials. Oxides, sulfides, nitrides, and the like have been studied. However, in many of these materials, part of lithium inserted into the negative electrode in the first charge is not released in subsequent discharge, and a capacity loss occurs as irreversible capacity. Therefore, it is necessary to provide an extra irreversible part.

【0003】その手段の一つとして負極に金属リチウム
箔を張り付け、化成によって負極にリチウムを挿入する
方法が提案されている。しかしながら、この方法はボタ
ン型電池などでは有効であるが、巻回構造の電極体や積
層構造の電極体を用いる電池では製造上困難を伴うこと
になる。特に負極の容量が正極の容量の2倍以上になる
と、電池の設計上、負極の厚みを薄くして正極との容量
のバランスをとらなければならないため、この負極の不
可逆分を補うのに必要な金属リチウム箔も相対的に薄く
しなければならず、取り扱える金属リチウム箔の薄さに
は限界があるため、実質上、電池の製造ができなくな
る。
As one of the means, a method has been proposed in which a metal lithium foil is attached to a negative electrode and lithium is inserted into the negative electrode by chemical conversion. However, this method is effective for a button-type battery or the like, but involves a difficulty in manufacturing a battery using an electrode body having a wound structure or an electrode body having a laminated structure. In particular, when the capacity of the negative electrode is more than twice the capacity of the positive electrode, the thickness of the negative electrode must be reduced in the battery design to balance the capacity with the positive electrode. The metal lithium foil must also be relatively thin, and there is a limit to the thickness of the metal lithium foil that can be handled, so that it is virtually impossible to manufacture a battery.

【0004】負極の不可逆容量を補う別の方法として、
電池外であらかじめ充電しておく方法や、化学的にリチ
ウムを挿入する方法などが検討されているが、これらの
方法は生産効率が悪いため、実用化されていない。
As another method for compensating for the irreversible capacity of the negative electrode,
A method of charging the battery in advance outside the battery or a method of chemically inserting lithium has been studied, but these methods have not been put to practical use due to poor production efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、巻回構造または積層構造
の電極体を用い、不可逆容量の大きい活物質を負極に用
いる非水電解液二次電池において、生産性を低下させる
ことなく、高容量の非水電解液二次電池を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and uses a non-aqueous solution in which an active material having a large irreversible capacity is used for a negative electrode using a wound structure or a laminated structure. An object of the present invention is to provide a high-capacity non-aqueous electrolyte secondary battery without lowering productivity in an electrolyte secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくとも正
極、負極および非水系の電解液を有し、上記正極および
負極がシート状で、そのシート状の正極とシート状の負
極をセパレータを介して巻回または積層して構成する非
水電解液二次電池において、負極活物質の少なくとも1
種が炭素を除く周期律表第14族元素の合金、酸化物ま
たは複合酸化物である場合に、正極活物質として、一般
式(I) Lix y Ni1-y z (I) (式中、x≧0、0<y≦0.5、1.5≦z≦3.
5、MはLi以外のアルカリ金属もしくはアルカリ土類
金属の少なくとも1種、またはそれらの少なくとも1種
とNi以外の金属との組合せ)で示されるリチウム複合
金属酸化物を用いることによって、上記課題を解決した
ものである。
The present invention comprises at least a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are sheet-shaped, and the sheet-shaped positive electrode and the sheet-shaped negative electrode are interposed via a separator. In a non-aqueous electrolyte secondary battery configured by winding or laminating, at least one of the negative electrode active materials
Species alloy of the periodic table group 14 elements excluding carbon, when an oxide or a composite oxide, as a cathode active material, the general formula (I) Li x M y Ni 1-y O z (I) ( Where x ≧ 0, 0 <y ≦ 0.5, 1.5 ≦ z ≦ 3.
5, M is at least one alkali metal or alkaline earth metal other than Li, or a combination of at least one of them and a metal other than Ni), thereby achieving the above object. It is a solution.

【0007】これを詳しく説明すると、まず、負極活物
質が持つ不可逆容量は、充電時にリチウムイオンを吸収
するが、放電時に放出しないために生じる。一方、正極
活物質としてLix NiO2 (x≧O)を用いると、初
回の不可逆容量が10%ほど生じるが、これは負極の不
可逆容量とは反対に、初回の充電時に放出したリチウム
イオンの一部が放電で吸収されなくなるために生じる。
そこで、両者を組み合わせて電池にすれば、正極の不可
逆容量分のリチウムイオンが負極の不可逆容量分を補う
ことが可能になる。
To explain this in detail, first, the irreversible capacity of the negative electrode active material occurs because lithium ions are absorbed during charging but are not released during discharging. On the other hand, when Li x NiO 2 (x ≧ O) is used as the positive electrode active material, the initial irreversible capacity is about 10%, which is opposite to the irreversible capacity of the negative electrode. This is caused by the fact that some are not absorbed by the discharge.
Therefore, if both are combined to form a battery, lithium ions corresponding to the irreversible capacity of the positive electrode can compensate for the irreversible capacity of the negative electrode.

【0008】しかしながら、負極活物質として周期律表
第14族元素の合金、酸化物または複合酸化物を用いる
と、初回の充電で負極に挿入したリチウムイオンの30
〜60%が不可逆容量となってしまい、正極にLix
iO2 を用いても負極の不可逆容量を補いきれない。
However, when an alloy, oxide or composite oxide of an element belonging to Group 14 of the periodic table is used as the negative electrode active material, 30% of lithium ions inserted into the negative electrode during the first charge can be obtained.
6060% becomes irreversible capacity, and Li x N
Even if iO 2 is used, the irreversible capacity of the negative electrode cannot be compensated.

【0009】そこで、本発明者は、上記のような負極活
物質を用いる場合の負極の不可逆容量を補うべく種々検
討を重ねた結果、Lix NiO2 (x≧O)を主体と
し、そのNiの一部をアルカリ金属やアルカリ土類金属
などで置換したものを正極活物質として用いるときは、
その添加量に応じて正極の不可逆容量を増加させること
ができることを見出し、その知見に基づいて、負極の
(放電容量に対する)不可逆容量比と正極のそれとがほ
ぼ等しくなるようにアルカリ金属やアルカリ土類金属な
どの添加量を調整し、正極と負極の不可逆容量を相互に
補完させることによって、正極原料を変更する以外は、
従来と同様の製造工程で高容量の非水電解液二次電池を
製造できることを見出したのである。
Therefore, the present inventor has conducted various studies to compensate for the irreversible capacity of the negative electrode when the above-mentioned negative electrode active material is used. As a result, the present inventors have made Li x NiO 2 (x ≧ O) as a main component, When a part of is replaced with an alkali metal or an alkaline earth metal as the positive electrode active material,
It has been found that the irreversible capacity of the positive electrode can be increased in accordance with the amount of addition. Except for changing the raw material of the positive electrode, by adjusting the addition amount of similar metals and complementing the irreversible capacity of the positive electrode and the negative electrode with each other,
They have found that a high-capacity non-aqueous electrolyte secondary battery can be manufactured in the same manufacturing process as before.

【0010】[0010]

【発明の実施の形態】本発明では、前記のように、正極
活物質として、一般式(I) Lix y Ni1-y z (I) (式中、x≧0、0<y≦0.5、1.5≦z≦3.
5、MはLi以外のアルカリ金属もしくはアルカリ土類
金属の少なくとも1種、またはそれらの少なくとも1種
とNi以外の金属との組合せ)で示されるリチウム複合
金属酸化物を用いる。
In DETAILED DESCRIPTION OF THE INVENTION The present invention, as described above, as a positive electrode active material, in the general formula (I) Li x M y Ni 1-y O z (I) ( wherein, x ≧ 0,0 <y ≦ 0.5, 1.5 ≦ z ≦ 3.
5, M uses a lithium composite metal oxide represented by at least one kind of alkali metal or alkaline earth metal other than Li, or a combination of at least one kind thereof and a metal other than Ni).

【0011】上記一般式(I)中のMとしてはLiを除
くアルカリ金属もしくはアルカリ土類金属であればいず
れでもよいが、コストの低いNa、K、Mg、Caなど
が好ましく、これらの金属の2種以上を併用してもよ
い。また、それらのアルカリ金属もしくはアルカリ土類
金属と組合せる金属としては、例えば、Al、Ti、M
n、Fe、Crなどが挙げられる。
In the above general formula (I), M may be any alkali metal or alkaline earth metal except Li, but preferably low cost Na, K, Mg, Ca and the like. Two or more kinds may be used in combination. Examples of the metal to be combined with the alkali metal or the alkaline earth metal include, for example, Al, Ti, M
n, Fe, Cr and the like.

【0012】また、上記一般式(I)中のyを0<y≦
0.5とするのは、Mで示されるアルカリ金属やアルカ
リ土類金属などが上記範囲より多くなると、Niの持つ
高容量、高電圧という特性が充分に発揮されなくなるか
らであり、また、zはMの酸化数とy値の設定によっ
て、ほぼ一義的に1.5≦z≦3.5の範囲内に決ま
る。
Further, y in the general formula (I) is 0 <y ≦
The reason for setting the value to 0.5 is that if the amount of the alkali metal or alkaline earth metal represented by M exceeds the above range, the high capacity and high voltage characteristics of Ni cannot be sufficiently exhibited. Is determined substantially uniquely within the range of 1.5 ≦ z ≦ 3.5 by setting the oxidation number of M and the y value.

【0013】本発明において、負極活物質として用いる
炭素を除く周期律表第14族元素の合金、酸化物または
複合酸化物としては、例えば、NiSia (0.5≦a
≦6)、MgSib (0.5≦b≦6)、ウッド合金、
Lic SiO(0≦c≦6)、Lid SnSiOe (d
≧0、2≦e≦4)、Lif SnPg h k (f≧
0、0≦g、h≦1、2≦k≦8)などが挙げられる
が、もちろん、これらに限られることはない。
In the present invention, the alloy, oxide or composite oxide of Group 14 element except for carbon used as the negative electrode active material is, for example, NiSi a (0.5 ≦ a
≦ 6), MgSi b (0.5 ≦ b ≦ 6), wood alloy,
Li c SiO (0 ≦ c ≦ 6), Li d SnSiO e (d
≧ 0,2 ≦ e ≦ 4), Li f SnP g B h O k (f ≧
0, 0 ≦ g, h ≦ 1, 2 ≦ k ≦ 8) and the like, but are not limited to these.

【0014】また、サイクルの安定性や熱安定性のため
にその他の遷移金属を同時に添加してもよく、例えば、
AlやCoなどを添加すると熱安定性が向上するので好
ましい。これらの遷移金属の添加量は、添加する遷移金
属の種類によっても微妙に変わるため一意的に示すこと
はできないが、負極の放電容量に対する不可逆容量の比
が正極のそれとほぼ等しくなるように調節するのが好ま
しい。しかしながら、ある程度の容量を得るためには、
50原子%以下での置換が好ましく、より好ましくは5
0原子%以下20原子%以上である。ただし、CoやM
nを添加する場合は、容量の減少はわずかであるため、
その限りではない。
Further, other transition metals may be added simultaneously for cycle stability and thermal stability.
It is preferable to add Al, Co, or the like because thermal stability is improved. The addition amount of these transition metals cannot be uniquely indicated because it varies slightly depending on the type of transition metal to be added, but is adjusted so that the ratio of the irreversible capacity to the discharge capacity of the negative electrode is almost equal to that of the positive electrode. Is preferred. However, to get some capacity,
Substitution at 50 atomic% or less is preferred, more preferably 5 atomic%.
0 at% or less and 20 at% or more. However, Co or M
When n is added, since the decrease in capacity is slight,
That is not the case.

【0015】上記のような炭素を除く周期律表第14族
元素の合金、酸化物または複合酸化物を単独で負極活物
質として用いると、充放電に伴って負極の膨張収縮が起
こり、負極活物質などの微粉化などが生じてサイクル劣
化を引き起こす原因になるため、黒鉛系炭素材料を併用
するのが好ましく、特に負極の活物質として酸化物を用
いる場合には導電性を確保する観点からも好ましい。
When an alloy, oxide or composite oxide of the Group 14 elements except for carbon is used alone as the negative electrode active material, the negative electrode expands and contracts with charging and discharging, and the negative electrode It is preferable to use a graphite-based carbon material in combination, since it may cause fine deterioration of the substance and the like and cause cycle deterioration, particularly from the viewpoint of securing conductivity when an oxide is used as an active material of the negative electrode. preferable.

【0016】この黒鉛系炭素材料としては、X線回析分
析での(002)面の面間隔(d00 2 )が3.5Å以下
のものが好ましく、より好ましくは3.45Å以下のも
の、さらに好ましくは3.4Å以下のものである。ま
た、この黒鉛系炭素材料は、c軸方向の結晶子の大きさ
(Lc)が30Å以上のものが好ましく、より好ましく
は80Å以上のもの、さらに好ましくは250Å以上の
ものである。さらに、この黒鉛系炭素材料は、平均粒径
が8〜15μm、特に10〜13μmのものが好まし
く、純度は99.9%以上のものが好ましい。
The graphite-based carbon material preferably has a (002) plane spacing (d 00 2 ) of 3.5 ° or less, more preferably 3.45 ° or less, in X-ray diffraction analysis. More preferably, it is 3.4 ° or less. The graphite carbon material preferably has a crystallite size (Lc) in the c-axis direction of 30 ° or more, more preferably 80 ° or more, and further preferably 250 ° or more. Further, the graphite-based carbon material preferably has an average particle size of 8 to 15 μm, particularly preferably 10 to 13 μm, and preferably has a purity of 99.9% or more.

【0017】この黒鉛系炭素材料の具体例としては、例
えば、鱗片状黒鉛、塊状黒鉛、繊維状黒鉛、球状黒鉛な
どが挙げられ、この黒鉛系炭素材料の炭素を除く周期律
表第14族元素の合金、酸化物または複合酸化物に対す
る使用量は、重量比で、炭素を除く周期律表第14族元
素の合金、酸化物または複合酸化物:黒鉛系炭素材料=
95:5:〜40:60が好ましい。
Specific examples of the graphite-based carbon material include, for example, flaky graphite, massive graphite, fibrous graphite, spherical graphite, and the like. The amounts of the alloys, oxides or composite oxides of the present invention are, by weight, alloys, oxides or composite oxides of Group 14 elements excluding carbon: graphite-based carbon material =
95: 5: to 40:60 is preferred.

【0018】本発明において、正極の作製は、例えば、
前記一般式(I)で示されるリチウム複合金属酸化物か
らなる正極活物質に、必要に応じて、導電助剤、バイン
ダーなどを加えて混合して正極合剤にし、それを溶剤で
ペースト状にし(ただし、バインダーはあらかじめ溶剤
に溶解させておいてから正極活物質などと混合してもよ
い)、その正極合剤ペーストを集電体に塗布し、乾燥し
て集電体の少なくとも一方の面に正極合剤層を形成する
ことによって行われる。ただし、正極の作製は上記例示
の方法に限られることはない。
In the present invention, the preparation of the positive electrode is performed, for example, by
If necessary, a conductive additive, a binder, and the like are added to the positive electrode active material composed of the lithium composite metal oxide represented by the general formula (I) and mixed to form a positive electrode mixture, which is formed into a paste with a solvent. (However, the binder may be dissolved in a solvent in advance and then mixed with the positive electrode active material or the like), and the positive electrode mixture paste is applied to a current collector, dried, and dried on at least one surface of the current collector. This is performed by forming a positive electrode mixture layer on the substrate. However, the production of the positive electrode is not limited to the method exemplified above.

【0019】また、負極の作製は、例えば、前記の負極
活物質に、必要に応じて、導電助剤、バインダーなどを
加えて混合して負極合剤を調製し、それを溶剤でペース
ト状にし(ただし、バインダーはあらかじめ溶剤に溶解
させておいてから負極活物質などと混合してもよい)、
その負極合剤ペーストを集電体に塗布し、乾燥して集電
体の少なくとも一方の面に負極合剤層を形成することに
よって行われる。ただし、負極の作製は上記例示の方法
に限られることはない。
For the preparation of the negative electrode, for example, a conductive additive, a binder and the like are added to the negative electrode active material, if necessary, and mixed to prepare a negative electrode mixture, which is made into a paste with a solvent. (However, the binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material, etc.),
This is performed by applying the negative electrode mixture paste to a current collector, drying and forming a negative electrode mixture layer on at least one surface of the current collector. However, the production of the negative electrode is not limited to the method exemplified above.

【0020】上記導電助剤としては、例えば、鱗片状黒
鉛、カーボンブラック、アセチレンブラックなどが用い
られ、バインダーとしては、例えば、ポリフッ化ビニリ
デン、ポリテトラフルオロエチレン、カルボキシメチル
セルロース、ポリアクリル酸などが用いられる。
As the conductive aid, for example, flaky graphite, carbon black, acetylene black and the like are used, and as the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, carboxymethyl cellulose, polyacrylic acid and the like are used. Can be

【0021】上記正極や負極の集電体としては、例え
ば、アルミニウム、銅、ニッケル、ステンレス鋼などの
金属製の箔、網などが用いられるが、正極の集電体とし
てはアルミニウム箔を用いることが好ましく、負極の集
電体としては銅箔を用いることが好ましい。
As the current collector for the positive electrode or the negative electrode, for example, a metal foil or a net made of aluminum, copper, nickel, stainless steel or the like is used. As the current collector for the positive electrode, an aluminum foil is used. It is preferable to use a copper foil as the current collector of the negative electrode.

【0022】本発明において、電解液としては、有機溶
媒に電解質を溶解させて調製した非水系の電解液が用い
られる。電解液の溶媒としては、例えば、ジメチルエー
テル、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、5−ジメチルテトラヒドロフラン、1,2−ジエ
トキシエタン、1−メトキシプロパン、1−メトキシブ
タン、γ−ブチロラクトン、エチレンカーボネート、プ
ロピレンカーボネート、ジエチルカーボネート、ジメチ
ルカーボネート、エチルメチルカーボネートなどの有機
溶媒がそれぞれ単独でまたは2種以上混合して用いら
れ、電解質としては、例えば、LiClO4 、LiPF
6 、LiBF4 、LiAsF6 、LiSbF6 、LiC
3 SO3 、LiC4 9 SO3 、LiCF3 CO2
Li2 24 (SO3 2 、LiN(CF3 SO2
2 、LiC(CF3 SO2 3 、LiCn 2n+1SO3
(n≧2)、LiN(RfOSO2 2 〔ここでRfは
フルオロアルキル基〕などが単独でまたは2種以上混合
して用いられ、それらの中でも、LiPF6 やLiC4
9 SO3 は充放電特性が良好なため、好適に用いられ
る。これら電解質の電解液中の濃度は、特に限定される
ものではないが、通常、0.1モル/リットル以上、特
に0.4モル/リットル以上、とりわけ1.2モル/リ
ットル以上が好ましく、2モル/リットル以下、特に
1.7モル/リットル以下、とりわけ1.5モル/リッ
トル以下が好ましい。
In the present invention, a non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent is used as the electrolyte. Examples of the solvent for the electrolytic solution include dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 5-dimethyltetrahydrofuran, 1,2-diethoxyethane, 1-methoxypropane, 1-methoxybutane, γ-butyrolactone, ethylene carbonate, and propylene carbonate. , Diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and other organic solvents may be used alone or in combination of two or more, and examples of the electrolyte include LiClO 4 , LiPF
6, LiBF 4, LiAsF 6, LiSbF 6, LiC
F 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 ,
Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 )
2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3
(N ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used alone or in combination of two or more. Among them, LiPF 6 and LiC 4 are used.
F 9 SO 3 is preferably used because of its good charge / discharge characteristics. The concentration of these electrolytes in the electrolytic solution is not particularly limited, but is usually 0.1 mol / L or more, particularly 0.4 mol / L or more, and particularly preferably 1.2 mol / L or more. Mol / l or less, particularly 1.7 mol / l or less, particularly preferably 1.5 mol / l or less.

【0023】セパレータとしては、例えば、微孔性のポ
リエチレンフィルム、微孔性のポリプロピレンフィル
ム、微孔性のポリエチレン−ポリプロピレン複合フィル
ムなどが好適に用いられるが、それら以外のものであっ
てもよい。
As the separator, for example, a microporous polyethylene film, a microporous polypropylene film, a microporous polyethylene-polypropylene composite film and the like are preferably used, but other materials may be used.

【0024】上記の正極や負極はシート状に作製され、
それらのシート状の正極とシート状の負極はセパレータ
を介在させて渦巻状などに巻回されて巻回構造の電極体
にするか、または上記正極と負極をセパレータを介在さ
せて積層して積層構造の電極体にして、電極の表面積を
大きくして、高出力での使用に適するようにされる。
The above-described positive electrode and negative electrode are manufactured in a sheet shape,
The sheet-shaped positive electrode and the sheet-shaped negative electrode are wound in a spiral shape with a separator interposed therebetween to form a wound electrode body, or the positive electrode and the negative electrode are stacked with a separator interposed therebetween and laminated. The structure of the electrode body increases the surface area of the electrode, making it suitable for use at high power.

【0025】[0025]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0026】実施例1 メチルエチルカーボネートとエチレンカーボネートとを
体積比75:25で混合し、この混合溶媒にLiPF6
を1.4モル/リットル溶解させて、組成が1.4mo
l/lLiPF6 /EC:MEC(25:75体積比)
で示される電解液を調製した。
Example 1 Methyl ethyl carbonate and ethylene carbonate were mixed at a volume ratio of 75:25, and LiPF 6 was added to the mixed solvent.
Was dissolved in 1.4 mol / l to give a composition of 1.4 mol.
1 / l LiPF 6 / EC: MEC (25:75 volume ratio)
Was prepared.

【0027】これとは別に、LiK0.3 Ni0.7 2
導電助剤として鱗片状黒鉛を重量比90:6.3で加え
て混合し、この混合物と、ポリフッ化ビニリデンをN−
メチルピロリドンに溶解させた溶液とを混合してペース
トにした。このバインダーとしてのポリフッ化ビニリデ
ンの正極活物質のLiK0.3 Ni0.7 2 に対する使用
量は、LiK0.3 Ni0.7 2 90重量部に対してポリ
フッ化ビニリデン10重量部の割合である。この正極合
剤ペーストを70メッシュの網を通過させて大きなもの
を取り除いた後、厚さ20μmのアルミニウム箔からな
る正極集電体の両面に均一に塗布し、乾燥して正極合剤
層を形成し、その後、ローラプレス機により圧縮成形し
た後、切断し、リード体を溶接して、帯状の正極を作製
した。
Separately, flaky graphite is added to LiK 0.3 Ni 0.7 O 2 as a conductive aid at a weight ratio of 90: 6.3 and mixed, and this mixture and polyvinylidene fluoride are mixed with N-
A solution dissolved in methylpyrrolidone was mixed to form a paste. The amount of polyvinylidene fluoride used as the binder for the positive electrode active material with respect to LiK 0.3 Ni 0.7 O 2 is a ratio of 10 parts by weight of polyvinylidene fluoride to 90 parts by weight of LiK 0.3 Ni 0.7 O 2 . This positive electrode mixture paste is passed through a 70-mesh net to remove large pieces, and then uniformly applied to both sides of a positive electrode current collector made of aluminum foil having a thickness of 20 μm, and dried to form a positive electrode mixture layer. Then, after compression-molding with a roller press machine, it was cut and the lead body was welded to produce a belt-shaped positive electrode.

【0028】つぎに、組成がNiSi2.4 で示されるニ
ッケル−ケイ素合金の粉末に導電助剤としての作用も若
干兼ねて鱗片状黒鉛を重量比60:40で加えて混合
し、ポリフッ化ビニリデンをN−メチルピロリドンに溶
解させた溶液と混合してペーストにした。このポリフッ
化ビニリデンの使用量は上記NiSi2.4 と鱗片状黒鉛
との混合物90重量部に対して10重量部の割合であっ
た。また、上記鱗片状黒鉛の(002)面の面間隔(d
002 )は3.354Åで、c軸方向の結晶子の大きさ
(Lc)は768Åであった。この負極合剤ペーストを
70メッシュの網を通過させて大きなものを取り除いた
後、厚さ10μmの帯状の銅箔からなる負極集電体の両
面に均一に塗布し、乾燥して負極合剤層を形成し、その
後、ローラプレス機により圧縮成形し、切断した後、リ
ード体を溶接して、帯状の負極を作製した。
Next, flaky graphite was added to a nickel-silicon alloy powder having a composition of NiSi 2.4 at a weight ratio of 60:40, which also slightly acts as a conductive additive, and mixed. Mixed with a solution dissolved in methylpyrrolidone to form a paste. The amount of the polyvinylidene fluoride used was 10 parts by weight based on 90 parts by weight of the mixture of NiSi 2.4 and flaky graphite. Further, the spacing (d) of the (002) plane of the flake graphite
002 ) was 3.354 ° and the crystallite size (Lc) in the c-axis direction was 768 °. The negative electrode mixture paste was passed through a 70-mesh net to remove large pieces, and then uniformly applied to both sides of a negative electrode current collector made of a 10 μm-thick strip-shaped copper foil, dried, and dried. Was formed by compression with a roller press, cut, and then the lead body was welded to produce a strip-shaped negative electrode.

【0029】前記帯状正極を厚さ25μmの微孔性ポリ
エチレンフィルムを介して上記帯状負極に重ね、渦巻状
に巻回して渦巻状巻回構造の電極体とした後、外径18
mmの有底円筒状の電池缶内に充填し、正極および負極
のリード体の溶接を行った。
The strip-shaped positive electrode is overlaid on the strip-shaped negative electrode via a microporous polyethylene film having a thickness of 25 μm, and is spirally wound into an electrode body having a spirally wound structure.
mm, and the lead bodies of the positive electrode and the negative electrode were welded.

【0030】つぎに、前記電解液を電池缶内に注入し、
電解液がセパレータなどに充分に浸透した後、封口し、
予備充電、エイジングを行い、図1の模式図に示すよう
な構造の筒形の非水電解液二次電池を作製した。
Next, the electrolytic solution was poured into a battery can.
After the electrolyte has sufficiently penetrated into the separator, etc., seal it,
Preliminary charging and aging were performed to produce a cylindrical non-aqueous electrolyte secondary battery having a structure as shown in the schematic diagram of FIG.

【0031】ここで、図1に示す電池について説明する
と、1は上記の正極で、2は負極である。ただし、図1
では、繁雑化を避けるため、正極1や負極2の作製にあ
たって使用した集電体としての金属箔などは図示してい
ない。そして、これらの正極1と負極2はセパレータ3
を介して渦巻状に巻回され、渦巻状巻回構造の電極体と
して上記の電解液4と共に電池缶5内に収容されてい
る。
Here, the battery shown in FIG. 1 will be described. 1 is the above positive electrode, and 2 is the negative electrode. However, FIG.
Here, in order to avoid complication, a metal foil or the like as a current collector used in manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. The positive electrode 1 and the negative electrode 2 are connected to a separator 3
, And is housed in a battery can 5 together with the electrolytic solution 4 as an electrode body having a spirally wound structure.

【0032】電池缶5はステンレス鋼製で、負極端子を
兼ねており、電池缶5の底部には上記渦巻状巻回構造の
電極体の挿入に先立って、ポリプロピレンからなる絶縁
体6が配置されている。封口板7はアルミニウム製で、
円板状をしていて、中央部に薄肉部7aを設け、かつ上
記薄肉部7aの周囲に電池内圧を防爆弁9に作用させる
ための圧力導入口7bとしての孔が設けられている。そ
して、この薄肉部7aの上面に防爆弁9の突出部9aが
溶接され、溶接部分11を構成している。なお、上記の
封口板7に設けた薄肉部7aや防爆弁9の突出部9aな
どは、図面上での理解がしやすいように、切断面のみを
図示しており、切断面後方の輪郭線は図示を省略してい
る。また、封口板7の薄肉部7aと防爆弁9の突出部9
aとの溶接部分11も、図面上での理解が容易なよう
に、実際よりは誇張した状態に図示している。
The battery can 5 is made of stainless steel and also serves as a negative electrode terminal. An insulator 6 made of polypropylene is arranged at the bottom of the battery can 5 before inserting the spirally wound electrode body. ing. The sealing plate 7 is made of aluminum,
It has a disk shape, is provided with a thin portion 7a at the center, and a hole is provided around the thin portion 7a as a pressure introduction port 7b for applying an internal pressure of the battery to the explosion-proof valve 9. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. In addition, the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are illustrated only in a cut plane so as to be easily understood in the drawings, and a contour line behind the cut plane is shown. Is not shown. Further, the thin portion 7a of the sealing plate 7 and the projection 9 of the explosion-proof valve 9 are provided.
The welded portion 11 with "a" is illustrated in an exaggerated state rather than the actual one so that the drawing can be easily understood.

【0033】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出孔8aが設けられてい
る。防爆弁9は、アルミニウム製で、円板状をしてお
り、その中央部には発電要素側(図1では、下側)に先
端部を有する突出部9aが設けられ、かつ薄肉部9bが
設けられ、上記突出部9aの下面が、前記したように、
封口板7の薄肉部7aの上面に溶接され、溶接部分11
を構成している。絶縁パッキング10は、ポリプロピレ
ン製で、環状をしており、封口板7の周縁部の上部に配
置され、その上部に防爆弁9が配置していて、封口板7
と防爆弁9とを絶縁するとともに、両者の間から電解液
が漏れないように両者の間隙を封止している。環状ガス
ケット12はポリプロピレン製で、リード体13はアル
ミニウム製で、前記封口板7と正極1とを接続し、渦巻
状巻回構造の電極体の上部には絶縁体14が配置され、
負極2と電池缶5の底部とはニッケル製のリード体15
で接続されている。
The terminal plate 8 is made of rolled steel, has a nickel-plated surface, and has a hat-like shape with a peripheral edge formed in a flange shape. The terminal plate 8 is provided with a gas discharge hole 8a. . The explosion-proof valve 9 is made of aluminum and has a disk shape. A projection 9a having a tip portion is provided at a center portion of the explosion-proof valve on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided. Provided, and the lower surface of the protruding portion 9a is, as described above,
The welding portion 11 is welded to the upper surface of the thin portion 7a of the sealing plate 7.
Is composed. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is disposed thereon.
And the explosion-proof valve 9 and the gap between the two is sealed so that the electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, the lead body 13 is made of aluminum, connects the sealing plate 7 and the positive electrode 1, and an insulator 14 is disposed above the spirally wound electrode body,
The negative electrode 2 and the bottom of the battery can 5 are connected to a lead 15 made of nickel.
Connected by

【0034】実施例2 LiK0.3 Ni0.7 2 に代えてLiMg0.4 Ni0.6
2 を正極活物質として用い、NiSi2.4 に代えてS
iOを負極活物質として用いた以外は、実施例1と同様
に非水電解液二次電池を作製した。
Example 2 LiMg 0.4 Ni 0.6 instead of LiK 0.3 Ni 0.7 O 2
O 2 is used as the positive electrode active material, and S 2 is used instead of NiSi 2.4.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that iO was used as the negative electrode active material.

【0035】比較例1 LiK0.3 Ni0.7 2 に代えてLiNiO2 を正極活
物質として用いた以外は、実施例1と同様に非水電解液
二次電池を作製した。
Comparative Example 1 A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that LiNiO 2 was used as a positive electrode active material instead of LiK 0.3 Ni 0.7 O 2 .

【0036】比較例2 LiMg0.4 Ni0.6 2 に代えてLiNiO2 を正極
活物質として用いた以外は、実施例2と同様に非水電解
液二次電池を作製した。
Comparative Example 2 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2, except that LiNiO 2 was used as a positive electrode active material instead of LiMg 0.4 Ni 0.6 O 2 .

【0037】上記のように作製した実施例1〜2および
比較例1〜2の正極および負極についてはそれらの不可
逆容量比を調べ、電池については充放電を行って放電容
量を調べた。その結果を表1と表2に示す。それらの測
定方法は次の通りである。
The irreversible capacity ratios of the positive electrodes and negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 prepared as described above were examined, and the discharge capacity of the batteries was examined by charging and discharging. The results are shown in Tables 1 and 2. The measuring method is as follows.

【0038】〈不可逆容量比〉実施例1〜2および比較
例1〜2の正極および負極について、対極を金属リチウ
ムにして、0.2Cで電圧1.8〜3.2Vの範囲で1
回充放電させ、1サイクル目の充電容量と放電容量との
差を求め、その不可逆容量を放電容量で割って、不可逆
容量比(1サイクル目の不可逆容量/充電容量)を求め
た。その結果を表1に示す。
<Irreversible Capacity Ratio> With respect to the positive electrode and the negative electrode of Examples 1 and 2 and Comparative Examples 1 and 2, the counter electrode was made of metallic lithium, and a voltage of 1.8 to 3.2 V at 0.2 C was applied.
The battery was repeatedly charged and discharged, the difference between the charge capacity and the discharge capacity in the first cycle was obtained, and the irreversible capacity was divided by the discharge capacity to obtain an irreversible capacity ratio (irreversible capacity in the first cycle / charge capacity). Table 1 shows the results.

【0039】〈放電容量〉上記実施例1〜2および比較
例1〜2の電池について、0.2Cで電圧2.75V〜
4.1Vの範囲で充放電させ、初回の放電容量を調べ
た。その結果を表2に示す。
<Discharge Capacity> With respect to the batteries of Examples 1 and 2 and Comparative Examples 1 and 2, a voltage of 2.75 V and 0.2 C was obtained.
The battery was charged and discharged in the range of 4.1 V, and the initial discharge capacity was examined. Table 2 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示すように、実施例1〜2は、放電
容量が大きく、高容量であった。これは、表1に示すよ
うに、実施例1〜2では正極と負極の不可逆容量比が等
しく、正極の不可逆容量が負極の不可逆容量を補ったこ
とに基づくものと考えられる。
As shown in Table 2, Examples 1 and 2 had a large discharge capacity and a high capacity. This is presumably because, as shown in Table 1, in Examples 1 and 2, the irreversible capacity ratios of the positive electrode and the negative electrode were equal, and the irreversible capacity of the positive electrode compensated for the irreversible capacity of the negative electrode.

【0043】これに対して、比較例1〜2では、表1に
示すように、負極の不可逆容量比が正極の不可逆容量比
より大きく、正極の不可逆容量が負極の不可逆容量を補
っていないので、表2に示すように、放電容量が小さく
なった。
On the other hand, in Comparative Examples 1 and 2, as shown in Table 1, the irreversible capacity ratio of the negative electrode was larger than that of the positive electrode, and the irreversible capacity of the positive electrode did not compensate for the irreversible capacity of the negative electrode. As shown in Table 2, the discharge capacity was reduced.

【0044】この実施例1〜2では、表1に示すよう
に、正極の不可逆容量比が負極の不可逆容量比と等しか
ったが、これは予備試験してKやMgの添加量を変えて
不可逆容量を調整したからであり、実際の電池作製にあ
たっても、そのような予備試験を経ることが必要であ
る。
In Examples 1 and 2, as shown in Table 1, the irreversible capacity ratio of the positive electrode was equal to the irreversible capacity ratio of the negative electrode. This is because the capacity was adjusted, and it is necessary to go through such a preliminary test even in actual battery fabrication.

【0045】本発明では、上記実施例からも明らかなよ
うに、負極に金属リチウム箔の張り付けなどを要するこ
となく、電池を製造できるので、生産性の低下が生じな
い。従って、本発明によれば、生産性を低下させること
なく、高容量の非水電解液二次電池を製造することがで
きる。
According to the present invention, as is apparent from the above-described embodiment, the battery can be manufactured without the necessity of attaching a metallic lithium foil to the negative electrode, so that the productivity does not decrease. Therefore, according to the present invention, a high-capacity non-aqueous electrolyte secondary battery can be manufactured without reducing productivity.

【0046】[0046]

【発明の効果】以上説明したように、本発明では、生産
性を低下させることなく、高容量の非水電解液二次電池
を提供することができた。
As described above, according to the present invention, a high-capacity non-aqueous electrolyte secondary battery can be provided without reducing productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の一例を模式的に
示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing one example of a non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも正極、負極および非水系の電
解液を有し、上記正極および負極がシート状で、そのシ
ート状の正極とシート状の負極をセパレータを介して巻
回または積層して構成する非水電解液二次電池におい
て、負極活物質の少なくとも1種が炭素を除く周期律表
第14族元素の合金、酸化物または複合酸化物である場
合に、正極活物質として、一般式(I) Lix y Ni1-y z (I) (式中、x≧0、0<y≦0.5、1.5≦z≦3.
5、MはLi以外のアルカリ金属もしくはアルカリ土類
金属の少なくとも1種、またはそれらのうちの少なくと
も1種とNi以外の金属との組合せ)で示されるリチウ
ム複合金属酸化物を用いることを特徴とする非水電解液
二次電池。
1. A battery comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolytic solution, wherein the positive electrode and the negative electrode are sheet-shaped, and the sheet-shaped positive electrode and the sheet-shaped negative electrode are wound or laminated with a separator interposed therebetween. When at least one of the negative electrode active materials is an alloy, oxide or composite oxide of a Group 14 element of the periodic table excluding carbon, a non-aqueous electrolyte secondary battery having the general formula ( I) Li x M y Ni 1 -y O z (I) ( wherein, x ≧ 0,0 <y ≦ 0.5,1.5 ≦ z ≦ 3.
5. M is a lithium composite metal oxide represented by at least one of alkali metals or alkaline earth metals other than Li, or a combination of at least one of them and a metal other than Ni). Non-aqueous electrolyte secondary battery.
【請求項2】 一般式(I)中のMが、K、Na、Mg
およびCaのうちのいずれか1種、またはそれらの複数
の組合せ、またはそれらとNi以外の金属との組合せで
ある請求項1記載の非水電解液二次電池。
2. M in the general formula (I) is K, Na, Mg
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is any one of Ca and Ca, a combination thereof, or a combination thereof with a metal other than Ni.
【請求項3】 負極が、上記負極活物質とともに、(0
02)の面間隔(d 002 )が3.5Å以下の黒鉛系炭素
材料を含有する請求項1記載の非水電解液二次電池。
3. The negative electrode, together with the negative electrode active material, comprises (0
02) (d) 002) Is 3.5% or less graphite-based carbon
The non-aqueous electrolyte secondary battery according to claim 1, comprising a material.
JP10102697A 1998-04-14 1998-04-14 Nonaqueous electrolyte secondary battery Pending JPH11297309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10102697A JPH11297309A (en) 1998-04-14 1998-04-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10102697A JPH11297309A (en) 1998-04-14 1998-04-14 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11297309A true JPH11297309A (en) 1999-10-29

Family

ID=14334459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102697A Pending JPH11297309A (en) 1998-04-14 1998-04-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11297309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142157A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
JP2012142156A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
EP3016197A4 (en) * 2014-06-26 2016-05-25 Lg Chemical Ltd Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142157A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
JP2012142156A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
EP3016197A4 (en) * 2014-06-26 2016-05-25 Lg Chemical Ltd Lithium secondary battery
US10263248B2 (en) 2014-06-26 2019-04-16 Lg Chem, Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
US6818351B2 (en) Mixed cathode active material for lithium secondary battery
US7556881B2 (en) Lithium secondary battery
JP6139776B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP7169772B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JPH10112335A (en) Organic electrolyte secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JPH11329447A (en) Non-aqueous secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JPH1145720A (en) Lithium secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP4878690B2 (en) Lithium secondary battery
JPH11297309A (en) Nonaqueous electrolyte secondary battery
JP3456650B2 (en) Organic electrolytes Organic electrolytes for secondary batteries
JP2001015168A (en) Lithium secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP3615362B2 (en) Lithium secondary battery
JPH11329443A (en) Lithium secondary battery
JPH11219724A (en) Manufacture of alkali metal ion battery
JP2001210326A (en) Nonaqueous electrolytic solution secondary battery
JP2000340227A (en) Lithium secondary battery
JPH11250936A (en) Lithium secondary battery
JP3704514B2 (en) Lithium secondary battery
JP4863238B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070528