JPH081464B2 - Non-destructive detection device for buried conductors - Google Patents
Non-destructive detection device for buried conductorsInfo
- Publication number
- JPH081464B2 JPH081464B2 JP1134787A JP13478789A JPH081464B2 JP H081464 B2 JPH081464 B2 JP H081464B2 JP 1134787 A JP1134787 A JP 1134787A JP 13478789 A JP13478789 A JP 13478789A JP H081464 B2 JPH081464 B2 JP H081464B2
- Authority
- JP
- Japan
- Prior art keywords
- detection coil
- magnetic
- medium
- contact surface
- medium contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Geophysics And Detection Of Objects (AREA)
Description
本発明は埋設導電体の非破壊検出装置に関し、とくに
例えばコンクリート等の誘電体媒質中に埋設された鉄筋
や各種配管等の誘電体の位置、埋設深さ(以下、かぶり
厚さという。)及び太さを非破壊的に検出するに適した
装置に関する。本発明装置の用途の一例は、鉄筋コンク
リート構造物施工後の配筋検査である。The present invention relates to a non-destructive detection system for buried conductors, and in particular, the position, buried depth (hereinafter referred to as "cover thickness") of dielectrics such as reinforcing bars and various pipes buried in a dielectric medium such as concrete, and the like. The present invention relates to a device suitable for non-destructively detecting thickness. One example of the application of the device of the present invention is a bar arrangement inspection after construction of a reinforced concrete structure.
金属の表面又は浅い内部における欠陥の位置及び大き
さを渦電流の利用により検出する装置が知られている。
その原理を第12図により説明するに、採査用プローブ
(以下プローブという。)3に交流の励磁電流を流す
と、この場合金属である媒質1内に交流磁界が発生し、
媒質の表面又はごく浅い部分に渦電流が誘起され、媒質
の不均一な部分即ち欠陥部分では渦電流に微小な変化が
生ずる。この渦電流の微小変化による磁界がプローブ3
と交差し欠陥の有無によりプローブ3の見掛けのインピ
ーダンスが変化するので、そのインピーダンスの変化分
ΔZを渦電流探傷器20により検出すれば欠陥の有無を非
破壊的に検査することができる。 この原理を利用して第12図に示されるようにコンクリ
ートである媒質1内に配置又は埋設された導体2である
鉄筋を非破壊的に検出する装置が提案されている。Devices are known for detecting the position and size of defects on the surface of a metal or in a shallow interior by using eddy currents.
To explain the principle with reference to FIG. 12, when an alternating excitation current is applied to the inspection probe (hereinafter referred to as probe) 3, an alternating magnetic field is generated in the medium 1, which is a metal,
Eddy currents are induced on the surface of the medium or in a very shallow portion, and minute changes occur in the eddy currents in the nonuniform portion of the medium, that is, the defective portion. The magnetic field caused by this slight change in eddy current is generated by the probe 3
Since the apparent impedance of the probe 3 changes depending on the presence or absence of a defect, the presence or absence of a defect can be inspected nondestructively by detecting the impedance change ΔZ by the eddy current flaw detector 20. Utilizing this principle, there has been proposed a device for nondestructively detecting a reinforcing bar which is a conductor 2 which is arranged or embedded in a medium 1 which is concrete as shown in FIG.
しかし、渦電流利用の従来の非破壊検出装置では、実
際に鉄筋径と鉄筋かぶり厚さとを同時に検出しようとす
ると、正確に検出できる鉄筋のかぶり厚さが60-70mm程
度までに限られている。第11図の従来プローブによる実
測値カーブF-0はこの限界を示す。鉄筋に対するコンク
リートかぶり厚さがこの限界を超えると鉄筋の太さの検
出及び鉄筋間隔の測定精度が著しく低下し、実用上意味
のある測定が不可能である場合が多い。 従来のプローブ3は、例えば第4図に示されるような
円筒形等の磁心4に検出コイル6を巻いたものを用いて
いる。この様な従来構造のプローブ3を試作し、媒質1
内に生ずる磁界を測定した結果を第3図に示す。媒質の
深さ方向D(第1図参照)の磁界の減衰は、検出コイル
6に流す電流の大きさに左右されるが、一例として典型
的な従来の渦電流探傷器20にこの従来構造のプローブ3
を接続すると、周波数30kHzで検出コイル6に8.3mAの励
磁電流が流れ、深さDが36mmで磁束密度は25mG以下に減
衰する。また媒質1の表面に沿った距離H(第1図参
照)方向の減衰は比較的緩やかであり、磁束密度が25mG
となるコンクリート深さDと表面距離Hとの比(H/D)
は1.39(=50/36)であり、媒質表面方向に広がった磁
界となっている。 この様な磁界では、磁界の到達深さが浅く、媒質
内磁界の傾斜が緩やかであるので、コンクリートに深く
埋設された鉄筋の正確な検出をすることができなかっ
た。 コンクリート内に深く埋設された即ちかぶり厚さの大
きい鉄筋を非破壊的に検出するため、プローブ3に印加
する電流を大きくすること等が考えられる。しかしこれ
だけでは正確な検出をすることができない。プローブ3
からの距離が増大するに従って磁界の傾斜が緩やかにな
り、隣接する鉄筋の分離識別が困難になるからである。 従って本発明の目的は、比較的深い位置に埋設された
棒状導電体の位置と径とを正確に検出する埋設導電体の
非破壊検出装置を提供するにある。However, in the conventional non-destructive detection device using eddy current, when actually trying to detect the bar diameter and the bar cover thickness at the same time, the bar thickness of the bar that can be accurately detected is limited to about 60-70 mm. . The measured value curve F-0 by the conventional probe in FIG. 11 shows this limit. If the concrete cover thickness over the reinforcing bar exceeds this limit, the accuracy of detecting the thickness of the reinforcing bar and the measuring accuracy of the reinforcing bar interval are significantly reduced, and it is often impossible to make a practically meaningful measurement. The conventional probe 3 uses, for example, a cylindrical magnetic core 4 as shown in FIG. 4 and a detection coil 6 wound around the magnetic core 4. A probe 3 having such a conventional structure is manufactured as a prototype, and the medium 1
The result of measuring the magnetic field generated inside is shown in FIG. Although the attenuation of the magnetic field in the depth direction D (see FIG. 1) of the medium depends on the magnitude of the current flowing in the detection coil 6, as an example, a typical conventional eddy current flaw detector 20 has this conventional structure. Probe 3
When is connected, an exciting current of 8.3 mA flows through the detection coil 6 at a frequency of 30 kHz, the depth D is 36 mm, and the magnetic flux density is attenuated to 25 mG or less. Also, the attenuation along the surface of medium 1 in the direction of distance H (see FIG. 1) is relatively gentle, and the magnetic flux density is 25 mG.
Ratio of concrete depth D and surface distance H (H / D)
Is 1.39 (= 50/36), which is a magnetic field spreading in the medium surface direction. In such a magnetic field, since the reaching depth of the magnetic field is shallow and the gradient of the magnetic field in the medium is gentle, it is not possible to accurately detect the reinforcing bar deeply embedded in the concrete. It is conceivable to increase the current applied to the probe 3 in order to nondestructively detect the reinforcing bars deeply embedded in the concrete, that is, having a large covering thickness. However, this alone cannot provide accurate detection. Probe 3
This is because the gradient of the magnetic field becomes more gradual as the distance from is increased, making it difficult to separate and identify adjacent reinforcing bars. Therefore, an object of the present invention is to provide a non-destructive detection device for a buried conductor which accurately detects the position and diameter of a rod-shaped conductor buried in a relatively deep position.
【課題を解決するための手段】 第1図及び第2図の実施例を参照するに、本発明の埋
設導電体の非破壊検出装置は、棒状導電体2が埋設され
た媒質1の表面と接触する媒質接触面4Aが一端に設けら
れた矩形断面の磁心4、その磁心4の他端に接続され且
つ媒質接触面4Aと同一平面上で媒質接触面4Aの周囲から
間隔を隔てて終端される磁気側路5、及び磁心4に巻か
れた検出コイル6を有するプローブ3;検出コイル6に励
磁電流を供給する電源回路13;並びに検出コイル6の見
掛けのインピーダンス変化分ΔZを検出する測定回路11
を備えてなり、媒質接触面4Aと同一平面上の磁気側路5
の終端面を磁気側路5の所要磁気抵抗に要する幅の無端
帯状とし且つ前記終端面と前記媒質接触面4Aの長辺との
間隔を該終端面と媒質接触面4Aの短辺との間隔以上と
し、見掛けのインピーダンス変化分ΔZの絶対値及び偏
角から埋設棒状導電体の深さ及び径をそれぞれ検出す
る。検出コイル6には励磁電流を供給する電源回路13を
接続して、検出コイル6の見掛けのインピーダンス変化
分ΔZを測定回路11により測定することにより、棒状の
導電体2の深さ及び前記磁心4の矩形断面の短辺方向に
おける棒状導電体2の径(第7図の直径d参照)を検出
する。図示例では電源回路13が検出器10を介してプロー
ブ3の検出コイル6に接続され、測定回路11が検出器10
に組込まれる。本発明は、この検出器10を含む構成に限
定されるものではない。 媒質1の深部に磁界を到達させるため検出コイル6に
比較的大きな高周波電流を印加する必要があるので、好
ましくは電源回路13に適当なブースター増幅器を含め
る。測定回路11の一例はブリッジ回路である。 第2図の例のブリッジ回路では、簡明のため検出コイ
ル6のインピーダンスをインダクタンスL1で表し、検出
コイル6の非動作状態と等価の参照コイル(図示せず)
のインピーダンスをインダクタンスL2で表す。インダク
タンスL2を有する参照コイルが磁心4又は他の適当な場
所に設置され、図示例ではその参照コイルのインダクタ
ンスL2と検出コイル6のインダクタンスL1とが直列接続
される。等しい抵抗値を有する2個の抵抗を直列接続
し、これらの抵抗と前記2コイルとを第2図のようにブ
リッジ接続する。 図示のように2個の抵抗器の接続点と2コイルの接続
点との間に交流電圧を加え、R,L1の接続点とR,L2の接続
点との間から出力を取り出すならば、両インダクタンス
L1,L2が等しいとき即ち検出装置の非動作時にはブリッ
ジ回路の出力が零となることは当業者には明らかであ
る。さらに検出装置の動作時に参照コイルのインダクタ
ンスを不変に保つならば、ブリッジ回路の出力が検出コ
イル6のインダクタンスL1の変化分に相当することも当
業者には明らかである。 要するに、第2図のブリッジ回路の出力は検出コイル
6のインダクタンスL1の変化分に相当する。なお、ブリ
ッジ回路において、検出コイル6のインピーダンスの抵
抗分及び静電容量(ケーブルの静電容量やコンクリート
と検出コイルとの間の静電容量なども含めて)をも考慮
する必要がある場合には、図示例におけるインダクタン
スL2を抵抗と静電容量とをも含めたプローブ3の非動作
状態と正確に等価なインピーダンス素子に置き換えれば
充分である。本発明では、インピーダンスL2の代りに上
記の様にインピーダンスを用い、ブリッジ回路の出力と
して検出コイル6のインピーダンス変化分ΔZを検出す
る。 好ましくは、前記検出コイルの励磁電流の周波数及び
実効値を2-100kHz及び2-1000mAの範囲内のものとする。With reference to the embodiments shown in FIGS. 1 and 2, a nondestructive detection device for a buried conductor according to the present invention is designed so that a rod-shaped conductor 2 is embedded in a surface of a medium 1. A magnetic core 4 having a rectangular cross-section provided at one end with a medium contact surface 4A to be in contact with, and connected to the other end of the magnetic core 4 and terminated on the same plane as the medium contact surface 4A at a distance from the periphery of the medium contact surface 4A. A probe 3 having a magnetic side path 5 and a detection coil 6 wound around a magnetic core 4; a power supply circuit 13 for supplying an exciting current to the detection coil 6; and a measurement circuit for detecting an apparent impedance change ΔZ of the detection coil 6. 11
And a magnetic bypass 5 on the same plane as the medium contact surface 4A.
Is formed into an endless band having a width required for the required magnetic resistance of the magnetic side path 5, and the distance between the end surface and the long side of the medium contact surface 4A is the distance between the end surface and the short side of the medium contact surface 4A. As described above, the depth and the diameter of the embedded rod-shaped conductor are detected from the absolute value and the declination of the apparent impedance change ΔZ. A power supply circuit 13 for supplying an exciting current is connected to the detection coil 6, and an apparent impedance change ΔZ of the detection coil 6 is measured by the measurement circuit 11, whereby the depth of the rod-shaped conductor 2 and the magnetic core 4 are measured. The diameter (see diameter d in FIG. 7) of the rod-shaped conductor 2 in the short side direction of the rectangular cross section is detected. In the illustrated example, the power supply circuit 13 is connected to the detection coil 6 of the probe 3 via the detector 10, and the measurement circuit 11 is connected to the detector 10.
Be incorporated into. The present invention is not limited to the configuration including this detector 10. Since it is necessary to apply a relatively large high frequency current to the detection coil 6 in order to make the magnetic field reach the deep part of the medium 1, the power supply circuit 13 preferably includes a suitable booster amplifier. An example of the measuring circuit 11 is a bridge circuit. In the bridge circuit of the example of FIG. 2, the impedance of the detection coil 6 is represented by the inductance L1 for simplicity, and the reference coil (not shown) equivalent to the non-operating state of the detection coil 6 is shown.
The impedance of is represented by the inductance L2. A reference coil having an inductance L2 is installed in the magnetic core 4 or another suitable place, and in the illustrated example, the inductance L2 of the reference coil and the inductance L1 of the detection coil 6 are connected in series. Two resistors having the same resistance value are connected in series, and these resistors and the two coils are bridge-connected as shown in FIG. As shown in the figure, if an AC voltage is applied between the connection point of two resistors and the connection point of two coils, and the output is taken out between the connection point of R, L1 and the connection point of R, L2, Both inductance
It is obvious to a person skilled in the art that the output of the bridge circuit becomes zero when L1 and L2 are equal, that is, when the detection device is not operating. Further, it is clear to those skilled in the art that if the inductance of the reference coil is kept unchanged during the operation of the detection device, the output of the bridge circuit corresponds to the change of the inductance L1 of the detection coil 6. In short, the output of the bridge circuit in FIG. 2 corresponds to the change of the inductance L1 of the detection coil 6. In the bridge circuit, when it is necessary to consider the resistance component of the impedance of the detection coil 6 and the electrostatic capacitance (including the electrostatic capacitance of the cable and the electrostatic capacitance between the concrete and the detection coil). It suffices to replace the inductance L2 in the illustrated example with an impedance element that is exactly equivalent to the non-operating state of the probe 3 including resistance and capacitance. In the present invention, the impedance is used as described above instead of the impedance L2, and the impedance change ΔZ of the detection coil 6 is detected as the output of the bridge circuit. Preferably, the frequency and effective value of the exciting current of the detection coil are within the range of 2-100 kHz and 2-1000 mA.
第6A図及び第6B図は、本発明による装置のプローブ3
における磁心4及び磁気側路4の一実施例の縦断面及び
横断面をそれぞれし示す。図中、寸法の単位はmmであ
る。ただし、本発明の検出装置は、図示された磁心4及
び磁気側路5の形状・寸法に限定されるものではない。
簡明のため第6B図では検出コイル6の図示を省略してい
る。第5図は第6A図及び第6B図の磁心4上の検出コイル
6に周波数30kHzで131mAの電流を印加した時の磁界を示
す。第5図から明らかなように磁界の媒質1への到達深
さが著しく向上し、磁束密度が25mGに低下する深さDは
145mmにまで達している。これは検出コイル6への印加
電流を大きくしたためであり、第3図の従来例に比して
検出深さにおける約300%(36−145mm)の改善が期待さ
れる。 また、第5図においては磁束密度が25mGにまで低下す
る媒質深さDと同様な低下が生ずる表面距離Hとの比
(H/D)は0.79(=115/145)である。第3図の従来例に
おいて対応する比の値が1.39であることを考慮すれは、
本発明により媒質の深さ方向にとがった磁界分布の得ら
れることが理解される。これは本発明による特定形状の
磁気側路5を磁心4と併用したためである。 第11図に、検出可能な配筋間隔とかぶり厚さとの関係
を鉄筋径25mmの場合について実測した結果を示す。カー
ブF-0は第4図の従来構造のプローブを使った場合であ
り、かぶり厚さが50mm以上になると配筋間隔50mm未満の
鉄筋を区別することができず、かぶり厚さ70mm以上では
鉄筋径を検出することもできない。ここに配筋間隔と
は、隣接鉄筋間の間隔であり鉄筋中心間のピッチではな
い。本発明による第6A図及び第6B図のプローブ3を用い
た場合のカーブF-2では、かぶり厚さが50mmの時に配筋
間隔が40mmまで小さくなっても隣接鉄筋を区別すること
ができるだけでなく、かぶり厚さが160mmに達しても鉄
筋径を検出することができる。かぶり厚さが比較的浅い
鉄筋を対象とした本発明の他の実施例の実測値カーブF-
1によれば、かぶり厚さ20mmの時に配筋間隔が10mmまで
狭まっても隣接鉄筋を区別することができる。 従って、本発明の装置における磁界は、(a)磁界の
到達深さが深く、(b)媒質内磁界の傾斜が強いので、
コンクリートに深く埋設された鉄筋を高精度でしかも高
分解能を以て検出することを可能とし、隣接鉄筋の分離
識別機能を著しく向上させる。 第7図は、鉄筋である導電体2が埋設された誘電体媒
質1たるコンクリートの表面に沿って本発明による検出
装置のプローブ3をA、B、Cの3位置に移動したとき
測定回路11が発生する出力を表示器12(第1図参照)上
のインピーダンス変化分ΔZとして示す。表示には絶対
値|ΔZ|及び位相角θが含まれる。導電体2の直上であ
る位置Bにおけるインピーダンスの変化ΔZが最大であ
ることにより、導電体2の位置を非破壊的に検出し、そ
の絶対値|ΔZ|の大きさにより、かぶり厚さをも非破壊
的に検出することができる。 第5図を参照して説明したように、本発明によれば磁
界が媒質1内に深く進入すると共に媒質内の磁界傾斜が
強いので、上記位置A、B間及び位置B、C間のインピ
ーダンス変化が大きく、かぶり厚さの大きい導電体2の
位置をも正確に検出することができる。さらに、複数の
導電体2が近接して存在するときにも、強い磁界傾斜に
より個々の導電体を高分解能で識別することができる 本発明者はまた、埋設導電体2が棒状であるときは、
検出コイルのインピーダンス変化分の位相角θが媒質1
内への磁界進入方向における棒状導電体の断面積、即ち
鉄筋や金属管の径の関数であることを実験的に見出し
た。第7図の場合、埋設された導電体が直径dの鉄筋一
本であって同一鉄筋を測定しているので、プローブ3の
位置が変化してもインピーダンス変化分ΔZの位相角θ
は実質上変化しない。第8図は、鉄筋の場合径dが細く
なるに応じて前記位相角θが増大することを確認した実
験の結果を示す。この筋径dと位相角θとの関係は、前
記インピーダンスの変化分ΔZが、(i)鉄筋に誘起さ
れる渦電流に起因すること、(ii)その渦電流の大きさ
がプローブ3からの磁束と鉄筋との交差によること、
(iii)プローブ3の電流と鉄筋渦電流との間に位相差
があること等によるものと考えられる。 こうして、本発明の目的である「比較的深い位置に埋
設された棒状導電体を正確にしかも高分解能で検出する
埋設導電体の非破壊検出装置」の提供が達成される。6A and 6B show the probe 3 of the device according to the invention.
2A and 2B respectively show a longitudinal section and a transverse section of an embodiment of the magnetic core 4 and the magnetic bypass 4 in FIG. In the figure, the unit of dimensions is mm. However, the detection device of the present invention is not limited to the shapes and dimensions of the magnetic core 4 and the magnetic side path 5 shown.
For simplicity, the detection coil 6 is not shown in FIG. 6B. FIG. 5 shows the magnetic field when a current of 131 mA at a frequency of 30 kHz is applied to the detection coil 6 on the magnetic core 4 of FIGS. 6A and 6B. As is clear from FIG. 5, the depth D at which the magnetic field reaches the medium 1 is significantly improved and the magnetic flux density is reduced to 25 mG.
It has reached 145 mm. This is because the applied current to the detection coil 6 is increased, and it is expected that the detection depth will be improved by about 300% (36-145 mm) compared with the conventional example shown in FIG. Further, in FIG. 5, the ratio (H / D) of the medium depth D at which the magnetic flux density decreases to 25 mG and the surface distance H at which the same decrease occurs is 0.79 (= 115/145). Considering that the value of the corresponding ratio in the conventional example of FIG. 3 is 1.39,
It will be understood that the present invention provides a sharp magnetic field distribution in the depth direction of the medium. This is because the magnetic bypass 5 having a specific shape according to the present invention is used together with the magnetic core 4. Fig. 11 shows the results of actual measurement of the relationship between the detectable rebar spacing and the cover thickness for a reinforcing bar diameter of 25 mm. Curve F-0 is when the probe with the conventional structure shown in Fig. 4 is used. When the cover thickness is 50 mm or more, it is not possible to distinguish the rebars with a rebar spacing of less than 50 mm. It cannot detect the diameter. Here, the bar arrangement interval is an interval between adjacent reinforcing bars, not a pitch between reinforcing bar centers. In the curve F-2 using the probe 3 of FIGS. 6A and 6B according to the present invention, when the cover thickness is 50 mm, adjacent rebars can be distinguished even if the bar arrangement interval is reduced to 40 mm. Even if the cover thickness reaches 160 mm, the diameter of the reinforcing bar can be detected. Measured value curve F- of another embodiment of the present invention for a reinforcing bar having a relatively small cover thickness
According to 1, when the cover thickness is 20 mm, the adjacent reinforcing bars can be distinguished even if the bar arrangement interval is narrowed to 10 mm. Therefore, since the magnetic field in the device of the present invention is (a) the reaching depth of the magnetic field is deep and (b) the gradient of the magnetic field in the medium is strong,
It makes it possible to detect rebar deeply embedded in concrete with high accuracy and high resolution, and significantly improve the separation and identification function of adjacent rebars. FIG. 7 shows a measuring circuit 11 when the probe 3 of the detector according to the present invention is moved to three positions A, B and C along the surface of the concrete which is the dielectric medium 1 in which the conductor 2 which is the reinforcing bar is embedded. The output generated by is shown as the impedance change ΔZ on the display 12 (see FIG. 1). The display includes the absolute value | ΔZ | and the phase angle θ. Since the change in impedance ΔZ at the position B, which is immediately above the conductor 2, is the maximum, the position of the conductor 2 is detected nondestructively, and the cover thickness is also determined by the absolute value | ΔZ |. It can be detected nondestructively. As described with reference to FIG. 5, according to the present invention, since the magnetic field deeply penetrates into the medium 1 and the magnetic field gradient in the medium is strong, the impedance between the positions A and B and the impedance between the positions B and C are increased. The position of the conductor 2 having a large change and a large fogging thickness can be accurately detected. Furthermore, even when a plurality of conductors 2 are present close to each other, the individual conductors can be identified with high resolution due to the strong magnetic field gradient. ,
The phase angle θ of the impedance change of the detection coil is the medium 1
It was experimentally found that it is a function of the cross-sectional area of the rod-shaped conductor in the direction of the magnetic field entering the inside, that is, the diameter of the reinforcing bar or metal tube. In the case of FIG. 7, since the buried conductor is one rebar having the diameter d and the same rebar is measured, the phase angle θ of the impedance change ΔZ even if the position of the probe 3 changes.
Is virtually unchanged. FIG. 8 shows the result of an experiment confirming that the phase angle θ increases as the diameter d becomes smaller in the case of a reinforcing bar. The relationship between the muscle diameter d and the phase angle θ is that the change ΔZ in the impedance is caused by (i) the eddy current induced in the reinforcing bar, and (ii) the magnitude of the eddy current from the probe 3. Due to the intersection of magnetic flux and rebar,
(Iii) It is considered that there is a phase difference between the current of the probe 3 and the reed bar eddy current. Thus, the object of the present invention is to provide a "nondestructive detection device for buried conductors that accurately and with high resolution detects rod-shaped conductors buried at relatively deep positions".
第2図の実施例では検出コイル6に大きな電流を印加
するため電源回路13にブースターを含めている。またブ
リッジ回路の出力が変圧器Tを介して同期検波回路に印
加されているが、これはその出力におけるノイズの直流
分を除去するためである。さらに同期検波回路を、ブリ
ッジ回路印加電圧と同相分に対する同期検波Xとその印
加電圧から位相が90°ずれた同期検波Yとによって構成
しているが、基準位相をブリッジ回路印加電圧と同相に
選ぶ必要はなく他の任意の位相を基準に選んでもよい。 導電体2の径の検出を要しない場合には位相角θの測
定回路を省略することができる。 第1図の実施例の構成では測定回路11の出力を記録器
14によって例えば第7図の表示器図形のように記録す
る。しかし、本発明においては記録器14は必須要件では
ない。 本発明においては、検出コイル6に対する励磁電流の
周波数及び実効値を好ましくは2-100kHz及び20-1000mA
の範囲内に選定する。これは周波数2KHz以下では導電体
2の径を表す位相情報を得ることができず、励磁電流20
mA以下では渦電流の誘起が微弱に過ぎ上記インピーダン
ス変化分ΔZの検出が困難であり、周波数100KHz以上若
しくは励磁電流が1000mA以上では検出コイルのインダク
タンス増大等のため電源回路が大きくなり過ぎ経済性が
失われるためである。 第9図及び第10図は、本発明装置の出力(mV)と鉄筋
に対するコンクリートかぶり深さ(mm)との関係及び上
記出力の位相角θと鉄筋径(mm)との関係をそれぞれ示
す。In the embodiment shown in FIG. 2, the power supply circuit 13 includes a booster in order to apply a large current to the detection coil 6. Further, the output of the bridge circuit is applied to the synchronous detection circuit via the transformer T. This is to remove the DC component of noise at the output. Further, the synchronous detection circuit is constituted by the synchronous detection X for the in-phase component of the bridge circuit applied voltage and the synchronous detection Y whose phase is shifted by 90 ° from the applied voltage, but the reference phase is selected to be the same phase as the bridge circuit applied voltage. There is no need to select it, and any other phase may be selected as a reference. When it is not necessary to detect the diameter of the conductor 2, the circuit for measuring the phase angle θ can be omitted. In the configuration of the embodiment shown in FIG. 1, the output of the measuring circuit 11 is recorded by the recorder.
The data is recorded by 14, for example, the display graphic of FIG. However, the recorder 14 is not an essential requirement in the present invention. In the present invention, the frequency and effective value of the exciting current for the detection coil 6 are preferably 2-100 kHz and 20-1000 mA.
Select within the range of. If the frequency is 2 KHz or less, the phase information indicating the diameter of the conductor 2 cannot be obtained, and the excitation current 20
At mA or less, induction of eddy current is too weak to detect the above impedance change ΔZ, and at frequency of 100 KHz or more or exciting current of 1000 mA or more, the power supply circuit becomes too large due to increase in inductance of the detection coil, etc. Because it is lost. FIGS. 9 and 10 show the relationship between the output (mV) of the device of the present invention and the concrete cover depth (mm) for the reinforcing bar, and the relationship between the phase angle θ of the output and the reinforcing bar diameter (mm), respectively.
以上詳細に説明した如く、本発明による埋設導電体の
非破壊検出装置は、棒状導電体が埋設された誘電体媒質
の表面と接触する媒質接触面が一端に設けられた矩形断
面の磁心、前記磁心の他端に接続され且つ前記磁心から
離れた位置における前記媒質接触面と同一平面上で終端
する磁気側路、及び前記磁心に巻かれた検出コイルを有
するプローブ,前記検出コイルに励磁電流を供給する電
源回路;並びに前記検出コイルの見掛けのインピーダン
ス変化分ΔZを検出する測定回路を備えてなる構成を用
いるのでつぎの効果を奏する。 (イ)誘電体媒質中に埋設された導電体を非破壊的に検
出することができる。 (ロ)かぶり厚さが大きいコンクリート補強鉄筋の位置
とかぶり厚さとをコンクリート表面から高精度で非破壊
的に検出することができる。 (ハ)かぶり厚さが大きいコンクリート補強鉄筋の径を
も同様に高精度で検出することができる。 (ニ)広い範囲のかぶり厚さに対して、隣接鉄筋の分離
識別機能を向上させることができる。 (ホ)壁、床板、ひさし等において鉄筋を2層に配置し
た場合にも、コンクリートの両面から測定することによ
り各鉄筋層における鉄筋のかぶり厚さ、位置及び鉄筋径
を高精度で非破壊的に検出することができる。As described in detail above, the non-destructive detection device for an embedded conductor according to the present invention has a rectangular cross-section magnetic core having a medium contact surface provided at one end for contacting a surface of a dielectric medium in which a rod-shaped conductor is embedded, A magnetic bypass connected to the other end of the magnetic core and terminating on the same plane as the medium contact surface at a position away from the magnetic core, a probe having a detection coil wound around the magnetic core, and an exciting current to the detection coil. Since the power supply circuit for supplying; and the measurement circuit for detecting the apparent impedance change ΔZ of the detection coil are used, the following effects are obtained. (B) The conductor embedded in the dielectric medium can be detected nondestructively. (B) The position of a concrete reinforcing bar having a large cover thickness and the cover thickness can be detected from the concrete surface with high accuracy and nondestructively. (C) The diameter of a concrete reinforcing bar having a large covering thickness can be detected with high accuracy as well. (D) For a wide range of cover thickness, the function of separating and identifying adjacent reinforcing bars can be improved. (E) Even when the reinforcing bars are arranged in two layers on walls, floor boards, eaves, etc., by measuring from both sides of the concrete, the covering thickness, position and reinforcing bar diameter of the reinforcing bars in each reinforcing bar layer are highly accurate and non-destructive. Can be detected.
第1図は本発明の一実施例の説明図、第2図はその電気
回路の説明図、第3図及び第4図は従来例の磁界分布及
び磁心の説明図、第5図は本発明による装置における磁
界分布の説明図、第6A図及び第6B図は本発明による磁心
及び磁気側路の断面図、第7図は作用の説明図、第8図
は鉄筋径とインピーダンス位相角との関係の説明図、第
9図及び第10図は本発明装置の動作特性図、第11図は検
出可能なかぶり厚さと配筋間隔との関係を示す図、第12
図は従来技術の説明図である。 1…媒質、2…導電体、3…プローブ、4…磁心、4A…
媒質接触面、5…磁気側路、6…検出コイル、10…検出
器、11…測定回路、12…表示器、13…電源回路、14…記
録器、20…渦電流探傷器。FIG. 1 is an explanatory view of an embodiment of the present invention, FIG. 2 is an explanatory view of an electric circuit thereof, FIGS. 3 and 4 are explanatory views of a magnetic field distribution and a magnetic core of a conventional example, and FIG. 6A and 6B are sectional views of the magnetic core and the magnetic bypass according to the present invention, FIG. 7 is an explanatory view of the action, and FIG. 8 is a diagram showing the reinforcing bar diameter and impedance phase angle. Explanatory diagram of the relationship, FIGS. 9 and 10 are operational characteristic diagrams of the device of the present invention, FIG. 11 is a diagram showing the relationship between the detectable cover thickness and the bar arrangement interval, and FIG.
The figure is an explanatory view of the prior art. 1 ... Medium, 2 ... Conductor, 3 ... Probe, 4 ... Magnetic core, 4A ...
Medium contact surface, 5 ... magnetic side path, 6 ... detection coil, 10 ... detector, 11 ... measurement circuit, 12 ... indicator, 13 ... power supply circuit, 14 ... recorder, 20 ... eddy current flaw detector.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 吉一 東京都調布市飛田給2丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 吉信 正弘 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 (72)発明者 小田 喜信 福岡県鞍手郡宮田町磯光16番地 (72)発明者 林 憲秋 福岡県北九州市小倉北区清水4丁目11番12 号 (72)発明者 浦川 一 福岡県北九州市八幡東区石坪町10番20号 (56)参考文献 実開 昭58−60279(JP,U) 実公 昭59−42709(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshikazu Takei 2-19-1 Tobita-cho, Chofu-shi, Tokyo Kashima Construction Co., Ltd. Technical Research Laboratory (72) Inventor Masahiro Yoshinobu 1-2-2 Moto-Akasaka, Minato-ku, Tokyo No. 7 Kashima Construction Co., Ltd. (72) Inventor Yoshinobu Oda 16 Isogo, Miyata-cho, Kurate-gun, Fukuoka (72) Inventor Noriaki Hayashi 4-11-12 Shimizu, Kitakyushu-ku, Kitakyushu, Fukuoka (72) Invention Urakawa Hajime 10-20, Ishitsubo-cho, Yawatahigashi-ku, Kitakyushu, Fukuoka (56) References: Actual Development Sho 58-60279 (JP, U) Actual Public Sho 59-42709 (JP, Y2)
Claims (2)
する媒質接触面が一端に設けられた矩形断面の磁心、前
記磁心の他端に接続され且つ前記媒質接触面と同一平面
上で前記媒質接触面の周囲から間隔を隔てて終端される
磁気側路、及び前記磁心に巻かれた検出コイルを有する
プローブ;前記検出コイルに励磁電流を供給する電源回
路;並びに前記検出コイルの見掛けのインピーダンス変
化分を検出する測定回路を備えてなり、前記媒質接触面
と同一平面上の磁気側路の終端面を該磁気側路の所要磁
気抵抗に要する幅の無端帯状とし且つ前記終端面と前記
媒質接触面の長辺との間隔を該終端面と前記媒質接触面
の短辺との間隔以上とし、前記見掛けのインピーダンス
変化分の絶対値及び偏角から埋設棒状導電体の深さ及び
径をそれぞれ検出してなる埋設導電体の非破壊検出装
置。1. A magnetic core having a rectangular cross section whose one end has a medium contact surface that comes into contact with the surface of a medium in which a rod-shaped conductor is embedded, and which is connected to the other end of the magnetic core and is on the same plane as the medium contact surface. A probe having a magnetic side path terminated at a distance from the periphery of the medium contact surface, and a detection coil wound around the magnetic core; a power supply circuit supplying an exciting current to the detection coil; and an apparent detection coil of the detection coil. A measuring circuit for detecting an impedance change, wherein the end surface of the magnetic side path on the same plane as the medium contact surface is formed into an endless band having a width required for a required magnetic resistance of the magnetic side path, and The distance between the long side of the medium contact surface and the distance between the end surface and the short side of the medium contact surface is equal to or more than the distance, and the depth and diameter of the embedded rod-shaped conductor are calculated from the absolute value and declination of the apparent impedance change. Detect each Comprising Te buried conductor nondestructive detector.
イルの励磁電流の周波数及び実効値が2-100kHz及び20-1
000mAの範囲内にある埋設導電体の非破壊検出装置。2. The apparatus according to claim 1, wherein the exciting current of the detection coil has a frequency and an effective value of 2-100 kHz and 20-1.
Nondestructive detection device for buried conductors within the range of 000mA.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134787A JPH081464B2 (en) | 1989-05-30 | 1989-05-30 | Non-destructive detection device for buried conductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134787A JPH081464B2 (en) | 1989-05-30 | 1989-05-30 | Non-destructive detection device for buried conductors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH032588A JPH032588A (en) | 1991-01-08 |
JPH081464B2 true JPH081464B2 (en) | 1996-01-10 |
Family
ID=15136540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1134787A Expired - Fee Related JPH081464B2 (en) | 1989-05-30 | 1989-05-30 | Non-destructive detection device for buried conductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH081464B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4688081B2 (en) * | 2005-11-14 | 2011-05-25 | 裕二 三輪 | Intraoral light emitter and manufacturing method thereof |
KR100769631B1 (en) * | 2006-04-19 | 2007-10-25 | 미승씨엔에스검사주식회사 | Steel reinforcement tester |
CN109997038B (en) * | 2016-12-01 | 2023-02-17 | 东京制纲株式会社 | Method and apparatus for evaluating damage of magnetic linear body |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5860279U (en) * | 1981-10-20 | 1983-04-23 | ティーディーケイ株式会社 | metal detector |
US4563643A (en) * | 1982-07-30 | 1986-01-07 | Westinghouse Electric Corp. | Eddy current proximity sensor for use in a hostile turbine environment |
JPS5942709U (en) * | 1982-09-12 | 1984-03-21 | 前田 敏朗 | Tire chain mounting stand |
JPS60162978A (en) * | 1984-02-06 | 1985-08-24 | Hitachi Ltd | Magnetic detector for buried body |
JPS6146463U (en) * | 1984-08-30 | 1986-03-28 | ティーディーケイ株式会社 | magnetic sensing device |
-
1989
- 1989-05-30 JP JP1134787A patent/JPH081464B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH032588A (en) | 1991-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6400146B1 (en) | Sensor head for ACFM based crack detection | |
EP0910784B1 (en) | Eddy current inspection technique | |
CA1272265A (en) | Method for directly detecting corrosion on conductive containers | |
US5610517A (en) | Method and apparatus for detecting flaws below the surface of an electrically conductive object | |
JPS60142246A (en) | Device and method of detecting defect in surface region and region under surface of semi-conductive material or conductive material | |
JP4039578B2 (en) | Magnetic probe | |
GB2262346A (en) | Detecting defects in steel material | |
EP1311844A2 (en) | Method for detecting cracks in electrically conducting materials | |
JPH081464B2 (en) | Non-destructive detection device for buried conductors | |
JPH05149923A (en) | Apparatus and method for electromagnetic induction inspection by use of change in frequency phase | |
JP3572452B2 (en) | Eddy current probe | |
JPH05142204A (en) | Electromagnetic-induction type inspecting apparatus | |
JP3140105B2 (en) | Electromagnetic induction type inspection equipment | |
EP0135204A2 (en) | Measuring device for surface and subsurface defects in metal bodies above the Curie temperature | |
JPH07167839A (en) | Inspection coil for electromagnetic induction flaw detection and flaw detecting method | |
JPH0552816A (en) | Internally inserted probe for pulse-type eddy current examination | |
JP2003344362A (en) | Eddy current flaw detection probe and eddy current flaw detector | |
JP2010236928A (en) | Method and sensor for detection of eddy current flaw | |
JPH1164294A (en) | Eddy current testing sensor and method for detecting flaw using it | |
JPH10160710A (en) | Division-type flaw-detecting sensor and flaw detecting method for conductive tube | |
JP3091556B2 (en) | Method and apparatus for measuring conductor thickness | |
JP2002531853A (en) | Electrical measurement components and their use | |
JP2000028669A (en) | Method and device for detecting flaws in metal twisted wire | |
JPS58153157A (en) | Magnetic detector for magnetic flaw detector | |
JPH08278289A (en) | Flaw detection device and method for ferromagnetic tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |