JPH08144032A - Production of two-way shape memory alloy coil spring - Google Patents

Production of two-way shape memory alloy coil spring

Info

Publication number
JPH08144032A
JPH08144032A JP29102394A JP29102394A JPH08144032A JP H08144032 A JPH08144032 A JP H08144032A JP 29102394 A JP29102394 A JP 29102394A JP 29102394 A JP29102394 A JP 29102394A JP H08144032 A JPH08144032 A JP H08144032A
Authority
JP
Japan
Prior art keywords
coil spring
shape memory
memory alloy
spring
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29102394A
Other languages
Japanese (ja)
Inventor
Kengo Mitose
賢悟 水戸瀬
Hiroshi Horikawa
宏 堀川
Kazuo Matsubara
和男 松原
Tatsuhiko Ueki
達彦 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29102394A priority Critical patent/JPH08144032A/en
Publication of JPH08144032A publication Critical patent/JPH08144032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Abstract

PURPOSE: To easily produce a compact two-way shape memory alloy coil spring excellent in corrosion resistance. CONSTITUTION: An NiTi shape memory alloy pipe is cold-formed into a coil spring, then shape memory treatment is applied to obtain a pipe-shaped shape memory alloy coil spring 1, and a wire 2 consisting of elastic material is inserted into the spring and then firmly attached to the spring. Otherwise, a composite wire made of the shape memory alloy and bias spring is prepared, the composite wire is cold-formed into a coil spring, and then shape memory treatment is applied. Alternatively, the composite wire is hot-formed into a coil spring, the coil spring is shot-peened, and then shape memory treatment is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンパクトでかつ耐食
性に優れた二方向性形状記憶合金コイルばねの製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bidirectional shape memory alloy coil spring which is compact and has excellent corrosion resistance.

【0002】[0002]

【従来の技術】形状記憶合金は、形状記憶処理後冷却
し、マルテンサイト相状態ですべりが生じない程度に変
形を加えても、加熱により形状回復する性質を有してい
る合金である。通常、上記処理を施した材料は冷却時に
はその形状に変化が現れないため、一方向形状記憶と呼
ばれている。特別な処理を行えば、加熱時のみならず冷
却時においても記憶した形状に回復する二方向形状記憶
効果を付与することが可能であるが、発生力や形状を制
御するのが困難であり、ほとんど使われていない。形状
記憶合金コイルばねにおいても、上記のように形状記憶
合金自体に二方向性を付与して使用するよりも、一方向
形状記憶合金ばねとバイアスばねを組み合わせて用いる
(バイアス法)ことが多い。
2. Description of the Related Art Shape memory alloys are alloys that have the property of recovering their shape by heating even if they are cooled after shape memory treatment and deformed in the martensite phase state to the extent that slippage does not occur. Usually, the material that has been subjected to the above treatment does not show any change in its shape when cooled, and is therefore called one-way shape memory. By performing a special treatment, it is possible to give a two-way shape memory effect that recovers the memorized shape not only during heating but also during cooling, but it is difficult to control the generated force and shape, Almost never used Also in the shape memory alloy coil spring, the one-way shape memory alloy spring and the bias spring are often used in combination (bias method), rather than being used by imparting bidirectionality to the shape memory alloy itself as described above.

【0003】しかしバイアス法では、形状記憶合金コイ
ルばねと通常のばね鋼等のバイアスばねを組み合わせる
ため、構造的にある程度の空間を必要とし、寸法の小型
化に限界がある。また、、NiTi系合金は耐腐食特性
が良好なことでも知られているが、現状のバイアス法で
は、NiTi系合金が腐食されなくてもバイアスばね材
料が腐食される環境下での使用が不可能であり、NiT
i系合金の特性を十分に活用できていない。そこで形状
記憶合金パイプの内部にバイアスばねを挿入した二重構
造のコイルばねが考えられるが、単に二重構造としただ
けでは、高温と低温との繰り返しの作動により、形状記
憶合金パイプとバイアスばねの界面に、すべりが生じ
て、コイルばねの動特性が減少し、十分な二方向性の作
動が阻害されるおそれがある。またNiTi系合金は、
熱間および冷間等の加工性が良好な材料ではないため、
パイプ状のコイルばねの製造は容易ではない等の問題が
ある。
However, in the bias method, since a shape memory alloy coil spring and a bias spring such as a normal spring steel are combined, a certain amount of space is structurally required, and there is a limit to size reduction. It is also known that NiTi-based alloys have good corrosion resistance, but the current bias method makes it unsuitable for use in an environment where the bias spring material is corroded even if the NiTi-based alloy is not corroded. Possible, NiT
The characteristics of i-based alloys have not been fully utilized. Therefore, a coil spring with a double structure in which a bias spring is inserted inside the shape memory alloy pipe is conceivable. However, if the structure is simply a double structure, the shape memory alloy pipe and the bias spring are repeatedly operated by repeated operation at high temperature and low temperature. There is a risk that slippage may occur at the interface of the coil spring, the dynamic characteristics of the coil spring may be reduced, and sufficient bidirectional operation may be hindered. The NiTi alloy is
Since it is not a material with good workability such as hot and cold,
There is a problem that manufacture of a pipe-shaped coil spring is not easy.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果なされたもので、NiTi系形状記憶
合金パイプが外側で、その内部にバイアスばねを配置
し、複合構造としたコイルばねを容易に、かつ作動特性
が優れたものが得られる製造方法を開発したものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of studying the above-mentioned problems. A NiTi type shape memory alloy pipe is located outside and a bias spring is arranged inside the pipe structure to form a coil spring having a composite structure. This is to develop a manufacturing method that can easily obtain an excellent operating characteristic.

【0005】[0005]

【課題を解決するための手段】本発明はNiTi系形状
記憶合金パイプを冷間で、コイルばねの形状に成形した
後記憶処理を施してパイプ状の形状記憶合金コイルばね
とし、弾性材料からなる線材を前記パイプ状の形状記憶
合金コイルばねに挿入した後、密着加工を施すことを特
徴とする二方向姓形状記憶合金コイルばねの製造方法を
請求項1とし、NiTi系形状記憶合金パイプ内部に弾
性材料からなる線材を挿入した後、熱間加工、冷間加工
を施して二重構造の複合線を作製し、次いで該複合線を
冷間でコイルばねの形状に成形した後、記憶処理を施す
ことを特徴とする二方向性形状記憶合金コイルばねの製
造方法を請求項2とし、NiTi系形状記憶合金パイプ
内部に弾性材料からなる線材を挿入した後、熱間加工、
冷間加工を施して二重構造の複合線を作製し、次いで該
複合線を熱間でコイルばねの形状に成形し、該コイルば
ねの表面にショットピーニングを行った後、記憶処理を
施すことを特徴とする二方向性形状記憶合金コイルばね
の製造方法を請求項3とするものである。
According to the present invention, a pipe-shaped shape memory alloy coil spring is formed by cold forming a NiTi type shape memory alloy pipe into a coil spring shape and then performing a memory treatment, and is made of an elastic material. A method of manufacturing a bidirectional shape memory alloy coil spring, comprising inserting a wire into the pipe-shaped shape memory alloy coil spring, and then subjecting it to an adhesion process. After inserting a wire made of an elastic material, hot working and cold working are performed to produce a double structure composite wire, and then the composite wire is cold formed into a coil spring shape, and then a memory treatment is performed. A method for manufacturing a bidirectional shape memory alloy coil spring, which is characterized in that: a wire rod made of an elastic material is inserted into a NiTi-based shape memory alloy pipe, and then hot working,
Cold working is performed to produce a double-structured composite wire, and then the composite wire is hot formed into the shape of a coil spring, shot peening is performed on the surface of the coil spring, and then a memory treatment is performed. A method for manufacturing a bidirectional shape memory alloy coil spring according to claim 3 is characterized in that.

【0006】[0006]

【作用】すなわち請求項1の発明は上記したように、N
iTi系形状記憶合金パイプの内部に、ばね鋼等からな
るバイアスバネを挿入して二重構造のコイルばねとし、
外側のパイプと内側のバイアスばねが、高温と低温の作
動時に、その界面ですべりが生じないようにNiTi系
形状記憶合金パイプと内側のバイアスばねとを密着加工
したもので、これによりコイルばねの作動時における、
パイプ状形状記憶合金ばねと、この内側のバイアスばね
の界面でのすべりの発生をなくして、コイルばねとして
の良好な作動特性を保持させるものである。この密着加
工の方法とては、コイルばね両端部を機械的にカシメる
方法や、溶接、或は接着剤で接合する方法が適用でき
る。
That is, according to the invention of claim 1, as described above,
A bias spring made of spring steel or the like is inserted into the iTi-based shape memory alloy pipe to form a coil spring having a double structure,
The outer pipe and the inner bias spring are made by closely processing the NiTi-based shape memory alloy pipe and the inner bias spring so that slippage does not occur at the interface during high temperature and low temperature operation. During operation,
This prevents the occurrence of slippage at the interface between the pipe-shaped shape memory alloy spring and the bias spring inside the pipe-shaped shape memory alloy spring, and maintains good operating characteristics as a coil spring. As a method of this contact processing, a method of mechanically crimping both ends of the coil spring, a method of welding, or a method of joining with an adhesive can be applied.

【0007】また請求項2の発明は、NiTi系形状記
憶合金パイプの内部に、弾性材料として、ばね鋼等の材
料からなる線材を挿入して、これを押出し等の熱間加工
と焼鈍工程を入れた抽伸等の冷間加工を施して、二重構
造の複合線を作製し、次いで該複合線を冷間でコイルば
ねの形状に成形した後、記憶処理を施すものである。こ
の方法によると外側のNiTi系形状記憶合金パイプと
内部のばね鋼等のバイアスバネは、熱間加工、冷間加
工、焼鈍等の加工工程により、その界面が複合化され密
着しているため、ばねとして作動する際の界面でのすべ
りの発生がなく、良好に作動する。
According to a second aspect of the present invention, a wire made of a material such as spring steel is inserted as an elastic material into the NiTi-based shape memory alloy pipe, and this is subjected to hot working such as extrusion and an annealing step. Cold working such as drawing is performed to produce a double-structured composite wire, and the composite wire is cold-formed into the shape of a coil spring, and then subjected to a memory treatment. According to this method, the NiTi-based shape memory alloy pipe on the outside and the bias spring such as the spring steel on the inside are intimately combined and brought into contact with each other by the working steps such as hot working, cold working and annealing. There is no slippage at the interface when operating as a spring, and it works well.

【0008】次に請求項3の発明は、NiTi系形状記
憶合金パイプの内部に、弾性材料として、ばね鋼等の材
料からなる、線材を挿入して、これを押出し等の熱間加
工と焼鈍工程を入れた抽伸等の冷間加工を施して、二重
構造の複合線を作製し、該複合線を熱間でコイルばねの
形状に成形し、このコイルばねの表面にショットピーニ
ングを行った後、記憶処理を施すものである。この方法
によると、前記と同様に、パイプとバイアスばねとの界
面が密着しているため、ばねとして作動する際の界面で
のすべりの発生がなく良好に作動すると共に、熱間でコ
イルばねに成形したときの歪みの回復を、ショットピー
ニングによる冷間加工により、再び歪みを導入すること
によって形状記憶回復率を上昇させることができる。
Next, a third aspect of the present invention is to insert a wire made of a material such as spring steel as an elastic material into a NiTi-based shape memory alloy pipe, and hot-work such as extruding and annealing. Cold working such as drawing was performed to produce a double-structured composite wire, the composite wire was hot formed into the shape of a coil spring, and shot peening was performed on the surface of this coil spring. After that, a storage process is performed. According to this method, similarly to the above, the interface between the pipe and the bias spring is in intimate contact, so there is no slippage at the interface when operating as a spring, and it works well, As for the recovery of strain upon molding, the shape memory recovery rate can be increased by introducing strain again by cold working by shot peening.

【0009】次に本発明において適用でるNiTi系形
状記憶合金としては、at%でNi49〜52%、残部
TiからなるNiTi合金或は、上記のNiまたは/お
よびTiの一部をFe、Cr、Al、V、Pd、Mn、
Co、Nb、Cuのいずれか1種または2種以上で0.
01〜2%の範囲で置換したNiTi系合金が適用でき
る。そして上記のNiTi系形状記憶合金のパイプは、
これらの合金を溶解鋳造し、700〜1000℃で熱間
押出しでパイプを作製し、600〜800℃の焼鈍工程
を入れた繰り返しの冷間抽伸により所定の寸法に仕上げ
る。また二重構造の複合線とては、形状記憶合金パイプ
の内側にばね鋼等の線材を挿入した後、700〜100
0℃で熱間押出しにより複合線とし、上記と同様に60
0〜800℃の焼鈍工程を入れた繰り返しの冷間抽伸に
より所定の寸法に仕上げる。さらに形状記憶処理は通常
行われている400〜500℃で30分〜2時間の処理
が適用できる。
Next, the NiTi-based shape memory alloy applicable to the present invention is a NiTi alloy consisting of at 49% to 52% Ni at the balance and the balance Ti, or a part of the above Ni or / and Ti, Fe, Cr, Al, V, Pd, Mn,
Any one of Co, Nb, and Cu, or two or more of them can be used as 0.
A NiTi-based alloy substituted in the range of 01 to 2% can be applied. And the above-mentioned NiTi-based shape memory alloy pipe is
These alloys are melt-cast, hot extruded at 700 to 1000 ° C. to produce a pipe, and finished to a predetermined size by repeated cold drawing including an annealing step at 600 to 800 ° C. A composite wire having a double structure is 700 to 100 after a wire material such as spring steel is inserted inside a shape memory alloy pipe.
A composite wire is formed by hot extrusion at 0 ° C.
Finished to a predetermined size by repeated cold drawing with an annealing step of 0 to 800 ° C. Further, the shape memory treatment can be applied to the treatment which is usually performed at 400 to 500 ° C. for 30 minutes to 2 hours.

【0010】コイルばねには、引張り力を負荷して使用
する引張りばねと、圧縮力を負荷して使用する圧縮ばね
に大別されるが、本発明はこの両者に適用できる。引張
りばねの場合は、Af点以上の温度で引張りコイルばね
の形状(高温で収縮する形状)に記憶処理したNiTi
系形状記憶合金パイプの内部に、バイアスコイルばねを
配置する。このばねはMs点以下の低温では形状記憶合
金ばねはバイアスばねの荷重により伸ばされるため、ば
ね全体としては伸びている。Af点以上の高温ではNi
Ti系合金が形状回復し、バイアスばねを圧縮するた
め、ばね全体としては低温時に比べ収縮する。したがっ
て、この二重構造のばねは低温では伸び、高温では収縮
する特性を持つ二方向性形状記憶合金コイルばねとな
る。
The coil spring is roughly classified into a tension spring used by applying a tensile force and a compression spring used by applying a compressive force, and the present invention can be applied to both. In the case of a tension spring, NiTi stored in the shape of the tension coil spring (shape that shrinks at high temperature) at a temperature of Af or higher
A bias coil spring is arranged inside the system shape memory alloy pipe. Since the shape memory alloy spring is stretched by the load of the bias spring at a low temperature below the Ms point, this spring is stretched as a whole. Ni at high temperatures above the Af point
Since the Ti-based alloy recovers its shape and compresses the bias spring, the spring as a whole contracts as compared to when the temperature is low. Therefore, this double structure spring is a bidirectional shape memory alloy coil spring that has the characteristic of expanding at low temperature and contracting at high temperature.

【0011】圧縮ばねの場合は、上記の引張りコイルば
ねの場合とは逆にAf点以上の温度で圧縮コイルばねの
形状(高温で引張る形状)に記憶したNiTi系形状記
憶合金パイプの内側にバイアスコイルばねを配置する。
このコイルばねはMs点以下の低温では形状記憶合金ば
ねはバイアスばねの荷重により収縮されるため、ばね全
体としては収縮されているが、Af点以上の高温ではN
iTi系合金が形状回復し、バイアスバネを伸ばすため
全体としては低温時に比べ伸びる。したがって低温時で
は縮み高温では伸びる特性を持つ二方向性形状記憶合金
コイルばねとなる。
In the case of the compression spring, contrary to the case of the above-mentioned tension coil spring, a bias is applied to the inside of the NiTi type shape memory alloy pipe stored in the shape of the compression coil spring (the shape pulled at high temperature) at a temperature of Af point or higher. Place the coil spring.
Since the shape memory alloy spring is contracted by the load of the bias spring at a low temperature below the Ms point, this coil spring is contracted as a whole, but at a high temperature above the Af point it is N.
The iTi-based alloy recovers its shape and stretches the bias spring, so that it is elongated as a whole as compared with the case of low temperature. Therefore, the bidirectional shape memory alloy coil spring has a characteristic of contracting at low temperature and expanding at high temperature.

【0012】上記二重構造の二方向形状記憶コイルばね
は、形状記憶合金コイルばねとバイアスコイルばねとを
並列または直列に接続した二方向形状記憶コイルばねに
比べ、理論上同等の荷重−変形特性を示す。これらの二
方向形状記憶合金コイルばねにおいて、外界と接するの
はNiTi系合金表面のみであり、NiTi系合金の良
好な耐食性を活用できる。また、パイプは同断面積の中
実線に比べねじり剛性が高いため、同等のばね特性を得
るための断面積が小さくて済み材料の節約が可能とな
る。さらに、バイアスコイルばねがNiTi系形状記憶
合金パイプコイルばね内部に組み込まれているため、バ
イアスコイルばねと形状記憶合金コイルばねを直列につ
ないだ通常の二方向形状記憶コイルばねに比べ、寸法が
小型になる。
The two-way shape memory coil spring having the above dual structure has theoretically equivalent load-deformation characteristics to the two-way shape memory coil spring in which the shape memory alloy coil spring and the bias coil spring are connected in parallel or in series. Indicates. In these two-way shape memory alloy coil springs, only the surface of the NiTi alloy is in contact with the outside, and the good corrosion resistance of the NiTi alloy can be utilized. Further, since the pipe has a higher torsional rigidity than the solid line of the same cross-sectional area, the cross-sectional area for obtaining the same spring characteristics is small, and the material can be saved. Further, since the bias coil spring is incorporated inside the NiTi-based shape memory alloy pipe coil spring, the size is smaller than that of a normal two-way shape memory coil spring in which the bias coil spring and the shape memory alloy coil spring are connected in series. become.

【0013】[0013]

【実施例】以下に本発明の一実施例について説明する。 (実施例1)Ni50.3at%残部TiのNiTi合
金を高周波真空溶解により溶解鋳造し、900℃の温度
で押出しを行いパイプとし、これを800℃の焼鈍を入
れた繰り返し冷間抽伸により、外径1mm、内径0.8
mmのパイプを作製した。これを圧縮コイルばねの形状
に成形し、450℃で1時間の記憶処理を施した。コイ
ルばねの寸法は、平均コイル径=10mm、有効巻数=
7、ばね高さ=40mmである。次に線径0.7mmの
ばね用ステンレス鋼の線を、前記のコイルばねと同じ形
状に成形し、形状記憶合金パイプばねの内部に挿入し、
その両端部を溶接して、その界面を密着させて、図1に
示すような、外側が形状記憶合金パイプコイルばね1で
内側がバイアスばね2からなる二重構造のコイルばねを
作製した。このコイルばねは低温時には縮み高温時には
伸びる作動を行う圧縮ばねである。
EXAMPLES An example of the present invention will be described below. (Example 1) A NiTi alloy with Ni of 50.3 at% balance Ti was melt-cast by high-frequency vacuum melting, extruded at a temperature of 900 ° C to form a pipe, which was annealed at 800 ° C and repeatedly drawn by cold drawing. Diameter 1 mm, inner diameter 0.8
mm pipes were made. This was molded into the shape of a compression coil spring and subjected to a memory treatment at 450 ° C. for 1 hour. The coil spring dimensions are: average coil diameter = 10 mm, effective number of turns =
7. Spring height = 40 mm. Then, a stainless steel wire for spring having a wire diameter of 0.7 mm is formed into the same shape as the coil spring, and is inserted into the shape memory alloy pipe spring.
The both ends were welded and the interfaces were brought into close contact with each other to prepare a double-structure coil spring having a shape memory alloy pipe coil spring 1 on the outside and a bias spring 2 on the inside, as shown in FIG. This coil spring is a compression spring that operates to contract at low temperatures and expand at high temperatures.

【0014】(実施例2)外側にNi50.75at
%、Fe0.05at%残部TiのNiTi系合金を、
内側にばね用ステンレス鋼を組合せた二重構造の複合材
を1000℃で熱間押出しにより作製し、800℃の焼
鈍工程を入れた冷間抽伸により、外側が形状記憶合金パ
イプで内側がバイアスばねの二重構造の直径1mmの複
合線を作製した。この線を冷間でコイルばねの形状に成
形し、引張りコイルばねの形状に固定し、450℃で1
時間の記憶処理を施して、低温時には伸び、高温時には
縮む作動を行う引張りばねを作製した。
(Example 2) Ni 50.75 at on the outside
%, Fe0.05 at% balance Ti Ni-based alloy,
A double-structured composite material in which stainless steel for springs is combined inside is made by hot extrusion at 1000 ° C., and cold drawing including an annealing step at 800 ° C. is used to make a shape memory alloy pipe on the outside and a bias spring on the inside. A double-structured composite wire having a diameter of 1 mm was prepared. This wire is cold formed into the shape of a coil spring, fixed in the shape of a tension coil spring, and
A tension spring was manufactured that was subjected to a memory treatment for time, and that extended at low temperature and contracted at high temperature.

【0015】(実施例3)実施例2と同様にして作製し
た直径1mmの複合線を900℃の温度でコイルばねに
成形し、冷間でショットピーニングを行って外側のNi
Ti合金コイル表面に冷間加工を施し、最後に圧縮コイ
ルばねの形状に固定して450℃1時間の記憶処理を施
して、低温時に縮み、高温時に伸びる圧縮コイルばねを
作製した。
(Embodiment 3) A composite wire having a diameter of 1 mm produced in the same manner as in Embodiment 2 is formed into a coil spring at a temperature of 900 ° C., and cold shot peening is performed to form Ni on the outside.
The surface of the Ti alloy coil was subjected to cold working, finally fixed to the shape of the compression coil spring and subjected to a memory treatment at 450 ° C. for 1 hour to produce a compression coil spring that contracts at low temperature and expands at high temperature.

【0016】(比較例)直径1mmのNi50.3at
%、残部TiのNiTi合金線で、平均コイル径=10
mm、有効巻数=7、ばね高さ=40mmの中実線のコ
イルばねと、この寸法と同じばね鋼用ステンレス線のコ
イルばねを従来のバイアス法により直列に連結して、バ
イアス法の二方向性形状記憶合金コイルばねを作製し
た。
(Comparative Example) Ni 50.3 at with a diameter of 1 mm
%, NiTi alloy wire with the remaining Ti, average coil diameter = 10
mm, effective number of turns = 7, spring height = 40 mm, solid wire coil springs and stainless steel wire coil springs with the same dimensions are connected in series by the conventional bias method, and the bidirectionality of the bias method A shape memory alloy coil spring was produced.

【0017】上記の実施例1〜3の本発明の形状記憶合
金ばねと比較例のバイアス法によるコイルばねについ
て、Af点以上の温度(約60℃)以上への加熱とMs
点+20℃以下の温度(Ms点はNi50.3at%が
−1.9℃、Ni50.75at%が4.4℃)への冷
却を繰り返して5000回行う実験を行った。その結
果、本発明に係る二重構造の形状記憶合金コイルばね
は、従来のバイアス法による形状記憶合金コイルばねと
同じ特性を示した。
Regarding the shape memory alloy springs of the present invention of Examples 1 to 3 and the coil spring by the bias method of the comparative example, heating to a temperature of Af point or higher (about 60 ° C.) or higher and Ms.
An experiment was performed in which cooling to a temperature not higher than the point + 20 ° C. (Ms point: Ni 50.3 at% was −1.9 ° C., Ni 50.75 at% was 4.4 ° C.) was repeated 5000 times. As a result, the double-structured shape memory alloy coil spring according to the present invention showed the same characteristics as the shape memory alloy coil spring according to the conventional bias method.

【0018】[0018]

【発明の効果】以上に説明したように本発明によれば、
従来のバイアス法と同じ特性を有し、かつ耐食性に優
れ、コンパクト化した二方向性形状記憶合金コイルばね
が、比較的容易に得られるもので工業上顕著な効果を奏
するものである。
According to the present invention as described above,
A compact bidirectional shape memory alloy coil spring having the same characteristics as those of the conventional biasing method, excellent in corrosion resistance, and obtained in a relatively easy manner has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る二方向性形状記憶合金
コイルばねの部分断面図
FIG. 1 is a partial cross-sectional view of a bidirectional shape memory alloy coil spring according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 形状記憶合金パイプコイルばね 2 バイアスばね 1 Shape memory alloy pipe coil spring 2 Bias spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植木 達彦 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuhiko Ueki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NiTi系形状記憶合金パイプを冷間で
コイルばねの形状に成形した後、記憶処理を施してパイ
プ状の形状記憶合金コイルばねとし、弾性材料からなる
線材を前記パイプ状の形状記憶合金コイルばねに挿入し
た後、密着加工を施すことを特徴とする二方向性形状記
憶合金コイルばねの製造方法。
1. A NiTi-based shape memory alloy pipe is cold-formed into a coil spring shape, and then subjected to a memory treatment to form a pipe-shaped shape memory alloy coil spring, and a wire made of an elastic material is formed into the pipe-shaped shape. A method for manufacturing a bidirectional shape memory alloy coil spring, which comprises inserting the memory alloy coil spring and then performing a contact process.
【請求項2】 NiTi系形状記憶合金パイプ内部に弾
性材料からなる線材を挿入した後、熱間加工、冷間加工
を施して二重構造の複合線を作製し、次いで該複合線を
冷間でコイルばねの形状に成形した後、記憶処理を施す
ことを特徴とする二方向性形状記憶合金コイルばねの製
造方法。
2. A wire rod made of an elastic material is inserted into a NiTi-based shape memory alloy pipe, followed by hot working and cold working to produce a double-structured composite wire, and then the composite wire is cold-worked. A method for manufacturing a bidirectional shape memory alloy coil spring, which comprises forming a coil spring into a shape of and then performing a memory treatment.
【請求項3】 NiTi系形状記憶合金パイプ内部に弾
性材料からなる線材を挿入した後、熱間加工、冷間加工
を施して二重構造の複合線を作製し、次いで該複合線を
熱間でコイルばねの形状に成形し、該コイルばねの表面
にショットピーニングを行った後、記憶処理を施すこと
を特徴とする二方向性形状記憶合金コイルばねの製造方
法。
3. A wire rod made of an elastic material is inserted into a NiTi-based shape memory alloy pipe, and then hot working and cold working are performed to produce a double-structured composite wire, and then the composite wire is hot-worked. 1. A method for manufacturing a bidirectional shape memory alloy coil spring, which is characterized in that the coil spring is formed into a shape of a coil spring, shot peening is performed on the surface of the coil spring, and then a memory treatment is performed.
JP29102394A 1994-11-25 1994-11-25 Production of two-way shape memory alloy coil spring Pending JPH08144032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29102394A JPH08144032A (en) 1994-11-25 1994-11-25 Production of two-way shape memory alloy coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29102394A JPH08144032A (en) 1994-11-25 1994-11-25 Production of two-way shape memory alloy coil spring

Publications (1)

Publication Number Publication Date
JPH08144032A true JPH08144032A (en) 1996-06-04

Family

ID=17763459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29102394A Pending JPH08144032A (en) 1994-11-25 1994-11-25 Production of two-way shape memory alloy coil spring

Country Status (1)

Country Link
JP (1) JPH08144032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044815A1 (en) * 2006-10-12 2008-04-17 Industry-Academic Cooperation Foundation, Yonsei University Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
WO2010103691A1 (en) * 2009-03-12 2010-09-16 株式会社吉見製作所 Method of producing member composed of shape memory alloy and actuator utilizing member composed of shape memory alloy
CN109278686A (en) * 2018-11-23 2019-01-29 吉林大学 A kind of lightweight protecting memorial alloy truss assembly
CN109277502A (en) * 2018-11-08 2019-01-29 南京工业大学 Bimetal composite spring and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044815A1 (en) * 2006-10-12 2008-04-17 Industry-Academic Cooperation Foundation, Yonsei University Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
WO2010103691A1 (en) * 2009-03-12 2010-09-16 株式会社吉見製作所 Method of producing member composed of shape memory alloy and actuator utilizing member composed of shape memory alloy
CN109277502A (en) * 2018-11-08 2019-01-29 南京工业大学 Bimetal composite spring and preparation method thereof
CN109278686A (en) * 2018-11-23 2019-01-29 吉林大学 A kind of lightweight protecting memorial alloy truss assembly

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US5611874A (en) Clad shape memory alloy composite structure and method
US4631094A (en) Method of processing a nickel/titanium-based shape memory alloy and article produced therefrom
US4808246A (en) Composite material in rod, tube, strip, sheet or plate shape with reversible thermomechanical properties and process for its production
US20070200656A1 (en) Two way composite nitinol actuator
WO2010030340A2 (en) Apparatus for absorbing shock
US20110083325A1 (en) Method of Manufacturing a Nickel Titanium Coil Actuator
US3802930A (en) Alloys
JPH08144032A (en) Production of two-way shape memory alloy coil spring
JP2011080097A (en) Alloy for spring, sheet material for spring, and spring member
JP3041585B2 (en) Mainspring manufacturing method
US6585833B1 (en) Crimpable electrical connector
EP0187452B1 (en) A method of processing a nickel/titanium-based shape memory alloy and article produced therefrom
KR20050083601A (en) Thermomechanical treatment method for fe-mn-si-based shape memory alloy with nb, c addition
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JP3970645B2 (en) Method for producing iron-based shape memory alloy
JP5700476B2 (en) Spring member and manufacturing method thereof
JP5456427B2 (en) Spring member and manufacturing method thereof
JP2801310B2 (en) Manufacturing method of two-way shape memory coil spring
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JP2018119657A (en) Connection structure and manufacturing method of connection structure
JP2528358B2 (en) Method for producing iron-based shape memory alloy with excellent shape recovery characteristics
JP2008156752A (en) Method for producing impact absorbing member
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JPH101763A (en) Production of nickel-titanium alloy material