JP5456427B2 - Spring member and manufacturing method thereof - Google Patents

Spring member and manufacturing method thereof Download PDF

Info

Publication number
JP5456427B2
JP5456427B2 JP2009230799A JP2009230799A JP5456427B2 JP 5456427 B2 JP5456427 B2 JP 5456427B2 JP 2009230799 A JP2009230799 A JP 2009230799A JP 2009230799 A JP2009230799 A JP 2009230799A JP 5456427 B2 JP5456427 B2 JP 5456427B2
Authority
JP
Japan
Prior art keywords
spring member
less
plate material
member according
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009230799A
Other languages
Japanese (ja)
Other versions
JP2011080491A (en
Inventor
康則 赤坂
恭太郎 高橋
隆史 鎌田
量 菅原
智生 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009230799A priority Critical patent/JP5456427B2/en
Publication of JP2011080491A publication Critical patent/JP2011080491A/en
Application granted granted Critical
Publication of JP5456427B2 publication Critical patent/JP5456427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)

Description

本発明は、ばね部材及びその製造方法に関するものである。   The present invention relates to a spring member and a manufacturing method thereof.

近年、操作キーや送話部を備えた本体部と、本体部に重なるように配置され、ディスプレイや受話部を備えた蓋体部とを、互いの重ね合わせ面に沿ってスライドさせて開閉するスライド式の携帯電話機が普及している。そして、このスライド式の携帯電話機には、ばね部材を利用したヒンジ機構が組み込まれており、蓋体部の移動によってばね部材が弾性変形することにより、その復元力(付勢力)を利用して蓋体部を開方向または閉方向に付勢するようになっている。   In recent years, a main body provided with operation keys and a transmitter and a lid provided with a display and a receiver are arranged to overlap the main body, and are opened and closed by sliding along the overlapping surfaces. Sliding mobile phones are widespread. The sliding type mobile phone incorporates a hinge mechanism using a spring member, and the spring member is elastically deformed by the movement of the lid body, thereby utilizing the restoring force (biasing force). The lid is biased in the opening direction or the closing direction.

一般的に、上記ヒンジ機構において用いられるばね部材は、製作が容易である点、低コストである点等の観点から、トーションバネが用いられている。このトーションバネは、線材がコイル状に三次元的に巻回された巻回部を有しており、この巻回部から引き出された両端末を利用して取り付けを行うことが可能とされている。例えば、上記スライド式の携帯電話機に採用した場合には、巻回部から引き出された一端を本体部側に連結し、他端を蓋体部側に連結することで、トーションバネを取り付けることができる。これにより、巻回部の復元力を利用して蓋体部を開方向または閉方向に付勢することが可能とされている。   Generally, the spring member used in the hinge mechanism uses a torsion spring from the viewpoints of easy manufacture and low cost. This torsion spring has a winding part in which a wire is wound three-dimensionally in a coil shape, and can be attached using both terminals pulled out from this winding part. Yes. For example, when it is adopted in the above-described slide type mobile phone, the torsion spring can be attached by connecting one end pulled out from the winding part to the main body part side and connecting the other end to the lid part side. it can. Thereby, it is possible to urge the lid portion in the opening direction or the closing direction by using the restoring force of the winding portion.

ところで、近年の技術進歩に伴って、ヒンジ機構が搭載される各種装置(例えば、携帯電話機等)の小型化が進んでいるが、今後のさらなる小型化を図るために、ばね部材の小型化、薄型化、特に薄型化が求められている。
そこで、例えば特許文献1には、線材を渦巻き状に巻回した巻回部を有するトーションバネが知られている。これによれば、巻回部における厚みをできるだけ抑制することが可能とされている。
By the way, along with recent technological progress, various devices (for example, cellular phones) on which the hinge mechanism is mounted have been miniaturized, but in order to achieve further miniaturization in the future, downsizing of the spring member, Thinning, especially thinning is required.
Therefore, for example, Patent Document 1 discloses a torsion spring having a winding portion in which a wire is wound in a spiral shape. According to this, it is possible to suppress the thickness in the winding part as much as possible.

特開2009−188753号公報JP 2009-188753 A

しかしながら、上記バネであっても、巻回部が渦巻き状であるとはいえ線材を三次元的に巻回しているので、どうしても厚みが生じてしまい、さらなる薄型化を図ることが困難であった。
また、巻回時に、曲率が小さいところほど応力が集中するので、全体の強度が不均一になり易かった。また、巻による疲労が線材に蓄積されてしまい易かった。これらのことから、十分な耐久性を得ることが難しかった。
なお、線材を仮に二次元的に巻回して巻回部を作製した場合には、薄型化を図ることはできるが、技術的に困難であるうえ必要とする強度を得難いので、実現的ではない。
However, even in the case of the spring, although the winding portion is spiral, the wire is wound three-dimensionally, so that the thickness is inevitably generated and it is difficult to further reduce the thickness. .
Moreover, since stress concentrates as the curvature is smaller at the time of winding, the overall strength tends to be uneven. Moreover, fatigue due to winding was easily accumulated in the wire. From these things, it was difficult to obtain sufficient durability.
If the wire is wound two-dimensionally to produce a wound part, it can be thinned, but it is technically difficult and it is difficult to obtain the required strength, so it is not practical. .

そこで、本発明は、上記問題に鑑みてなされたものであり、さらなる薄型化を図ることができるうえ、強度及び耐久性に優れたばね部材及びその製造方法を提供するものである。   Accordingly, the present invention has been made in view of the above problems, and provides a spring member that can be further reduced in thickness and that is excellent in strength and durability, and a method for manufacturing the spring member.

上記課題を解決するために本発明は以下の手段を提案している。
本発明に係るばね部材は、板材から非巻回加工によって形成され、該板材と同じ厚みで且つ板材の平面方向に延在したばね部材であって、前記平面方向に弾性屈曲可能な腕部と、該腕部に一体的に連設され、前記弾性屈曲時に腕部を付勢して復元させる湾曲部を有する弾性部と、を備え、前記板材が、その組成が重量比で、Coが28〜42%、Crが10〜27%、Moが3〜12%、Niが15〜40%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.1〜26.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Alが0.5%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるCo−Ni基合金で、引張強さが1500N/mm 以上、硬さが500Hv以上に設定されていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
A spring member according to the present invention is a spring member that is formed from a plate material by non-winding processing, has the same thickness as the plate material, and extends in the plane direction of the plate material, and an arm portion that can be elastically bent in the plane direction. And an elastic portion having a curved portion integrally connected to the arm portion and energizing and restoring the arm portion at the time of the elastic bending, and the plate material has a composition by weight ratio and Co is 28. -42%, Cr 10-27%, Mo 3-12%, Ni 15-40%, Ti 0.1-1.0%, Mn 1.5% or less, Fe 0.1- 26.0%, C is 0.1% or less and inevitable impurities, Nb is 3.0% or less, W is 5.0% or less, Al is 0.5% or less, Zr is 0.1% or less, and B Is a Co—Ni based alloy composed of at least one of 0.01% or less, with a tensile strength of 1500 N / mm 2 or more and a hardness of 50 It is characterized by being set to 0 Hv or more .

本発明に係るばね部材の製造方法は、上記本発明のばね部材の製造方法であって、前記Co−Ni基合金を用意した後、該合金に加工率40%以上で冷間加工を施して板状にし、前記板材を作製する冷間加工工程と、前記板材を非巻回加工によって前記ばね部材を成型する成型工程と、前記成型工程後、真空中または非酸化雰囲気中において、200℃以上730℃以下の温度で前記ばね部材を時効処理する熱処理工程と、を備えていることを特徴とする。 The spring member manufacturing method according to the present invention is the above-described spring member manufacturing method according to the present invention, wherein after the Co—Ni-based alloy is prepared, the alloy is cold worked at a processing rate of 40% or more. 200 ° C. or higher in a vacuum or in a non-oxidizing atmosphere after the forming step , a cold working step for forming a plate and producing the plate member, a forming step for forming the spring member by unwinding the plate member, And a heat treatment step of aging the spring member at a temperature of 730 ° C. or lower .

本発明によれば、まず、Co−Ni基合金を冷間加工によって板状にして板材を作製する。次いで、この板材を非巻回加工によって所望のばね形状に成型する。これにより、板材と同じ厚みで且つ板材の平面方向に延在した二次元的なばね部材を得ることができる。即ち、平面方向に弾性屈曲可能な腕部と、この腕部に一体的に連設され、弾性屈曲時に腕部を付勢して復元させる湾曲部を有する弾性部と、を備えたばね部材を得ることができる。   According to the present invention, first, a Co—Ni base alloy is formed into a plate shape by cold working to produce a plate material. Next, this plate material is formed into a desired spring shape by non-winding processing. Thereby, a two-dimensional spring member having the same thickness as the plate material and extending in the plane direction of the plate material can be obtained. That is, a spring member having an arm portion that can be elastically bent in a plane direction and an elastic portion that is integrally connected to the arm portion and has a curved portion that urges and restores the arm portion during elastic bending is obtained. be able to.

特に、従来のように線材を三次元的に巻回したものとは異なり、平板の板材を非巻回加工によって二次元的に成型しているので、ばね部材の厚みを板材と同じ厚みに抑制することができ、薄型化を図ることができる。また、従来のように線材を巻回する必要がないので、巻回による方法では作製が困難であった複雑な形状のばね部材も容易に作製することができる。従って、薄型化を図ったうえで、様々な形状等の要望に対応することができる。また、線材を巻回する必要がないので、巻きによる疲労が蓄積することがない。従って、疲労のない耐久性に優れたばね部材とすることができる。   In particular, unlike the conventional wire wire wound three-dimensionally, flat plate material is two-dimensionally formed by non-winding processing, so the thickness of the spring member is suppressed to the same thickness as the plate material. Therefore, the thickness can be reduced. Further, since it is not necessary to wind the wire as in the prior art, a spring member having a complicated shape, which has been difficult to produce by the winding method, can be easily produced. Therefore, it is possible to meet demands for various shapes and the like after reducing the thickness. Moreover, since there is no need to wind the wire, fatigue due to winding does not accumulate. Therefore, it can be set as the spring member excellent in durability without fatigue.

ところで、板材は、その組成が重量比で、Coが28〜42%、Crが10〜27%、Moが3〜12%、Niが15〜40%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.1〜26.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Alが0.5%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるCo−Ni基合金から作製されている。
この場合、Co、Ni、Crを主成分とする合金を冷間加工することにより、Mo、Nb、Fe等の溶質原子を転位芯ないしは拡張転位の積層欠陥に偏析させて交差すべりを起き難くすること、及び微細な変形双晶を形成させてすべり転位を阻止することの二つの方法により加工硬化されており、機械的強度が高い。そのため、上記本発明のCo−Ni基合金からなる板材は、ステンレス系ばね鋼材として代表的であるSUS301に比べても、引張強度が強い特性を有している。従って、線材を三次元的に巻回した従来のばね部材を上回るような機械的強度に優れたばね部材とすることができる。
また、40%以上の冷間加工効率で冷間加工を行うので、板材の硬さ及び引張強さを高めることができる。従って、より機械的強度の強い優れたばね部材にすることができる。
しかも、冷間加工した板材から成形したばね部材をさらに時効処理するので、静的ひずみ時効により時効硬化されて機械的強度をより高めることができ、さらに優れたばね部材にすることができる。
特に、少なくとも200℃以上の温度で時効処理するので、合金の時効効果を確実に発現させることができる。一方、上限を730℃以下に設定するので、合金の再結晶による軟化を防止することができる。
By the way, the composition of the plate material is weight ratio, Co is 28-42%, Cr is 10-27%, Mo is 3-12%, Ni is 15-40%, Ti is 0.1-1.0%. Mn is 1.5% or less, Fe is 0.1 to 26.0%, C is 0.1% or less and inevitable impurities, Nb is 3.0% or less, W is 5.0% or less, Al is It is made of a Co—Ni based alloy composed of at least one of 0.5% or less, Zr of 0.1% or less, and B of 0.01% or less.
In this case, by cold working an alloy mainly composed of Co, Ni, and Cr, solute atoms such as Mo, Nb, and Fe are segregated to dislocation cores or stacking faults of extended dislocations so that cross-sliding hardly occurs. In addition, it is work-hardened by two methods of forming fine deformation twins and preventing slip dislocations, and has high mechanical strength. Therefore, the plate material made of the Co—Ni-based alloy of the present invention has a high tensile strength as compared with SUS301, which is a typical stainless steel material. Therefore, it can be set as the spring member excellent in mechanical strength which exceeds the conventional spring member which wound the wire three-dimensionally.
Moreover, since cold working is performed with a cold working efficiency of 40% or more, the hardness and tensile strength of the plate material can be increased. Accordingly, an excellent spring member having higher mechanical strength can be obtained.
And since the spring member shape | molded from the cold-processed board | plate material is further age-aged, it can be age-hardened by static strain aging, can raise mechanical strength more, and can be made into the more excellent spring member.
In particular, since the aging treatment is performed at a temperature of at least 200 ° C., the aging effect of the alloy can be surely exhibited. On the other hand, since the upper limit is set to 730 ° C. or lower, softening due to recrystallization of the alloy can be prevented.

本発明に係るばね部材は、上記本発明のばね部材において、前記湾曲部の線幅が、前記腕部の線幅よりも幅広とされていることを特徴とする。   The spring member according to the present invention is characterized in that, in the spring member of the present invention described above, the line width of the curved portion is wider than the line width of the arm portion.

本発明によれば、腕部の弾性屈曲時に応力集中が生じ易い湾曲部の線幅が幅広とされているので、湾曲部の強度をより高めることができ、耐久性を向上させることができる。   According to the present invention, since the line width of the bending portion where stress concentration easily occurs during elastic bending of the arm portion is wide, the strength of the bending portion can be further increased and the durability can be improved.

本発明に係るばね部材は、上記本発明のばね部材において、前記湾曲部が、渦巻き状に湾曲が連続するように形成され、最外周側の線幅が内周側の線幅よりも幅広とされていることを特徴とする。   The spring member according to the present invention is the spring member of the present invention described above, wherein the curved portion is formed so as to be curved in a spiral shape, and the line width on the outermost peripheral side is wider than the line width on the inner peripheral side. It is characterized by being.

本発明によれば、渦巻き状に湾曲が連続した湾曲部とすることができる。よって、腕部を付勢する付勢力が強いばね部材として利用することができる。特に、腕部の弾性屈曲時に応力集中が生じ易い最外周側の線幅が、内周側の線幅よりも幅広とされているので、湾曲部の強度をより高めることができ、耐久性を向上させることができる。   According to this invention, it can be set as the curved part which curved continuously. Therefore, it can be used as a spring member having a strong biasing force for biasing the arm portion. In particular, since the line width on the outermost peripheral side, where stress concentration is likely to occur during the elastic bending of the arm part, is wider than the line width on the inner peripheral side, the strength of the curved part can be further increased and durability can be improved. Can be improved.

本発明に係るばね部材は、上記本発明のばね部材において、前記湾曲部が、(厚み/線幅)の比率が1.0未満であることを特徴とする。   The spring member according to the present invention is characterized in that, in the spring member according to the present invention, the curved portion has a ratio of (thickness / line width) of less than 1.0.

本発明によれば、湾曲部の厚みに対して線幅の寸法が大きくいので、薄型化を図りながら、機械的強度をさらに高めることができる。従って、薄くて強いばね部材にすることができる。   According to the present invention, since the dimension of the line width is large with respect to the thickness of the curved portion, the mechanical strength can be further increased while reducing the thickness. Therefore, a thin and strong spring member can be obtained.

本発明に係るばね部材は、上記本発明のばね部材において、前記板材は、前記Coが28〜38%であり、前記Feが0.1〜3.0%であり、前記少なくとも一種はNbが3.0%以下、Wが5.0%以下、Zrが0.1%以下及びBが0.01%以下のうちから選択されていてもよい。
また、本発明に係るばね部材は、上記本発明のばね部材において、前記少なくとも一種はNb3.0%以下が選択されていてもよい。
The spring member according to the present invention is the above-described spring member of the present invention, wherein the plate material is 28 to 38% of Co, 0.1 to 3.0% of Fe, and at least one of Nb is Nb. It may be selected from 3.0% or less, W is 5.0% or less, Zr is 0.1% or less, and B is 0.01% or less.
Further, in the spring member according to the present invention, the at least one kind of the spring member according to the present invention may be selected such that Nb is 3.0% or less.

本発明に係るばね部材の製造方法は、上記本発明のばね部材の製造方法において、前記成型工程の際、前記板材を打ち抜き加工またはレーザーカット加工することで前記ばね部材を成型することを特徴とする。   The spring member manufacturing method according to the present invention is characterized in that, in the spring member manufacturing method of the present invention, the spring member is molded by stamping or laser cutting the plate material during the molding step. To do.

本発明によれば、板材を非巻回加工によってばね形状に成型する際に、板材を打ち抜き加工またはレーザーカット加工することで成形を行う。これにより、容易且つ確実に板材からばね部材を非巻回で作製することができる。特に、複雑で微細な形状のばね部材を作製することも可能である。また、特殊な方法ではないので、製造効率が増加したり、製造コストが増加したりし難い。   According to the present invention, when a plate material is formed into a spring shape by non-winding processing, the plate material is formed by punching or laser cutting. Thereby, a spring member can be produced from a board material easily and reliably without winding. In particular, a spring member having a complicated and fine shape can be produced. Moreover, since it is not a special method, it is difficult to increase the manufacturing efficiency and the manufacturing cost.

本発明に係るばね部材及びその製造方法によれば、さらなる薄型化を図ることができるうえ、強度及び耐久性に優れたばね部材とすることができる。   According to the spring member and the method for manufacturing the same according to the present invention, the spring member can be further reduced in thickness and can be made excellent in strength and durability.

本発明の第1実施形態におけるばね部材を示す図であり、(a)は平面図、(b)は(a)のA−A線に沿う断面図である。It is a figure which shows the spring member in 1st Embodiment of this invention, (a) is a top view, (b) is sectional drawing which follows the AA line of (a). 本発明の第2実施形態におけるばね部材を示す図であり、(a)は平面図、(b)は(a)のB−B線に沿う断面図、(c)は(a)のC−C線に沿う断面図である。It is a figure which shows the spring member in 2nd Embodiment of this invention, (a) is a top view, (b) is sectional drawing which follows the BB line of (a), (c) is C- of (a). It is sectional drawing which follows a C line. 本発明の第3実施形態におけるばね部材の平面図である。It is a top view of the spring member in 3rd Embodiment of this invention. 本発明の第3実施形態の変形例を示すばね部材の平面図である。It is a top view of the spring member which shows the modification of 3rd Embodiment of this invention. 加工率と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between a processing rate and tensile strength. 引張強さと冷間加工率との関係を、時効処理の温度毎に示したグラフである。It is the graph which showed the relationship between tensile strength and a cold work rate for every temperature of aging treatment. 引張強さと時効処理時の温度との関係を、冷間加工率毎に示したグラフである。It is the graph which showed the relationship between the tensile strength and the temperature at the time of an aging treatment for every cold work rate. 硬さと冷間加工率との関係を、時効処理の温度毎に示したグラフである。It is the graph which showed the relationship between hardness and a cold work rate for every temperature of aging treatment. 硬さと時効処理時の温度との関係を、冷間加工率毎に示したグラフである。It is the graph which showed the relationship between hardness and the temperature at the time of an aging treatment for every cold work rate. 各実施例2〜4の合金からなる板材と、比較材料からなる板材とで、引張強さ、硬さ、疲労限度、耐食性(腐食度)の比較を行った結果、並びに、実施例2〜4のばね部材と比較材料からなるばね部材とで、伸び及びヘタリ率の比較を行った結果を示す図である。Results of comparison of tensile strength, hardness, fatigue limit, corrosion resistance (corrosion degree) between the plate material made of the alloy of each of Examples 2 to 4 and the plate material made of a comparative material, and Examples 2 to 4 It is a figure which shows the result of having compared the elongation and the settling rate with the spring member which consists of a spring member and a comparative material.

次に、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
(ばね部材)
図1は、第1実施形態におけるばね部材を示す図であり、(a)は平面図、(b)は(a)のA−A線に沿う断面図である。
図1に示すように、本実施形態のばね部材10は、後述するようにCo−Ni基合金からなる板材に打ち抜き加工やレーザーカット加工等の非巻回加工を施して一体的に形成されたものである。具体的に、ばね部材10は、平面方向(図1中紙面方向)に沿って延在するとともに、平面方向において弾性屈曲可能に構成された一対の腕部12,13と、腕部12,13に一体的に連設され、弾性屈曲時に腕部12,13を付勢して復元させる渦巻き状の渦巻部(弾性部)11とを備えている。また、ばね部材10は渦巻部11の中心を対称点にして点対称に形成されている。なお、図1(b)に示すように、ばね部材10は、延在方向に沿って一様な断面視矩形状に形成されており、幅寸法W1(ばね部材10の平面視における短手方向)と厚さ寸法T(平面に直交する方向の寸法)とは同等に形成されている。
Next, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
(Spring member)
1A and 1B are views showing a spring member according to the first embodiment, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG.
As shown in FIG. 1, the spring member 10 of the present embodiment is integrally formed by subjecting a plate material made of a Co—Ni based alloy to a non-winding process such as a punching process or a laser cutting process, as will be described later. Is. Specifically, the spring member 10 extends along the plane direction (paper surface direction in FIG. 1), and a pair of arm portions 12 and 13 configured to be elastically bendable in the plane direction, and the arm portions 12 and 13. And a spiral spiral portion (elastic portion) 11 that urges and restores the arm portions 12 and 13 during elastic bending. The spring member 10 is formed point-symmetrically with the center of the spiral portion 11 as a symmetric point. As shown in FIG. 1B, the spring member 10 is formed in a uniform rectangular shape in cross section along the extending direction, and has a width dimension W1 (short direction in plan view of the spring member 10). ) And the thickness dimension T (dimension in the direction perpendicular to the plane) are formed to be equal.

渦巻部11は、径方向外側に向かうにつれ、除々に大径となるように引き回された一対の引き回し部15,16(湾曲部)を備えている。各引き回し部15,16は、同一の方向に湾曲が連続するように形成され、その基端(内側端部)同士が渦巻部11の中心で連結されている。すなわち、本実施形態のばね部材10は、渦巻部11(引き回し部15,16)が平面上(二次元的)に形成されてなるばね部材10である。一方、各引き回し部15,16の先端(外側端部)側は、渦巻部11を径方向で挟んで対向配置されている。そして、各引き回し部15,16の先端には腕部12,13の基端側がそれぞれ一体的に連結されている。このように、各引き回し部15,16によって渦巻き状に湾曲が連続した渦巻部11を形成することで、腕部12,13を付勢する付勢力が強いばね部材10として利用することができる。なお、渦巻部11(引き回し部15,16)の巻数によってばね部材10(腕部12,13)の付勢力を調整できるようになっている。   The spiral portion 11 includes a pair of routing portions 15 and 16 (curved portions) that are gradually drawn so as to have a larger diameter as it goes radially outward. Each of the lead-out portions 15 and 16 is formed so as to be continuously curved in the same direction, and the base ends (inner end portions) thereof are connected to each other at the center of the spiral portion 11. That is, the spring member 10 of this embodiment is the spring member 10 in which the spiral part 11 (the routing parts 15 and 16) is formed on a plane (two-dimensionally). On the other hand, the leading ends (outer end portions) of the routing portions 15 and 16 are opposed to each other with the spiral portion 11 interposed therebetween in the radial direction. And the base end side of the arm parts 12 and 13 is integrally connected with the front-end | tip of each routing part 15 and 16, respectively. In this way, by forming the spiral part 11 that is continuously spirally curved by the lead parts 15 and 16, it can be used as the spring member 10 having a strong biasing force that biases the arm parts 12 and 13. In addition, the urging | biasing force of the spring member 10 (arm part 12 and 13) can be adjusted now with the winding number of the spiral part 11 (leading parts 15 and 16).

各腕部12,13は、各引き回し部15,16の先端から渦巻部11の径方向に沿って、互いに逆方向に延在している。各腕部12,13は、互いに平行に配置されており、幅方向に沿って弾性屈曲可能に構成されている(図1(a)中矢印J参照)。
各腕部12,13は、その先端部分に一体的に連設された連結部21,22を備えている。連結部21,22は、腕部12,13の先端がフック状に形成されたものであって、各連結部21,22の内側に各種装置が連結されるようになっている。
The arm portions 12 and 13 extend in the opposite directions along the radial direction of the spiral portion 11 from the leading ends of the routing portions 15 and 16. Each arm part 12 and 13 is arrange | positioned mutually parallel, and is comprised so that elastic bending is possible along the width direction (refer arrow J in Fig.1 (a)).
Each of the arm portions 12 and 13 includes connecting portions 21 and 22 that are integrally connected to the tip portion thereof. The connecting portions 21 and 22 are formed with hooks at the tips of the arm portions 12 and 13, and various devices are connected to the inside of the connecting portions 21 and 22.

そして、上記ばね部材10は、連結部21,22のうち、一方の連結部を固定部材に連結し、他方の連結部を可動部材に連結することで、ばね部材10をヒンジ機構等に利用することができる。このような例としては、操作キーや送話部を備えた本体部と、本体部に重なるように配置され、ディスプレイや受話部を備えた蓋体部とを、ヒンジ機構によって互いの重ね合わせ面に沿って相対的にスライドさせて開閉するスライド式の携帯電話機等において、本実施形態のばね部材10を利用することができる。具体的には、各連結部のうち、一方の連結部を本体部に連結し、他方の連結部を蓋体部に連結することで、本体部と蓋体部との相対移動によって上記したようにばね部材10の腕部12,13が弾性屈曲する。これにより、その復元力(付勢力)を利用して蓋体部を開方向または閉方向に付勢するようになっている。   And the said spring member 10 utilizes the spring member 10 for a hinge mechanism etc. by connecting one connection part to a fixed member among the connection parts 21 and 22, and connecting the other connection part to a movable member. be able to. As such an example, a main body portion provided with operation keys and a transmission portion and a lid portion provided so as to overlap the main body portion and provided with a display and a reception portion are overlapped with each other by a hinge mechanism. The spring member 10 of the present embodiment can be used in a slide-type mobile phone or the like that is relatively slid along and opened and closed. Specifically, among the connecting portions, one connecting portion is connected to the main body portion, and the other connecting portion is connected to the lid body portion, so that the relative movement between the main body portion and the lid body portion is as described above. Further, the arm portions 12 and 13 of the spring member 10 are elastically bent. Accordingly, the lid portion is urged in the opening direction or the closing direction using the restoring force (biasing force).

(Co−Ni基合金)
ここで、上記ばね部材10を構成するCo−Ni基合金は、積層欠陥エネルギーが低く、周囲温度が室温であるような冷間加工を施すことにより、原子半径の大きさが1.25ÅであるCo、Ni、Crに比べ、原子半径が大きいかあるいは近似しているMo、Nb、Fe等の溶質原子が、転位芯ないしは拡張転位の積層欠陥に強く引き付けられて偏析して交差すべりが起き難くなるため、高い加工硬化能が発現する。即ち、原子半径の大きさが1.2Å以上の元素であればこの効果は顕著になる。
(Co-Ni based alloy)
Here, the Co—Ni base alloy constituting the spring member 10 has an atomic radius of 1.25 mm by performing cold working such that the stacking fault energy is low and the ambient temperature is room temperature. Compared to Co, Ni, and Cr, solute atoms such as Mo, Nb, and Fe that have large or approximate atomic radii are strongly attracted to dislocation cores or stacking faults of extended dislocations and segregate, making it difficult for cross slip. Therefore, high work hardening ability is expressed. In other words, this effect is significant if the atomic radius is 1.2 or more.

また、Co−Ni基合金は、冷間塑性加工により高強度特性を付与した後、200℃以上再結晶温度以下の温度で時効処理することにより、転位芯ないしは拡張転位の積層欠陥にMo、Nb、Fe等の溶質原子が引き付けられ転位を固着する、いわゆる静的ひずみ時効により、一層高い強度特性が得られる。   In addition, the Co—Ni base alloy is provided with high strength properties by cold plastic working, and then subjected to aging treatment at a temperature of 200 ° C. or more and a recrystallization temperature or less, thereby causing Mo, Nb Higher strength characteristics can be obtained by so-called static strain aging in which solute atoms such as Fe are attracted and dislocations are fixed.

なお、上記Co−Ni基合金の高い加工硬化能は室温のみならず高温下においても発現するため、高温強度特性も高いという特徴を有している。   Note that the high work-hardening ability of the Co—Ni-based alloy is exhibited not only at room temperature but also at high temperatures, and thus has a high temperature strength characteristic.

具体的に、本実施形態のCo−Ni基合金は、組成が重量比で、Coが28〜38%、Crが10〜27%、Moが3〜12%、Niが15〜40%、Tiが0.1〜1.0%、Mnが0.1〜1.5%、Feが0.1〜3.0%、Nbが3.0%以下、Cが0.1%以下及び不可避不純物からなるが、かかる組成範囲を限定した理由を説明する。   Specifically, the Co—Ni-based alloy of this embodiment has a composition by weight ratio, Co is 28 to 38%, Cr is 10 to 27%, Mo is 3 to 12%, Ni is 15 to 40%, Ti 0.1 to 1.0%, Mn 0.1 to 1.5%, Fe 0.1 to 3.0%, Nb 3.0% or less, C 0.1% or less, and inevitable impurities The reason why the composition range is limited will be described.

Coはそれ自体加工硬化能が大きく、切り欠け脆さを減じ、疲労強度を高め、高温強度を高める効果があるが、28%未満ではその効果が弱く、本組成では38%を越えるとマトリクスが硬くなり過ぎて加工困難となると共に面心立方格子相が最密六方格子相に対して不安定になるため、28〜38%とした。   Co itself has a large work-hardening ability, and has the effect of reducing notch brittleness, increasing fatigue strength, and increasing high-temperature strength, but the effect is weak at less than 28%, and with this composition it exceeds 38%. Since it becomes too hard and processing becomes difficult and the face-centered cubic lattice phase becomes unstable with respect to the close-packed hexagonal lattice phase, the content is set to 28 to 38%.

Crは耐食性を確保するのに不可欠な成分であり、またマトリクスを強化する効果があるが、10%未満では優れた耐食性を得る効果が弱く、27%を越えると加工性及び靱性が急激に低下することから、10〜27%とした。   Cr is an essential component for ensuring corrosion resistance and has an effect of strengthening the matrix. However, if it is less than 10%, the effect of obtaining excellent corrosion resistance is weak, and if it exceeds 27%, the workability and toughness are drastically reduced. Therefore, it was set to 10 to 27%.

Moはマトリクスに固溶してこれを強化する効果、加工硬化能を増大させる効果、及びCrとの共存において耐食性を高める効果があるが、3%未満では所望する効果が得られず、12%を越えると加工性が急激に低下すること、及び脆いσ相が生成しやすくなることから、3〜12%とした。   Mo has the effect of strengthening the solid solution in the matrix, the effect of increasing the work hardening ability, and the effect of improving the corrosion resistance in the coexistence with Cr. However, if it is less than 3%, the desired effect cannot be obtained, and 12% If it exceeds 1, the workability is drastically lowered and a brittle σ phase is easily generated.

Niは面心立方格子相を安定化し、加工性を維持し、耐食性を高める効果があるが、本発明合金のCo、Cr、Mo、Nb、Feの組成範囲において、Niが15%未満では安定した面心立方格子相を得ることが困難であり、40%を越えると機械的強度が低下することから、15〜40%とした。   Ni stabilizes the face-centered cubic lattice phase, maintains the workability, and improves the corrosion resistance. However, in the composition range of Co, Cr, Mo, Nb, and Fe of the alloy of the present invention, it is stable when Ni is less than 15%. It is difficult to obtain a face-centered cubic lattice phase, and if it exceeds 40%, the mechanical strength decreases.

Tiは強い脱酸、脱窒、脱硫の効果、及び鋳塊組織の微細化の効果があるが、0.1%未満ではその効果が弱く、例えば1.0%では問題がないが、多過ぎると合金中に介在物が増えたり、η相(Ni3 Ti)が析出して靱性が低下したりすることから、0.1〜1.0%とした。 Ti has strong deoxidation, denitrification and desulfurization effects, and refinement of the ingot structure, but the effect is weak at less than 0.1%, for example, 1.0% has no problem, but is too much And inclusions increase in the alloy, or η phase (Ni 3 Ti) precipitates and the toughness decreases, so the content was made 0.1 to 1.0%.

Mnは脱酸、脱硫の効果、及び面心立方格子相を安定化する効果があるが、多過ぎると耐食性、耐酸化性を劣化させるため、0.1〜1.5%とした。   Mn has the effect of deoxidation and desulfurization and the effect of stabilizing the face-centered cubic lattice phase, but if it is too much, the corrosion resistance and oxidation resistance are deteriorated.

Feはマトリクスに固溶してこれを強化する効果があるが、多過ぎると耐酸化性が低下するため、0.1〜3.0%とした。   Fe has the effect of strengthening the solid solution in the matrix, but if it is too much, the oxidation resistance is lowered, so the content was made 0.1 to 3.0%.

Nbはマトリクスに固溶してこれを強化し、加工硬化能を増大させる効果があるが、3.0%を越えるとσ相やδ相(Ni3Nb)が析出して靭性が低下することから、3.0%以下とした。 Nb has the effect of increasing the work hardening ability by solid solution in the matrix, but when it exceeds 3.0%, the σ phase and δ phase (Ni 3 Nb) precipitate and the toughness decreases. Therefore, it was set to 3.0% or less.

Cはマトリクスに固溶するほか、Cr、Mo、Nb、W等と炭化物を形成し、結晶粒の粗大化の防止効果があるが、多過ぎると靭性の低下、耐食性の劣化等が生じる。   In addition to solid solution in the matrix, C forms carbides with Cr, Mo, Nb, W, etc., and has the effect of preventing the coarsening of crystal grains. However, if it is too much, the toughness is lowered and the corrosion resistance is deteriorated.

また、本実施形態におけるCo−Ni基合金の他の組成は、重量比で、Coが28〜38%、Crが10〜27%、Moが3〜12%、Niが15〜35%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.1〜3.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるが、かかる組成範囲を限定した理由について上述していないものについて説明する。   In addition, the other composition of the Co—Ni-based alloy in the present embodiment is Co 28-38%, Cr 10-27%, Mo 3-12%, Ni 15-35%, Ti by weight ratio. 0.1 to 1.0%, Mn is 1.5% or less, Fe is 0.1 to 3.0%, C is 0.1% or less, unavoidable impurities, Nb is 3.0% or less, W Is 5.0% or less, Zr is 0.1% or less, and B is at least one of 0.01% or less. The reason why the composition range is limited will be described.

Wは、マトリクスに固溶してこれを強化し、加工硬化能を著しく増大させる効果があるが、5.0%を越えるとσ相を析出して靭性が低下することから、5.0%以下とした。   W has the effect of strengthening and strengthening the workability by dissolving in the matrix, but if it exceeds 5.0%, the σ phase is precipitated and the toughness is lowered. It was as follows.

Zrは、高温での結晶粒界強度を上げて、熱間加工性を向上させる効果があるが、多過ぎると逆に加工性が悪くなるため、0.1%以下とした。   Zr has the effect of increasing the grain boundary strength at a high temperature and improving the hot workability, but if it is too much, the workability deteriorates conversely, so it was made 0.1% or less.

Bは、熱間加工性を改善する効果があるが、多過ぎると逆に熱間加工性が低下し割れやすくなるため、0.01%以下とした。   B has an effect of improving the hot workability, but if it is too much, the hot workability is lowered and cracking easily occurs.

さらに、本実施形態におけるCo−Ni基合金の他の組成は、重量比で、Coが28〜42%、Crが10〜27%、Moが3〜12%、Niが15〜35%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.8〜26.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Alが0.5%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるが、かかる組成範囲を限定した理由について上述していないものについて説明する。   Furthermore, other compositions of the Co—Ni based alloy in the present embodiment are 28 to 42% Co, 10 to 27% Cr, 3 to 12% Mo, 15 to 35% Ni, and Ti by weight ratio. 0.1 to 1.0%, Mn 1.5% or less, Fe 0.8 to 26.0%, C 0.1% or less, unavoidable impurities, Nb 3.0% or less, W Is 5.0% or less, Al is 0.5% or less, Zr is 0.1% or less, and B is at least one of 0.01% or less. The reason for limiting the composition range is described above. Explain what does not exist.

Coについては上述したが、本組成では42%を越えるとマトリクスが硬くなり過ぎて加工困難となると共に面心立方格子相が最密六方格子相に対して不安定になるため、上限を42%とした。   Although Co has been described above, in this composition, if it exceeds 42%, the matrix becomes too hard and difficult to process, and the face-centered cubic lattice phase becomes unstable with respect to the close-packed hexagonal lattice phase, so the upper limit is 42%. It was.

Feについても上述したが、耐酸化性よりも、マトリクスに固溶してこれを強化する効果を重視して、上限を26.0%とした。   As described above for Fe, the upper limit was set to 26.0% by placing emphasis on the effect of solid solution in the matrix and strengthening it rather than oxidation resistance.

Alは、脱酸、及び耐酸化性を向上させる効果があるが、多過ぎると耐食性の劣化等が生じるため、0.5%以下とした。   Al has the effect of improving deoxidation and oxidation resistance, but if it is too much, deterioration of corrosion resistance and the like occur, so 0.5% or less.

(ばね部材の製造方法)
次に、上記ばね部材10の製造方法について説明する。
まず上記組成からなるCo−Ni基合金を真空溶解炉で溶製する。そして、溶製したインゴットを一般的な加工により塑性加工する。この時、室温で加工率(加工前と加工後とでの断面積の割合)が少なくとも20%以上の冷間塑性加工を施し、完成後のばね部材10の厚さ寸法Tと同じ厚みに形成された平板状の板材を作成する(冷間加工工程)。このように、加工率(冷間加工率)を20%以上に設定することにより、Co−Ni基合金の硬さ及び引張強さを高めることができる。従って、より機械的強度の強い優れたばね部材10を作成することができる。なお、加工率は40%以上に設定することがより好ましい。
(Manufacturing method of spring member)
Next, a method for manufacturing the spring member 10 will be described.
First, a Co—Ni based alloy having the above composition is melted in a vacuum melting furnace. Then, the melted ingot is plastically processed by general processing. At this time, cold plastic working is performed at room temperature so that the processing rate (the ratio of the cross-sectional area before and after processing) is at least 20% or more, and formed to the same thickness as the thickness dimension T of the spring member 10 after completion. A flat plate material is prepared (cold working step). Thus, by setting the processing rate (cold processing rate) to 20% or more, the hardness and tensile strength of the Co—Ni based alloy can be increased. Therefore, the excellent spring member 10 having higher mechanical strength can be produced. The processing rate is more preferably set to 40% or more.

そして、上記Co−Ni基合金からなる板材に対して打ち抜き加工またはレーザーカット加工等の非巻回加工を施す(成型工程)。これにより、上記ばね部材10の形状に成型されることになる。   Then, non-winding processing such as punching or laser cutting is performed on the plate material made of the Co—Ni-based alloy (molding process). Thereby, it shape | molds in the shape of the said spring member 10. FIG.

ところで、上記Co−Ni合金は、冷間加工を施しただけでも優れた強度特性を有する高弾性合金であるが、本実施形態では上記成型工程後、ばね部材10に対して、真空中または非酸化雰囲気下において、200℃以上730℃以下の温度で時効処理する(熱処理工程)。これにより、冷間加工した板材から成形したばね部材10をさらに時効処理することで、静的ひずみ時効により時効硬化して一層高い機械的強度を有する高弾性合金になり、さらに優れたばね部材10にすることができる。
特に、少なくとも200℃以上の温度で時効処理するので、Co−Ni基合金の時効効果を確実に発現させることができる。一方、上限は730℃以下に設定するので、Co−Ni基合金の再結晶による軟化を防止することができる。なお本実施形態のCo−Ni基合金における最適組成での十分な時効硬化と靱性が得られる、より望ましい時効処理温度は350℃以上650℃以下である。
以上により、本実施形態のばね部材10が完成する。
By the way, the Co—Ni alloy is a highly elastic alloy having excellent strength characteristics even after being cold worked, but in the present embodiment, after the molding step, the spring member 10 is subjected to vacuum or non- An aging treatment is performed at a temperature of 200 ° C. or higher and 730 ° C. or lower in an oxidizing atmosphere (heat treatment step). Thus, by further aging the spring member 10 formed from the cold-worked plate material, it becomes age-hardened by static strain aging and becomes a highly elastic alloy having higher mechanical strength, and further improves the spring member 10. can do.
In particular, since the aging treatment is performed at a temperature of at least 200 ° C., the aging effect of the Co—Ni based alloy can be surely exhibited. On the other hand, since the upper limit is set to 730 ° C. or lower, softening due to recrystallization of the Co—Ni based alloy can be prevented. In addition, the more preferable aging temperature in which sufficient age hardening and toughness with the optimal composition in the Co-Ni base alloy of this embodiment are obtained is 350 degreeC or more and 650 degrees C or less.
Thus, the spring member 10 of the present embodiment is completed.

このように、本実施形態によれば、まず、Co−Ni基合金を冷間加工によって板状にして板材を作製する。次いで、この板材を打ち抜き加工やレーザーカット加工等の非巻回加工によって所望のばね形状に成型する。これにより、板材と同じ厚さ寸法Tで、且つ板材の平面方向に延在した二次元的なばね部材10を得ることができる。即ち、平面方向に弾性屈曲可能な腕部12,13と、この腕部12,13に一体的に連設され、弾性屈曲時に腕部12,13を付勢して復元させる渦巻部11と、を備えたばね部材10を得ることができる。   Thus, according to this embodiment, first, a Co—Ni-based alloy is formed into a plate shape by cold working to produce a plate material. Next, this plate material is formed into a desired spring shape by non-winding processing such as punching processing or laser cutting processing. Thereby, the two-dimensional spring member 10 having the same thickness T as the plate material and extending in the plane direction of the plate material can be obtained. That is, arm portions 12 and 13 that can be elastically bent in a planar direction, and a spiral portion 11 that is integrally connected to the arm portions 12 and 13 and urges and restores the arm portions 12 and 13 during elastic bending, Can be obtained.

特に、従来のように線材を三次元的に巻回したものとは異なり、平板の板材を非巻回加工によって二次元的に成型しているので、ばね部材10の厚さ寸法Tを板材と同じ厚みに抑制することができ、薄型化を図ることができる。
また、従来のように線材を巻回する必要がないので、巻回による方法では作製が困難であった複雑な形状のばね部材も容易に作製することができる。従って、薄型化を図ったうえで、様々な形状等の要望に対応することができる。また、線材を巻回する必要がないので、巻きによる疲労が蓄積することがない。従って、疲労のない耐久性に優れたばね部材10とすることができる。
この場合、本実施形態では、上記Co−Ni基合金からなる板材に対して打ち抜き加工またはレーザーカット加工等の非巻回加工を施す構成とした。
この構成によれば、容易且つ確実に板材からばね部材10を非巻回で作製することができる。特に、複雑で微細な形状のばね部材10を作製することも可能である。また、特殊な方法ではないので、製造効率が増加したり、製造コストが増加したりし難い。
In particular, unlike a conventional wire wire wound three-dimensionally, a flat plate material is two-dimensionally formed by non-winding processing, so that the thickness dimension T of the spring member 10 is defined as a plate material. The thickness can be reduced to the same thickness.
Further, since it is not necessary to wind the wire as in the prior art, a spring member having a complicated shape, which has been difficult to produce by the winding method, can be easily produced. Therefore, it is possible to meet demands for various shapes and the like after reducing the thickness. Moreover, since there is no need to wind the wire, fatigue due to winding does not accumulate. Therefore, it can be set as the spring member 10 excellent in durability without fatigue.
In this case, in this embodiment, it was set as the structure which performs non-winding processes, such as a punching process or a laser cut process, with respect to the board | plate material which consists of the said Co-Ni base alloy.
According to this configuration, the spring member 10 can be easily and reliably produced from the plate material without being wound. In particular, the spring member 10 having a complicated and fine shape can be produced. Moreover, since it is not a special method, it is difficult to increase the manufacturing efficiency and the manufacturing cost.

ところで、上記板材は、その組成が重量比で、Coが28〜42%、Crが10〜27%、Moが3〜12%、Niが15〜40%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.1〜26.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Alが0.5%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるCo−Ni基合金から作製されている。
そのため、この板材は、ステンレス系ばね鋼材として代表的であるSUS301に比べても、引張強度が強い特性を有している。従って、線材を三次元的に巻回した従来のばね部材を上回るような機械的強度に優れたばね部材とすることができる。
そして、このようなばね部材10を、例えばスライド式携帯電話機等の各種装置のヒンジ機構として用いることで、スムーズなスライド機能を発揮することができるとともに、耐久性に優れた携帯電話機を提供することができる。
By the way, the said board | plate material is the composition by weight ratio, Co is 28 to 42%, Cr is 10 to 27%, Mo is 3 to 12%, Ni is 15 to 40%, Ti is 0.1 to 1.0. %, Mn 1.5% or less, Fe 0.1-26.0%, C 0.1% or less, unavoidable impurities, Nb 3.0% or less, W 5.0% or less, Al Is made of a Co—Ni based alloy consisting of at least one of 0.5% or less, Zr of 0.1% or less and B of 0.01% or less.
For this reason, this plate material has a high tensile strength compared to SUS301, which is a typical stainless steel material. Therefore, it can be set as the spring member excellent in mechanical strength which exceeds the conventional spring member which wound the wire three-dimensionally.
Then, by using such a spring member 10 as a hinge mechanism of various devices such as a slide-type mobile phone, a mobile phone that can exhibit a smooth slide function and has excellent durability is provided. Can do.

(第2実施形態)
次に、本発明の第2実施形態について説明する。図2は、第2実施形態のばね部材を示す図であり、(a)は平面図、(b)は(a)のB−B線に沿う断面図、(c)は(a)のC−C線に沿う断面図である。本実施形態のばね部材は、強度を確保するために厚肉部を形成した点で上記第1実施形態と相違している。
図2に示すように、本実施形態のばね部材30は、上記第1実施形態と同様にCo−Ni基合金からなる板材を非巻回加工によって形成したものであり、径方向外側に向かうにつれ、徐々に大径となるように引き回された引き回し部(湾曲部)35を有する渦巻き状の渦巻部(弾性部)31と、引き回し部35の外側端部から引き出された腕部32とを備えている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. 2A and 2B are views showing a spring member according to a second embodiment, in which FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along line B-B in FIG. 2A, and FIG. It is sectional drawing which follows the -C line. The spring member of the present embodiment is different from the first embodiment in that a thick portion is formed to ensure strength.
As shown in FIG. 2, the spring member 30 of the present embodiment is formed by non-winding processing of a plate material made of a Co—Ni-based alloy as in the first embodiment, and as it goes outward in the radial direction. A spiral spiral portion (elastic portion) 31 having a lead portion (curved portion) 35 that is gradually drawn to have a large diameter, and an arm portion 32 that is drawn from the outer end portion of the lead portion 35. I have.

腕部32は、渦巻部31の最外周の接線方向に沿って延在しており、幅方向に沿って弾性屈曲可能に構成されている(図2(a)中矢印K参照)。また、腕部32は、その先端部分に一体的に連設され、各種装置に連結されるフック状の連結部33を備えている。一方、引き回し部35の内側端部には、各種装置に連結されるフック状の連結部34が形成されている。そして、これら連結部33,34のうち、一方の連結部が固定部材に連結され、他方の連結部が可動部材に連結されるようになっている。   The arm portion 32 extends along the tangential direction of the outermost periphery of the spiral portion 31, and is configured to be elastically bent along the width direction (see arrow K in FIG. 2A). The arm portion 32 includes a hook-like connecting portion 33 that is integrally connected to the distal end portion thereof and connected to various devices. On the other hand, a hook-like connecting portion 34 that is connected to various devices is formed at the inner end of the routing portion 35. And one connection part is connected with a fixed member among these connection parts 33 and 34, and the other connection part is connected with a movable member.

ここで、引き回し部35の最外周には、その他の領域(例えば、腕部32や引き回し部35の内周部)よりも幅寸法が拡大された幅広部36が形成されている。具体的に、幅広部36は、腕部32と引き回し部35との連結部分から所定の角度範囲(例えば、渦巻部31の中心角で180度程度)で形成されている。そして、幅広部36は、その周方向両端部から中間部分に向かうにつれ、幅寸法が除々に広くなるように形成されている。具体的には、図2(c)に示すように、幅広部36の幅寸法W2は、厚さ寸法Tに比べて広くなるように形成されている(すなわち、厚さ寸法T/幅寸法W2の比率が1.0未満)。この場合、幅広部36において最も幅広な部分(幅広部36の周方向中間)の幅寸法W2は、厚さ寸法Tの2倍程度に形成されている。なお、これら引き回し部35、幅広部36、及び連結部34により、本実施形態の渦巻部31が形成されている。   Here, on the outermost periphery of the routing portion 35, a wide portion 36 having a width dimension larger than that of other regions (for example, the inner peripheral portion of the arm portion 32 and the routing portion 35) is formed. Specifically, the wide portion 36 is formed within a predetermined angle range (for example, about 180 degrees at the central angle of the spiral portion 31) from the connecting portion between the arm portion 32 and the routing portion 35. And the wide part 36 is formed so that a width dimension may become large gradually as it goes to an intermediate part from the circumferential direction both ends. Specifically, as shown in FIG. 2C, the width dimension W2 of the wide portion 36 is formed to be wider than the thickness dimension T (that is, thickness dimension T / width dimension W2). Ratio is less than 1.0). In this case, the width dimension W2 of the widest part (the middle in the circumferential direction of the wide part 36) in the wide part 36 is formed to be about twice the thickness dimension T. Note that the spiral portion 31 of the present embodiment is formed by the routing portion 35, the wide portion 36, and the connecting portion 34.

この構成によれば、上記第1実施形態と同様の効果を奏するとともに、腕部12.13の弾性屈曲時に応力集中が生じ易い引き回し部35の最外周側の幅寸法W2が、内周側の幅寸法W1よりも幅広とされているので、引き回し部35の強度をより高めることができ、耐久性を向上させることができる。この場合、引き回し部35の厚さ寸法Tに対して幅寸法W2を大きくするので、薄型化を図りながら、機械的強度をさらに高めることができる。従って、薄くて強いばね部材10にすることができる。   According to this configuration, the same effect as in the first embodiment is obtained, and the width W2 on the outermost peripheral side of the routing portion 35 that is likely to cause stress concentration when the arm portion 12.13 is elastically bent is the inner peripheral side. Since it is wider than the width dimension W1, the strength of the routing portion 35 can be further increased, and the durability can be improved. In this case, since the width dimension W2 is made larger than the thickness dimension T of the routing portion 35, the mechanical strength can be further increased while achieving a reduction in thickness. Therefore, the spring member 10 can be thin and strong.

また、応力集中が生じやすい部位(引き回し部35の最外周側)のみに幅広部36を形成することで、ばね部材30全体を幅広形成する場合に比べてばね部材30の薄型化を図った上で、ばね部材30の強度を確保することができる。
さらに、周方向両端から中間部分に向かうにつれ徐々に幅寸法が厚くなるように幅広部36を形成することで、幅広部36の連結部分において、段差等が生じることがなく、滑らかな曲線形状に形成される。これにより、幅広部36の連結部分において、応力集中を防ぐことができる。
Further, by forming the wide portion 36 only in a portion where stress concentration is likely to occur (outermost peripheral side of the routing portion 35), the spring member 30 is made thinner than the case where the entire spring member 30 is formed wide. Thus, the strength of the spring member 30 can be ensured.
Furthermore, by forming the wide portion 36 so that the width dimension gradually increases from both ends in the circumferential direction toward the middle portion, there is no step in the connecting portion of the wide portion 36, and a smooth curved shape is obtained. It is formed. Thereby, stress concentration can be prevented at the connecting portion of the wide portion 36.

(第3実施形態)
次に、本発明の第3実施形態について説明する。図3は、第3実施形態のばね部材を示す平面図である。本実施形態のばね部材は、ベース部に対して弾性屈曲可能な一対の腕部及び弾性部が一体的に形成されている点について上記第1実施形態と相違している。
図3に示すように、第3実施形態のばね部材50は、平面視H状のベース部51と、ベース部51に一体的に連設された一対の弾性部52及び腕部57とを備えている。なお、本実施形態のばね部材50は、ベース部51の中心線を対称線として、線対称に形成されている。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 3 is a plan view showing the spring member of the third embodiment. The spring member of this embodiment is different from the first embodiment in that a pair of arms and an elastic portion that can be elastically bent with respect to the base portion are integrally formed.
As shown in FIG. 3, the spring member 50 of the third embodiment includes a base portion 51 having an H shape in plan view, and a pair of elastic portions 52 and arm portions 57 that are integrally connected to the base portion 51. ing. In addition, the spring member 50 of this embodiment is formed in line symmetry with the center line of the base portion 51 as a symmetry line.

ベース部51は、互いに平行に延在する第1延在部51a及び第2延在部51bと、第1延在部51a及び第2延在部51b間を架け渡すように形成された橋架部51cとで形成されている。   The base portion 51 includes a first extending portion 51a and a second extending portion 51b extending in parallel with each other, and a bridge portion formed so as to bridge between the first extending portion 51a and the second extending portion 51b. 51c.

各弾性部52及び腕部57は、第1延在部51aの長手方向両端部にそれぞれ形成されている。なお、各弾性部52及び腕部57は、対称線に対して線対称の部材であるため、以下の説明では一方の弾性部52について説明する。   Each elastic part 52 and arm part 57 are each formed in the longitudinal direction both ends of the 1st extension part 51a. In addition, since each elastic part 52 and the arm part 57 are members symmetrical with respect to the symmetry line, the following explanation will explain one elastic part 52.

弾性部52は、第1延在部51aの長手方向端部から延在するフック状の連結部55と、連結部55の中途部から形成され、連結部55を取り囲むように湾曲する湾曲部56とを備えている。
また、腕部57は、湾曲部56の先端から一体的に連設されており、腕部57の先端には、各種装置に連結される連結部58が形成されている。そして、腕部57は、その幅方向に沿って弾性屈曲変形可能に構成されている(図3中矢印L参照)。
The elastic part 52 is formed of a hook-like connecting part 55 extending from the longitudinal end of the first extending part 51 a and a middle part of the connecting part 55, and a curved part 56 that curves so as to surround the connecting part 55. And.
The arm portion 57 is integrally connected from the tip of the bending portion 56, and a connecting portion 58 that is connected to various devices is formed at the tip of the arm portion 57. And the arm part 57 is comprised so that elastic bending deformation is possible along the width direction (refer arrow L in FIG. 3).

この構成によれば、上記第1実施形態と同様の効果を奏することができるとともに、一対の弾性部52を一体的に連結することができるので、ばね部材50の更なる小型化を図ることができる。
また、本実施形態のばね部材50は、上記第1実施形態と同様に、Co−Ni基合金からなる平板に打ち抜き加工やレーザーカット加工等の非巻回加工を施すことにより形成される。そのため、従来のように線材を巻回する必要がないので、巻回による方法では作製が困難であった本実施形態のような複雑な形状のばね部材50であっても、平板を打ち抜くのみで容易に所望のばね形状に成型することができる。従って、薄型化を図ったうえで、様々な形状等の要望に対応することができる。
According to this configuration, the same effects as those of the first embodiment can be obtained, and the pair of elastic portions 52 can be integrally connected. Therefore, the spring member 50 can be further downsized. it can.
Moreover, the spring member 50 of this embodiment is formed by giving non-winding processes, such as a punching process and a laser cutting process, to the flat plate which consists of a Co-Ni base alloy similarly to the said 1st Embodiment. Therefore, it is not necessary to wind the wire as in the conventional case, so even the spring member 50 having a complicated shape as in the present embodiment, which is difficult to produce by the method using winding, is simply punched out from a flat plate. It can be easily molded into a desired spring shape. Therefore, it is possible to meet demands for various shapes and the like after reducing the thickness.

(変形例)
また、本発明のばね部材としては、以下に示すような形状を採用することも可能である。図4は、本発明の他の構成を示すばね部材の平面図である。
図4に示すばね部材70は、細長形状のベース部71と、ベース部71に一体的に連結された一対の弾性部72及び腕部73とを備えている。なお、本実施形態のばね部材70は、ベース部71の中心を対称点として点対称に形成されている。また、各弾性部72及び腕部73は、対称点に対して点対称の部材であるため、以下の説明では一方の弾性部72について説明する。
(Modification)
Moreover, as a spring member of this invention, it is also possible to employ | adopt the shape as shown below. FIG. 4 is a plan view of a spring member showing another configuration of the present invention.
The spring member 70 shown in FIG. 4 includes an elongated base portion 71 and a pair of elastic portions 72 and arm portions 73 that are integrally connected to the base portion 71. Note that the spring member 70 of the present embodiment is formed point-symmetrically with the center of the base portion 71 as the symmetry point. Moreover, since each elastic part 72 and the arm part 73 are point symmetrical members with respect to a symmetrical point, in the following description, one elastic part 72 is demonstrated.

弾性部72は、ベース部71の長手方向中途部から蛇行しながら延在する波状部(湾曲部)74と、波状部74の先端に連設され、各種装置が連結されるリング部76とを備えている。   The elastic portion 72 includes a wavy portion (curved portion) 74 that extends while meandering from a midway portion in the longitudinal direction of the base portion 71, and a ring portion 76 that is connected to the tip of the wavy portion 74 and to which various devices are connected. I have.

腕部73は、ベース部71の長手方向端部からベース部71の幅方向に沿って延在している。腕部73の先端には、腕部73の延在方向に直交するように突出する突出部75が形成されており、この突出部75に各種装置が係止されるようになっている。そして、腕部73は、平面方向に沿って弾性屈曲可能に構成されている(図4中矢印M参照)。
この構成によれば、上記第1実施形態と同様の効果を奏することができる。
The arm portion 73 extends from the longitudinal end portion of the base portion 71 along the width direction of the base portion 71. A protrusion 75 is formed at the tip of the arm 73 so as to protrude perpendicular to the extending direction of the arm 73, and various devices are locked to the protrusion 75. And the arm part 73 is comprised so that elastic bending is possible along a plane direction (refer arrow M in FIG. 4).
According to this configuration, the same effects as those of the first embodiment can be obtained.

なお、本発明の技術範囲は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上記実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や形状などはほんの一例に過ぎず、適宜変更が可能である。
例えば、本実施形態のばね部材は、スライド式の携帯電話機に用いるヒンジ機構に限らず、種々の装置に採用することができる。この場合も、本実施形態のばね部材は、Co−Ni基合金からなる平板を打ち抜くのみで、所望のばね形状に形成することができるので、小型薄型化を図った上で、様々な形状やサイズ等の要請に即座に対応することができる。
また、上記幅広部を各実施形態のばね部材に採用しても構わない。例えば、上記第2実施形態の幅広部36を各湾曲部(引き回し部15,16や湾曲部56、波状部74)に形成しても構わない。これにより、各湾曲部の強度をより高めることができ、耐久性を向上させることができる。
さらに、打ち抜き加工やレーザーカット加工以外の非巻回工程でばね部材を作成しても構わない。
It should be noted that the technical scope of the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific structure and shape described in the embodiment are merely examples, and can be changed as appropriate.
For example, the spring member of the present embodiment is not limited to a hinge mechanism used for a slide type mobile phone, and can be employed in various devices. Also in this case, the spring member of the present embodiment can be formed into a desired spring shape simply by punching a flat plate made of a Co-Ni based alloy. It is possible to respond immediately to requests for size and the like.
Moreover, you may employ | adopt the said wide part for the spring member of each embodiment. For example, you may form the wide part 36 of the said 2nd Embodiment in each curved part (the routing parts 15 and 16, the curved part 56, the corrugated part 74). Thereby, the intensity | strength of each bending part can be raised more and durability can be improved.
Furthermore, the spring member may be created by a non-winding process other than punching or laser cutting.

(実施例)
次に、本発明に係るばね部材を実際に作製し、その機械的強度を比較した実施例について説明する。
はじめに、本実施例では、以下のCo−Ni基合金を採用した。
即ち、組成が不可避不純物を含み、且つ、重量比でCo:34.07%、Cr:19.96%、Mo:10.06%、Ni:32.33%、Ti:0.5%、Mn:0.3%、Fe:1.77%、Nb:1.01%、C:0.018%からなるCo−Ni基合金を用いた。
そして、この合金に冷間加工を施して、板材を作製した。
(Example)
Next, an embodiment in which the spring member according to the present invention is actually manufactured and the mechanical strength thereof is compared will be described.
First, in this example, the following Co—Ni based alloy was employed.
That is, the composition contains inevitable impurities, and by weight ratio Co: 34.07%, Cr: 19.96%, Mo: 10.06%, Ni: 32.33%, Ti: 0.5%, Mn : Co-Ni based alloy comprising 0.3%, Fe: 1.77%, Nb: 1.01%, C: 0.018% was used.
The alloy was cold worked to produce a plate material.

その後、この板材を打ち抜き加工による非巻回加工を施して、第1実施形態に示すばね部材10の形状に成型した。以下、この状態のばね部材を「実施例1」として説明する。
また、上記打ち抜き成型後、真空中において温度525℃で時効処理を行ってばね部材を作製した。以下、この状態のばね部材を「実施例2」として説明する。
Thereafter, this plate material was subjected to non-winding processing by punching and molded into the shape of the spring member 10 shown in the first embodiment. Hereinafter, the spring member in this state will be described as “Example 1”.
Further, after the punching molding, an aging treatment was performed at a temperature of 525 ° C. in a vacuum to produce a spring member. Hereinafter, the spring member in this state will be described as “Example 2”.

これに対して、SUS系バネ鋼材として有名であるSUS301を用いて、上記ばね部材10と同形状のばね部材を作製した。以下、この状態のばね部材を「比較例」として説明する。   On the other hand, a spring member having the same shape as the spring member 10 was produced using SUS301, which is famous as a SUS spring steel material. Hereinafter, the spring member in this state will be described as a “comparative example”.

次に、各実施例と比較例とで引張強さの比較を行った結果を図5に示す。
図5に示すように、いずれの場合も、加工率が増加するにつれて引張強さも増加傾向にあることがわかる。特に、本発明に係るCo−Ni基合金を利用して作製した実施例1のばね部材は、比較例として挙げたSUS301からなるばね部材に比べて、加工率に関係なく引張強さが高いことが確認できた。さらに、時効処理を施した実施例2のばね部材は、さらに引張強さが高くなるという結果が得られた。例えば、実施例2に加工率60%程度で冷間加工を施した場合には、比較例に加工率60%程度で冷間加工を施した場合に比べて、30%以上も引張強さが大きいことがわかる。
これらの結果から、本発明に係るばね部材は、機械的強度が高く、二次元的な構造であっても十分な耐久性を確保できることが確認できた。
Next, FIG. 5 shows a result of comparison of tensile strength between each example and a comparative example.
As shown in FIG. 5, it can be seen that in any case, the tensile strength tends to increase as the processing rate increases. In particular, the spring member of Example 1 manufactured using the Co—Ni-based alloy according to the present invention has high tensile strength regardless of the processing rate as compared with the spring member made of SUS301, which is cited as a comparative example. Was confirmed. Furthermore, the spring member of Example 2 subjected to the aging treatment has a result that the tensile strength is further increased. For example, when cold working is performed at a processing rate of about 60% in Example 2, the tensile strength is 30% or more compared to when cold working is performed at a processing rate of about 60% in the comparative example. You can see that it ’s big.
From these results, it was confirmed that the spring member according to the present invention has high mechanical strength and can secure sufficient durability even if it has a two-dimensional structure.

次に、上記組成の本発明に係るCo−Ni基合金の機械的性質について、各種実験を行った結果を図6から図9に示す。
図6は、引張強さと冷間加工率との関係を、時効処理の温度毎に示したグラフである。図7は、引張強さと時効処理時の温度(熱処理温度)との関係を、冷間加工率毎に示したグラフである。図8は、硬さ(ビッカーズ硬さ)と冷間加工率との関係を、時効処理の温度毎に示したグラフである。図9は、硬さと時効処理時の温度(熱処理温度)との関係を、冷間加工率毎に示したグラフである。
Next, the results of various experiments on the mechanical properties of the Co—Ni based alloy according to the present invention having the above composition are shown in FIGS.
FIG. 6 is a graph showing the relationship between tensile strength and cold working rate for each temperature of aging treatment. FIG. 7 is a graph showing the relationship between tensile strength and aging treatment temperature (heat treatment temperature) for each cold working rate. FIG. 8 is a graph showing the relationship between the hardness (Vickers hardness) and the cold working rate for each aging treatment temperature. FIG. 9 is a graph showing the relationship between the hardness and the temperature during aging treatment (heat treatment temperature) for each cold working rate.

これら図6及び図8に示すように、時効処理を施さない場合(圧延上り)であっても、Co−Ni基合金を冷間加工することで、Co−Ni基合金が加工硬化し、引張強さ及び硬さがともに向上することが確認できた。特に、図8に示すように、少なくとも20%の冷間加工率で引張強さが効果的に高まることが確認できた。従って、冷間加工工程時に、少なくとも加工率20%で冷間加工を行うことが好ましい。   As shown in FIGS. 6 and 8, even when aging treatment is not performed (rolling up), the Co—Ni base alloy is work-hardened by cold working the Co—Ni base alloy, and tensile It was confirmed that both strength and hardness were improved. In particular, as shown in FIG. 8, it was confirmed that the tensile strength was effectively increased at a cold work rate of at least 20%. Therefore, it is preferable to perform cold working at a working rate of at least 20% during the cold working step.

次に、図6から図9に示すように、その後、時効処理を施すことで、より引張強さ及び硬さがともに向上することが確認できた。特に、350℃程度からの増大が大きく、560℃程度をピークに低下し始めていることがわかる。さらに、時効処理の温度が800℃を超えると、引張強さ及び硬さが逆に低下することが確認された。これは、730℃を超える温度になってしまうと、合金の再結晶により軟化が始まるためと考えられる。また、時効処理の温度が200℃を超えると、引張強さ及び硬さを効果的に高めることが確認できた。これは、200℃を超えると、合金の時効効果を確実に発現させることができるためと考えられる。
これらのことから、熱処理工程時に、200℃以上、730度以下の温度で時効処理を施すことが好ましい。
Next, as shown in FIGS. 6 to 9, it was confirmed that the tensile strength and the hardness were further improved by performing an aging treatment thereafter. In particular, the increase from about 350 ° C. is large, and it can be seen that the peak begins to decrease at about 560 ° C. Furthermore, when the temperature of aging treatment exceeded 800 degreeC, it was confirmed that tensile strength and hardness fall conversely. This is considered to be because when the temperature exceeds 730 ° C., softening starts due to recrystallization of the alloy. Moreover, when the temperature of aging treatment exceeded 200 degreeC, it has confirmed that tensile strength and hardness were raised effectively. This is considered to be because when the temperature exceeds 200 ° C., the aging effect of the alloy can be surely exhibited.
Therefore, it is preferable to perform an aging treatment at a temperature of 200 ° C. or higher and 730 ° C. or lower during the heat treatment step.

次に、上記実施例2と同じ板材、本発明の他の板材である実施例3及び4と、比較材料(HASTELOY(ハステロイ(登録商標))C22、SUS304WPB、SWRJ2A)からなる板材とで、引張強さ、硬さ、疲労限度、耐食性(腐食度)の比較を行った結果、並びに、実施例2、実施例3及び4のばね部材と上記比較材料からなるばね部材とで、伸び及びヘタリ率の比較を行った結果を図10に示す。   Next, the same plate material as in Example 2 above, Examples 3 and 4 which are other plate materials of the present invention, and a plate material made of comparative materials (HASTELOY (registered trademark) C22, SUS304WPB, SWRJ2A) As a result of comparison of strength, hardness, fatigue limit, corrosion resistance (corrosion degree), and the spring members of Examples 2, 3 and 4 and the spring members made of the above comparative materials, the elongation and the settling rate The result of comparison is shown in FIG.

実施例3で用いた合金では以下の組成のものを採用した。
即ち、重量比でCoが33.56%、Crが22.84%、Moが9.06%、Niが29.90%、Tiが0.49%、Mnが0.31%、Feが1.66%、Nbが0.52%、Wが1.55%、Zrが0.02%、Bが0.005%、Cが0.04%と不可避不純物からなるCo−Ni基合金を用いた。
また、実施例4で用いた合金では以下の組成のものを採用した。
即ち、重量比でCoが38.40%、Crが11.70%、Moが4.00%、Niが16.50%、Tiが0.58%、Mnが0.75%、Feが23.08%、Wが4.01%、Aがl0.06%、Cが0.018%と不可避不純物からなるCo−Ni基合金を用いた。
The alloy used in Example 3 was of the following composition.
That is, by weight ratio Co is 33.56%, Cr is 22.84%, Mo is 9.06%, Ni is 29.90%, Ti is 0.49%, Mn is 0.31%, Fe is 1 Co-Ni based alloy consisting of unavoidable impurities, .66%, Nb 0.52%, W 1.55%, Zr 0.02%, B 0.005%, C 0.04% It was.
Moreover, the alloy of the following composition was employ | adopted as the alloy used in Example 4.
That is, Co is 38.40%, Cr is 11.70%, Mo is 4.00%, Ni is 16.50%, Ti is 0.58%, Mn is 0.75%, and Fe is 23 by weight ratio. A Co—Ni based alloy composed of unavoidable impurities of 0.08%, W of 4.01%, A of 10.06% and C of 0.018% was used.

図10から、実施例2及び3の板材について、引張強さ、硬さ、疲労限度、耐食性のほとんどの特性について、比較材料の板材よりも優れていた。耐食性についてはハステロイ(登録商標)C22と同程度であった。
また、実施例4の板材について、耐食性についてはハステロイ(登録商標)C22よりも劣っているが、引張強さはSWRJ2Aと同程度であるものの、他の特性はすべて比較材料の板材よりも優れていた。
なお、実施例2及び3の板材は実施例4の板材よりも引張強さ、硬さ、疲労限度、耐食性の全ての特性について優れており、実施例3の板材は実施例2の板材よりも引張強さ及び硬さについて10%程度高かった。
From FIG. 10, the plate materials of Examples 2 and 3 were superior to the plate material of the comparative material with respect to most properties of tensile strength, hardness, fatigue limit, and corrosion resistance. Corrosion resistance was similar to Hastelloy (registered trademark) C22.
Further, the plate material of Example 4 is inferior to Hastelloy (registered trademark) C22 in terms of corrosion resistance, but the tensile strength is comparable to that of SWRJ2A, but all other properties are superior to the plate material of the comparative material. It was.
The plate materials of Examples 2 and 3 are superior to the plate material of Example 4 in all the properties of tensile strength, hardness, fatigue limit, and corrosion resistance, and the plate material of Example 3 is superior to the plate material of Example 2. Tensile strength and hardness were about 10% higher.

また、ばねにした場合、実施例2から4のいずれも、伸びについてはハステロイ(登録商標)C22よりも小さいが、他の比較材料とは同程度である。
他方、ヘタリ率については、実施例2から4のいずれも、他の材料より優れていた。
なお、実施例2及び3は実施例4よりも優れていた。
In the case of a spring, each of Examples 2 to 4 is smaller in elongation than Hastelloy (registered trademark) C22, but is comparable to other comparative materials.
On the other hand, in terms of the settling rate, all of Examples 2 to 4 were superior to other materials.
Examples 2 and 3 were superior to Example 4.

10,30,50,70…ばね部材 11,31…渦巻部(弾性部) 52,72…弾性部 15,16…引き回し部(湾曲部) 56…湾曲部 74…波状部(湾曲部) DESCRIPTION OF SYMBOLS 10, 30, 50, 70 ... Spring member 11, 31 ... Spiral part (elastic part) 52, 72 ... Elastic part 15, 16 ... Leading part (curved part) 56 ... Curved part 74 ... Wavy part (curved part)

Claims (8)

板材から非巻回加工によって形成され、該板材と同じ厚みで且つ板材の平面方向に延在したばね部材であって、
前記平面方向に弾性屈曲可能な腕部と、
該腕部に一体的に連設され、前記弾性屈曲時に前記腕部を付勢して復元させる湾曲部を有する弾性部と、を備え、
前記板材は、その組成が重量比で、Coが28〜42%、Crが10〜27%、Moが3〜12%、Niが15〜40%、Tiが0.1〜1.0%、Mnが1.5%以下、Feが0.1〜26.0%、Cが0.1%以下及び不可避不純物と、Nbが3.0%以下、Wが5.0%以下、Alが0.5%以下、Zrが0.1%以下及びBが0.01%以下のうち少なくとも一種とからなるCo−Ni基合金で、引張強さが1500N/mm 以上、硬さが500Hv以上に設定されていることを特徴とするばね部材。
A spring member formed from a plate material by non-winding processing, having the same thickness as the plate material and extending in the plane direction of the plate material,
An arm that can be elastically bent in the planar direction;
An elastic portion integrally provided with the arm portion, and having a curved portion that urges and restores the arm portion during the elastic bending,
The weight ratio of the plate material is 28 to 42% Co, 10 to 27% Cr, 3 to 12% Mo, 15 to 40% Ni, 0.1 to 1.0% Ti, Mn is 1.5% or less, Fe is 0.1 to 26.0%, C is 0.1% or less, inevitable impurities, Nb is 3.0% or less, W is 5.0% or less, Al is 0 Co-Ni based alloy consisting of at least one of 0.5 % or less, Zr of 0.1% or less and B of 0.01% or less, with a tensile strength of 1500 N / mm 2 or more and a hardness of 500 Hv or more A spring member characterized by being set .
請求項1記載のばね部材において、
前記湾曲部の線幅は、前記腕部の線幅よりも幅広とされていることを特徴とするばね部材。
The spring member according to claim 1,
The spring member characterized in that the line width of the bending portion is wider than the line width of the arm portion.
請求項1記載のばね部材において、
前記湾曲部は、渦巻き状に湾曲が連続するように形成され、最外周側の線幅が内周側の線幅よりも幅広とされていることを特徴とするばね部材。
The spring member according to claim 1,
The spring member is characterized in that the curved portion is formed so as to be curved in a spiral shape, and the line width on the outermost peripheral side is wider than the line width on the inner peripheral side.
請求項3記載のばね部材において、
前記湾曲部は、(厚み/線幅)の比率が1.0未満であることを特徴とするばね部材。
The spring member according to claim 3,
The curved portion has a ratio (thickness / line width) of less than 1.0.
請求項1から4のいずれか1項に記載のばね部材において、
前記板材は、前記Coが28〜38%であり、前記Feが0.1〜3.0%であり、前記少なくとも一種はNbが3.0%以下、Wが5.0%以下、Zrが0.1%以下及びBが0.01%以下のうちから選択されたことを特徴とするばね部材。
In the spring member according to any one of claims 1 to 4,
In the plate material, the Co is 28 to 38%, the Fe is 0.1 to 3.0%, the at least one kind is Nb 3.0% or less, W is 5.0% or less, Zr is A spring member characterized by being selected from 0.1% or less and B being 0.01% or less.
請求項5記載のばね部材において、
前記板材は、前記少なくとも一種はNb3.0%以下が選択されたことを特徴とするばね部材。
The spring member according to claim 5,
As for the said board | plate material, the said at least 1 type selected Nb3.0% or less, The spring member characterized by the above-mentioned.
請求項1に記載のばね部材の製造方法であって、
前記Co−Ni基合金を用意した後、該合金に加工率40%以上で冷間加工を施して板状にし、前記板材を作製する冷間加工工程と、
前記板材を非巻回加工によって前記ばね部材を成型する成型工程と、
前記成型工程後、真空中または非酸化雰囲気中において、200℃以上730℃以下の温度で前記ばね部材を時効処理する熱処理工程と、を備えていることを特徴とするばね部材の製造方法。
It is a manufacturing method of the spring member according to claim 1, Comprising:
After preparing the Co-Ni-based alloy, the alloy is subjected to cold working at a processing rate of 40% or more to form a plate, and a cold working step for producing the plate material;
A molding step of molding the spring member by unwinding the plate material;
And a heat treatment step of aging the spring member at a temperature of 200 ° C. or higher and 730 ° C. or lower in vacuum or in a non-oxidizing atmosphere after the molding step .
請求項7に記載のばね部材の製造方法において、
前記成型工程の際、前記板材を打ち抜き加工またはレーザーカット加工することで前記ばね部材を成型することを特徴とするばね部材の製造方法。
In the manufacturing method of the spring member according to claim 7,
In the molding process, the spring member is molded by punching or laser cutting the plate material.
JP2009230799A 2009-10-02 2009-10-02 Spring member and manufacturing method thereof Expired - Fee Related JP5456427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230799A JP5456427B2 (en) 2009-10-02 2009-10-02 Spring member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230799A JP5456427B2 (en) 2009-10-02 2009-10-02 Spring member and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014001773A Division JP5700476B2 (en) 2014-01-08 2014-01-08 Spring member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011080491A JP2011080491A (en) 2011-04-21
JP5456427B2 true JP5456427B2 (en) 2014-03-26

Family

ID=44074756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230799A Expired - Fee Related JP5456427B2 (en) 2009-10-02 2009-10-02 Spring member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5456427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398415B2 (en) 2021-10-22 2023-12-14 トクセン工業株式会社 Spring wire made of Co-Ni-Cr-Mo alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421877B2 (en) * 2003-03-26 2010-02-24 セイコーインスツル株式会社 Co-Ni based high elastic alloy, power spring using Co-Ni based high elastic alloy and method for manufacturing the same
JP2008275136A (en) * 2007-05-07 2008-11-13 Kato Electrical Mach Co Ltd Energizing member for slide mechanism, slide mechanism for portable device and portable device
JP2009177769A (en) * 2007-05-18 2009-08-06 Strawberry Corporation Sliding device and electronic apparatus using sliding device
JP2009020169A (en) * 2007-07-10 2009-01-29 Suzuki Contact Point Industry Co Ltd Manufacturing method for focus spring for supporting camera lens
JP5103107B2 (en) * 2007-09-18 2012-12-19 セイコーインスツル株式会社 High elastic alloy

Also Published As

Publication number Publication date
JP2011080491A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP2011080097A (en) Alloy for spring, sheet material for spring, and spring member
CN1197986C (en) Titaniferous ultra high strength metastable austenitic stainless steel and its manufacture
US5885381A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP4421877B2 (en) Co-Ni based high elastic alloy, power spring using Co-Ni based high elastic alloy and method for manufacturing the same
JP2007069674A (en) Torsion beam type suspension and its manufacturing method
JP5700476B2 (en) Spring member and manufacturing method thereof
WO2017104755A1 (en) Metal gasket and production method therefor
JP5456427B2 (en) Spring member and manufacturing method thereof
JPH02310339A (en) Martensitic stainless steel having excellent strength, spring characteristics and formability
JP2023538602A (en) Austenitic stainless steel and its manufacturing method
JP3041585B2 (en) Mainspring manufacturing method
KR101994559B1 (en) Ferritic stainless steel foil and method for manufacturing the same
JP3975019B2 (en) Austenitic stainless steel wire for heat-resistant spring, heat-resistant spring, and method for producing heat-resistant spring
JPH03166340A (en) High strength lead frame material and its manufacture
JP2018150606A (en) Austenitic stainless steel sheet and gasket
JP5512145B2 (en) Shape memory alloy
JP6645816B2 (en) Ferritic stainless steel
KR20230026705A (en) Austenitic stainless steel and manufacturing method thereof
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JPH0860276A (en) Nickel-titanium-base alloy spectacle member and its production
JP2003268502A (en) Shape memory iron alloy
JP6841150B2 (en) Ferritic stainless steel sheet for heat-resistant members
JP2012201924A (en) Stainless steel sheet and method for producing the same
JP6639073B2 (en) Turbo housing and method of manufacturing the same
JPH08144032A (en) Production of two-way shape memory alloy coil spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees