JP5512145B2 - Shape memory alloy - Google Patents

Shape memory alloy Download PDF

Info

Publication number
JP5512145B2
JP5512145B2 JP2009031774A JP2009031774A JP5512145B2 JP 5512145 B2 JP5512145 B2 JP 5512145B2 JP 2009031774 A JP2009031774 A JP 2009031774A JP 2009031774 A JP2009031774 A JP 2009031774A JP 5512145 B2 JP5512145 B2 JP 5512145B2
Authority
JP
Japan
Prior art keywords
mol
alloy
shape memory
phase
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009031774A
Other languages
Japanese (ja)
Other versions
JP2009215650A5 (en
JP2009215650A (en
Inventor
秀樹 細田
健司 若島
朋也 稲邑
陽介 堀内
卓也 石垣
謙太 糟谷
伸 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSEN CO.,LTD
Tokyo Institute of Technology NUC
Original Assignee
TOKUSEN CO.,LTD
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSEN CO.,LTD, Tokyo Institute of Technology NUC filed Critical TOKUSEN CO.,LTD
Priority to JP2009031774A priority Critical patent/JP5512145B2/en
Publication of JP2009215650A publication Critical patent/JP2009215650A/en
Publication of JP2009215650A5 publication Critical patent/JP2009215650A5/ja
Application granted granted Critical
Publication of JP5512145B2 publication Critical patent/JP5512145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、形状記憶合金に関し、特に、冷間加工性の良好な形状記憶合金に関する。   The present invention relates to a shape memory alloy, and more particularly to a shape memory alloy having good cold workability.

形状記憶合金は、内在する熱弾性型マルテンサイト変態に起因して、形状記憶効果や超弾性機能を示す。前者は、形状記憶合金をAS点(マルテンサイト逆変態開始温度)以下の温度で任意に変形しても、Af点(マルテンサイト逆変態終了温度)以上の温度に加熱すると元の形に戻ってしまう現象であり、後者は、形状記憶合金にAf点以上の温度で応力を負荷したときに生じた応力誘起マルテンサイトが除荷過程で逆変態して歪みが回復する現象であり、形状記憶合金は従来の金属にはないユニークな機能を有するので、様々な工業分野や医学分野などに利用されている。 The shape memory alloy exhibits a shape memory effect and a superelastic function due to the inherent thermoelastic martensitic transformation. In the former, even if the shape memory alloy is arbitrarily deformed at a temperature below the A S point (the martensite reverse transformation start temperature), it is restored to its original shape when heated to a temperature above the A f point (the martensite reverse transformation end temperature). The latter is a phenomenon in which the stress-induced martensite generated when stress is applied to the shape memory alloy at a temperature higher than the A f point reversely transforms during the unloading process and the strain recovers. Since shape memory alloys have unique functions not found in conventional metals, they are used in various industrial and medical fields.

形状記憶合金としては、様々な合金が提案されている。中でも、引っ張り強さが1000MPaで、破断伸びが60%であるという極めて優れた機械的性質を有するという理由で、Ti−Ni系合金に代表されるTiベースのTi合金の実用化が進んでいる。Ti合金における合金元素は、低温相のα領域を高温側に広げてα−β変態点を上昇させるα安定化元素と、高温相のβ領域を低温側に広げてα−β変態点を低下させるβ安定化元素とに大別され、Ti合金は常温組織によって、α型Ti合金、α+β型Ti合金、β型Ti合金の3種類に大別することができる。   Various alloys have been proposed as shape memory alloys. Among them, Ti-based Ti alloys represented by Ti-Ni alloys have been put to practical use because they have excellent mechanical properties such as tensile strength of 1000 MPa and elongation at break of 60%. . The alloying elements in Ti alloys are α-stabilizing elements that increase the α-β transformation point by expanding the α region of the low temperature phase to the high temperature side, and lower the α-β transformation point by expanding the β region of the high temperature phase to the low temperature side The Ti-stabilizing elements are roughly classified into three types, ie, α-type Ti alloys, α + β-type Ti alloys, and β-type Ti alloys, depending on the normal temperature structure.

α型Ti合金の結晶構造は最密六方構造であり、α+β型Ti合金の結晶構造は最密六方と体心立方構造を組みあわせたものであり、β型Ti合金の結晶構造は体心立方構造である。α型Ti合金は、その結晶構造に由来して、冷間加工性が悪いという不都合な点がある。   The crystal structure of α-type Ti alloy is a close-packed hexagonal structure, the crystal structure of α + β-type Ti alloy is a combination of close-packed hexagonal and body-centered cubic structure, and the crystal structure of β-type Ti alloy is body-centered cubic. Structure. The α-type Ti alloy is disadvantageous in that its cold workability is poor due to its crystal structure.

α+β型Ti合金は、α安定化元素とβ安定化元素を複合添加することにより、常温でα相とβ相を共存させた二相合金で、熱間加工性はβ相が多いほどよくなるため、鋳塊の粗鍛造はβ域で行い、仕上げ鍛造はα+β域で行うことにより、α相とβ相の体積率が広範囲に変えられ、それに対応して機械的性質が大きく変化するが、一般に、熱間加工履歴の違いにより、等軸微細粒組織、粗い等軸α相組織または粗い針状α相組織が現れる。等軸微細粒組織にすると、延性は向上するものの破壊靱性は低下し、粗い等軸α相組織または粗い針状α相組織にすると、延性は劣化するが、破壊靱性は上昇する。すなわち、α+β型Ti合金では、組織制御により延性と破壊靱性を同時に向上させることは難しい。   α + β type Ti alloy is a two-phase alloy in which α and β phases coexist at room temperature by adding α stabilizing element and β stabilizing element in combination. The hot workability increases as the β phase increases. By performing rough forging of the ingot in the β region and finishing forging in the α + β region, the volume ratio of the α and β phases can be changed over a wide range, and the mechanical properties change correspondingly. Depending on the difference in hot working history, an equiaxed fine grain structure, a coarse equiaxed α phase structure or a coarse acicular α phase structure appears. When the equiaxed fine grain structure is used, the ductility is improved, but the fracture toughness is lowered. When a coarse equiaxed α phase structure or a coarse acicular α phase structure is used, the ductility is deteriorated but the fracture toughness is increased. That is, in the α + β type Ti alloy, it is difficult to simultaneously improve the ductility and fracture toughness by controlling the structure.

このように、α型Ti合金やα+β型Ti合金の加工性は良くない。これらの合金に比べれば、β型Ti合金の加工性は比較的良好であると言えるが、それでも、実用化が進んでいるTi−Ni系合金からなる板材の冷間加工率(冷間加工を実施した場合に、耳割れ(幅方向端部の割れ)などの欠陥を生じない限界の加工度をいい、例えば、10mm厚の材料が冷間圧延により最終的に9mm厚になれば、冷間加工率は10%である)は10ないし15%程度が限度とされている。そのため、従来のTi−Ni系形状記憶合金の板材の製造方法は、鋳塊を700ないし850℃で熱間圧延した後、冷間圧延に続いて中間焼鈍を施し、さらに冷間圧延を施した後に中間焼鈍を行うという冷間圧延−中間焼鈍プロセスを多数回繰り返して、最終的に冷間圧延により所望の板厚まで圧延している。このように、最終製品を得るために焼鈍工程と冷間圧延工程を多数回繰り返して行うため、製品コストを大きく上昇させている。   Thus, the workability of the α-type Ti alloy and the α + β-type Ti alloy is not good. Compared to these alloys, it can be said that the workability of β-type Ti alloys is relatively good, but still, the cold working rate of the plate material made of Ti—Ni alloy, which is being put into practical use (cold working) When carried out, it refers to the limit degree of processing that does not cause defects such as ear cracks (cracks at the edges in the width direction). For example, if a 10 mm thick material finally becomes 9 mm thick by cold rolling, The processing rate is 10%), and the limit is about 10 to 15%. For this reason, the conventional Ti-Ni shape memory alloy plate manufacturing method is to hot-roll the ingot at 700 to 850 ° C., then to cold rolling followed by intermediate annealing and further cold rolling. A cold rolling-intermediate annealing process in which intermediate annealing is performed later is repeated a number of times, and finally the sheet is rolled to a desired thickness by cold rolling. As described above, since the annealing process and the cold rolling process are repeated many times to obtain the final product, the product cost is greatly increased.

そこで、冷間加工性の良好なチタン合金を提供するために、特許文献1には、5ないし40原子%のNbと、10原子%以下のMoと、Alと、Geと、Gaと、Inと、Tiとを含有する生体用超弾性チタン合金が開示され、特許文献2には、2ないし12原子%のMoと、14原子%以下のGaまたは8原子%以下のGeと、Tiとを含有する生体用超弾性チタン合金が開示され、特許文献1、2に開示された合金からなる材料は、どちらも合計冷間加工率が50%以上であることが示されている。   Therefore, in order to provide a titanium alloy having good cold workability, Patent Document 1 discloses that 5 to 40 atomic% of Nb, 10 atomic% or less of Mo, Al, Ge, Ga, and In. And a biosuperelastic titanium alloy containing Ti. Patent Document 2 discloses that 2 to 12 atomic% Mo, 14 atomic% or less Ga, or 8 atomic% or less Ge, and Ti. The biosuperelastic titanium alloy contained therein is disclosed, and the materials made of the alloys disclosed in Patent Documents 1 and 2 are both shown to have a total cold work rate of 50% or more.

特許第4015080号明細書Japanese Patent No. 40105080 特許第3884316号明細書Japanese Patent No. 3884316

しかし、特許文献1および2に開示されたように、融点が2470℃であるNbや融点が2620℃であるMoのような高融点の元素を用いると、溶解が困難であり、合金化するためには超高温にしなければならず、超高温に耐える特別の製造設備が必要であり、大きな溶解エネルギーを要するので製造コストが上昇する。また、超高温では低融点金属の蒸発が無視できない。さらに、溶解法として電子ビーム溶解を用いた場合、均一に高温に溶解することは困難であり、溶解開始初期と終期では合金組成が変わることがあり、また、アーク溶解を用いると、溶け残りが起きやすく、場所によって合金組成が異なるということがあり、均質な合金組成を得ることは困難である。   However, as disclosed in Patent Documents 1 and 2, if an element having a high melting point such as Nb having a melting point of 2470 ° C. or Mo having a melting point of 2620 ° C. is used, it is difficult to dissolve and alloying is performed. In this case, it is necessary to use a very high temperature, and a special manufacturing facility that can withstand the high temperature is required. Since a large amount of melting energy is required, the manufacturing cost increases. Moreover, evaporation of low melting point metals cannot be ignored at ultra high temperatures. Furthermore, when electron beam melting is used as the melting method, it is difficult to uniformly melt at a high temperature, and the alloy composition may change at the beginning and end of melting. It tends to occur and the alloy composition may vary depending on the location, and it is difficult to obtain a homogeneous alloy composition.

本発明は、従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、低融点(2000℃以下)の元素を含有する冷間加工性に優れた形状記憶合金を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object thereof is a shape memory alloy excellent in cold workability containing an element having a low melting point (2000 ° C. or less). Is to provide.

本発明者は、形状記憶効果の発現メカニズムに基づいて、好ましい合金組成について検討した。   This inventor examined the preferable alloy composition based on the expression mechanism of a shape memory effect.

形状記憶効果は、AS点以下の温度で変形させたものをAf点以上の温度に加熱したときに生じるが、母相状態にある当該合金試料をMf点(マルテンサイト変態終了温度)以下の温度に冷却すると、母相からマルテンサイトに変態する。マルテンサイトは格子欠陥を多く含んでおり、一般に双晶の場合が多い。このような試料に外力を加えると、その試料の変形は双晶変形により進む。この試料をAf点以上の温度に加熱すると、マルテンサイト相から母相への逆変態進行により弾性的に初めの状態に戻る。この熱弾性型のマルテンサイト変態は、逆変態が結晶学的に可逆的に起こるので、各双晶はもとの方位の母相に戻り、試料全体としても元の形に戻ることになる。これが形状記憶効果である。従って、形状記憶効果を発現させるためには、変形温度でマルテンサイト変態が起こっているか、または変形時に応力が加わることによって応力誘起マルテンサイト変態が生成し、それが除荷しただけでは完全に逆変態せずにマルテンサイト変態が残っていることが必要である。マルテンサイトの双晶変形が担っている分の歪みが、Af点以上の温度に加熱することで逆変態が起こるときに回復するからである。 The shape memory effect occurs when a material deformed at a temperature below the A S point is heated to a temperature above the A f point, but the alloy sample in the parent phase state is converted to the M f point (Martensite transformation end temperature). When cooled to the following temperature, it transforms from the parent phase to martensite. Martensite contains many lattice defects and is generally twin. When an external force is applied to such a sample, deformation of the sample proceeds by twin deformation. When this sample is heated to a temperature higher than the Af point, it returns to its original state elastically as the reverse transformation progresses from the martensite phase to the parent phase. In this thermoelastic martensitic transformation, the reverse transformation occurs reversibly crystallographically, so that each twin crystal returns to the parent phase of the original orientation, and the whole sample also returns to its original shape. This is the shape memory effect. Therefore, in order to develop the shape memory effect, a martensitic transformation occurs at the deformation temperature or a stress-induced martensitic transformation is generated by applying stress during the deformation, and if it is unloaded, it is completely reversed. It is necessary that the martensitic transformation remains without transformation. This is because the strain corresponding to the twin deformation of martensite is recovered when reverse transformation occurs by heating to a temperature above the A f point.

そこで、形状回復現象を容易に発現しうる合金を得るためには、マルテンサイト変態開始温度を下げる元素を含むことと、マルテンサイトを熱弾性型にするのに効果的に寄与する元素を含むことである。また、本発明者は、軽量であり、強度に優れ、耐食性があるという理由で、ベース金属としては、Tiを採用した。
(1)β安定化元素(マルテンサイト変態開始温度の低下)
上記したように、Ti合金は常温組織によって、α型Ti合金、α+β型Ti合金、β型Ti合金の3種類に大別することができ、高温で安定なβを焼き入れてMS点(マルテンサイト変態開始温度)以下の温度まで急冷すると、マルテンサイト変態する。MS点は、Tiに対するβ安定化元素の添加量に依存し、β安定化元素が多くなるとMS点が下がる。
Therefore, in order to obtain an alloy that can easily develop the shape recovery phenomenon, it contains an element that lowers the martensite transformation start temperature and an element that effectively contributes to making the martensite thermoelastic. It is. In addition, the present inventor adopted Ti as the base metal because it is lightweight, excellent in strength, and has corrosion resistance.
(1) β-stabilizing element (decrease in martensitic transformation start temperature)
As described above, Ti alloys depending cold tissue, alpha-type Ti alloys, alpha + beta type Ti alloys, can be roughly divided into three types of beta-type Ti alloy, M S point quenching stable beta at high temperatures ( When rapidly cooled to a temperature below the martensitic transformation start temperature), the martensitic transformation occurs. The M S point depends on the amount of β-stabilizing element added to Ti, and the M S point decreases as the amount of β-stabilizing element increases.

従って、β安定化元素を含むことはMS点を低下するのに有効である。 Therefore, inclusion of a β-stabilizing element is effective for lowering the M S point.

ところが、β安定化元素の添加量が多くなりすぎると、MS点が室温以下まで下がり、 高温から焼き入れても、β相がマルテンサイト変態せずに室温で準安定状態で存在するようになる。この残留β相は加熱すると分解してα相が析出し、中間段階としてω相が生成することがある。このω相が生成すると、合金は硬くなるが、同時に脆くなるのでω脆性と呼ばれている。β安定化元素が多くなりすぎるとω相が生成しやすい。 However, if the amount of β-stabilizing element added becomes too large, the M S point will drop to below room temperature, and even if quenched from a high temperature, the β phase will remain in a metastable state at room temperature without martensitic transformation. Become. When this residual β phase is heated, the α phase is precipitated and an ω phase may be generated as an intermediate stage. When this ω phase is generated, the alloy becomes hard, but at the same time it becomes brittle, so it is called ω brittleness. If the β-stabilizing element is too much, the ω phase is likely to be generated.

そこで、MS点を下げるためにはβ安定化元素を1モル%以上含むことが好ましいが、ω脆性を避けるためには、β安定化元素は9モル%以下とするのが好ましい。 Therefore, in order to lower the M S point, it is preferable to contain 1 mol% or more of the β stabilizing element, but in order to avoid ω brittleness, the β stabilizing element is preferably 9 mol% or less.

β安定化元素としては、特に、Feおよび/又はCrが好ましい。   As the β stabilizing element, Fe and / or Cr are particularly preferable.

特に、Feおよび/又はCrの含有量が9モル%を超える場合、β相が安定化しすぎ、マルテンサイト変態が起こらないか、又はマルテンサイト変態が起こっても容易に逆変態してしまう。   In particular, when the content of Fe and / or Cr exceeds 9 mol%, the β phase is excessively stabilized and martensitic transformation does not occur, or even if martensitic transformation occurs, it is easily reverse transformed.

そこで、これらFeおよびCrから選択される第1の元素のいずれか1種を1ないし9モル%又は2種の合計を1ないし9モル%含有することが好ましい。
(2)ω脆性の抑制とマルテンサイトの熱弾性化
β合金の時効処理時におけるω相の出現を抑えるためには、Snのようなα安定化に寄与するものと考えられる元素を含むことが好ましい。また、Snはそうした元素であるものの、マルテンサイト変態温度をほとんど上昇させずに、β相を不安定化することによりマルテンサイトを熱弾性型にすることができる。また、Auは、ω相の出現を抑え、マルテンサイトの熱弾性化に寄与する。
Therefore, it is preferable to contain 1 to 9 mol% of any one of the first elements selected from Fe and Cr, or 1 to 9 mol% of the total of the two elements.
(2) Suppression of ω brittleness and thermoelasticization of martensite In order to suppress the appearance of ω phase during the aging treatment of β alloy, it may contain an element considered to contribute to α stabilization such as Sn. preferable. In addition, although Sn is such an element, it can make the martensite thermoelastic by destabilizing the β phase without substantially increasing the martensite transformation temperature. In addition, Au suppresses the appearance of the ω phase and contributes to the thermal elasticity of martensite.

しかし、これらの元素が多くなりすぎると、形状記憶効果が低下する。   However, when these elements are excessive, the shape memory effect is lowered.

そこで、これらω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Sn、Au)のいずれか1種又は2種の合計を1モル%以上含有することが好ましいが、形状記憶効果を良好ならしめるためには、第2の元素のいずれか1種または2種の合計の含有量は9モル%以下とすることが好ましい。   Therefore, it is preferable to contain 1 mol% or more of any one or two of the second elements (Sn, Au) contributing to suppression of ω brittleness and thermoelasticity of martensite. In order to make the effect good, the total content of any one or two of the second elements is preferably 9 mol% or less.

特に、Snは、ω相の生成を抑制し、材料を強化し、マルテンサイトの生成を助長するという効果がある。また、Auは、Snと同様の効果に加えて、原子拡散を抑制し、ω相の生成を抑えるという効果がある。しかし、Auが9モル%を超えると、脆化相(Ti3Au)が大量に生成し、機械的性質が著しく劣化してしまう。
(3)冷間加工性
本発明者は、形状回復現象を容易に発現しうる合金として、Tiのβ相安定化に寄与する第1の元素(Feおよび/又はCr)を1ないし9モル%含み、ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Snおよび/又はAu)を1ないし9モル%含み、残部がTiおよび不可避的不純物からなる合金(合計100モル%)を採用したが、Ti、Fe、Cr、Sn、Auの融点は、それぞれ1660℃、1540℃、1860℃、232℃、1064℃であって、2000℃を超えない。また、すべり系が多くて冷間加工性の良いβ相が生成し、且つ材料を脆化させるω相の生成が抑制されるため、良好な冷間加工性を発揮することができる。
In particular, Sn has the effects of suppressing the generation of the ω phase, strengthening the material, and promoting the generation of martensite. In addition to the same effects as Sn, Au has the effect of suppressing atomic diffusion and suppressing the generation of the ω phase. However, if Au exceeds 9 mol%, a large amount of embrittled phase (Ti 3 Au) is generated, and mechanical properties are significantly deteriorated.
(3) Cold workability The present inventor has 1 to 9 mol% of the first element (Fe and / or Cr) contributing to stabilization of β-phase of Ti as an alloy that can easily develop a shape recovery phenomenon. An alloy containing 1 to 9 mol% of a second element (Sn and / or Au) contributing to suppression of ω brittleness and thermoelasticity of martensite, with the balance being Ti and inevitable impurities (total of 100 mol%) However, the melting points of Ti, Fe, Cr, Sn, and Au are 1660 ° C., 1540 ° C., 1860 ° C., 232 ° C., and 1064 ° C., respectively, and do not exceed 2000 ° C. In addition, since a β phase having many slip systems and good cold workability is generated, and generation of an ω phase that causes embrittlement of the material is suppressed, good cold workability can be exhibited.

本発明によれば、低融点の元素を含有する冷間加工性に優れた形状記憶合金を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the shape memory alloy excellent in the cold work property containing the low melting point element can be provided.

板材の形状回復特性を評価するための板材の曲げ方法を説明する図である。It is a figure explaining the bending method of the board | plate material for evaluating the shape recovery characteristic of a board | plate material. 曲率半径の測定位置を説明する図である。It is a figure explaining the measurement position of a curvature radius.

以下に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。   Examples of the present invention will be described below. However, the present invention is not limited to the following examples, and can be appropriately changed or modified without departing from the technical scope of the present invention.

(1)板材の作製
以下の表1に示す組成(モル%)のTi系合金を、非消耗タングステン電極型アルゴンアーク溶解炉を用いて溶解した。得られたインゴットに1000℃で2時間の均質化処理を施した。この均質化処理後のインゴットは後記する冷間加工性の評価に供した。
(1) Production of plate material A Ti-based alloy having the composition (mol%) shown in Table 1 below was melted using a non-consumable tungsten electrode type argon arc melting furnace. The obtained ingot was homogenized at 1000 ° C. for 2 hours. The ingot after the homogenization treatment was subjected to evaluation of cold workability described later.

また、上記均質化処理後のインゴットに熱間圧延に引き続いて冷間圧延を施し、さらに、真空雰囲気(10-5Paの圧力)において、900℃で5分間の熱処理を行った。冷間圧延に供した板材の厚みは6mmであり、最終的に厚みが0.3mmで、幅が10mmの板材を得た。この加工率は95%の高加工率であるが、本発明の大多数の試料(表1および後記する表2ないし表5において加工率が95%以上であるもの)は、1回の冷間圧延でこの高加工率を達成することができた。ただ、一部の試料(表1および後記する表2ないし表5において加工率が40ないし50%のもの)については、1回の冷間圧延でこの高加工率を達成することは圧延に伴う加工硬化のために困難であった。そこで、この一部の試料については、冷間圧延と、900℃で5分間の熱処理との組み合わせ処理を1回から4回行った後、最終的に冷間圧延により、上記最終厚みと幅の板材を得た。 Further, the ingot after the homogenization treatment was subjected to cold rolling subsequent to hot rolling, and further subjected to heat treatment at 900 ° C. for 5 minutes in a vacuum atmosphere (pressure of 10 −5 Pa). The thickness of the plate material subjected to cold rolling was 6 mm, and finally a plate material having a thickness of 0.3 mm and a width of 10 mm was obtained. Although this processing rate is a high processing rate of 95%, the majority of the samples of the present invention (those whose processing rate is 95% or more in Table 1 and Tables 2 to 5 described later) This high working rate could be achieved by rolling. However, for some samples (with a processing rate of 40 to 50% in Table 1 and Tables 2 to 5 described later), achieving this high processing rate by one cold rolling is accompanied by rolling. Difficult for work hardening. Therefore, for some of the samples, after the combination treatment of cold rolling and heat treatment at 900 ° C. for 5 minutes is performed 1 to 4 times, the final thickness and width of the sample are finally reduced by cold rolling. A board was obtained.

なお、従来の組成のTi50モル%−Ni50モル%合金であれば、上記冷間圧延と熱処理との組み合わせ処理を、少なくとも10回以上繰り返して行わなければ、95%の加工率を達成することは困難であると思われるが、本発明の組成のTi系合金は冷間加工性に優れているので、冷間圧延と熱処理の繰り返しを4回以下に抑えることができた。   In addition, if it is Ti50mol% -Ni50mol% alloy of the conventional composition, if the combination process of the said cold rolling and heat processing is not repeated at least 10 times or more, it will achieve a processing rate of 95%. Although it seems to be difficult, the Ti-based alloy having the composition of the present invention is excellent in cold workability, so that the repetition of cold rolling and heat treatment could be suppressed to 4 times or less.

このようにして得た形状記憶Ti系合金板材(厚さ0.3mm、幅10mm、長さ400mm)を真空雰囲気(10-5Paの圧力)にある石英板で挟み、1000℃で30分の溶体化処理を行った後、水中に焼き入れた。
(2)冷間加工性の評価
上記インゴットを研削することにより厚さが1cmで、幅が2cmの板状とし、1回の加工率が2ないし3%の冷間圧延を行って、板材に割れが発生するまで冷間圧延を行った。表1には、板材に割れが発生したときの直前の冷間圧延時における厚みt2と、冷間圧延に供した板材の厚みt1(1cm)より得られた加工率(((t1−t2)/t1)×100(%))を示す。
The shape memory Ti-based alloy plate material (thickness 0.3 mm, width 10 mm, length 400 mm) thus obtained is sandwiched between quartz plates in a vacuum atmosphere (pressure of 10 −5 Pa), and is heated at 1000 ° C. for 30 minutes. After solution treatment, it was quenched in water.
(2) Evaluation of cold workability The above ingot is ground to form a plate having a thickness of 1 cm and a width of 2 cm, and cold rolling is performed at a processing rate of 2 to 3%. Cold rolling was performed until cracking occurred. Table 1 shows the processing rate (((t 1 ) obtained from the thickness t 2 at the time of cold rolling immediately before cracking in the plate material and the thickness t 1 (1 cm) of the plate material subjected to cold rolling. −t 2 ) / t 1 ) × 100 (%)).

Figure 0005512145
Figure 0005512145

表1において、Ti92モル%−Fe5モル%−Sn3モル%の試料番号1と、Ti91モル%−Cr5モル%−Au4モル%の試料番号4とは、加工率が50%以上であって、優れた冷間加工性を備えていることが分かる。
(3)板材の形状回復特性の評価
板材の形状回復特性を評価するため、図1に示すように、焼き入れ後の板材(厚さ0.3mm、幅10mm)1を室温(20ないし25℃)において、直径7mmのステンレス鋼製丸棒2に沿わせて180℃曲げた状態で30秒間保持した。その後、板材1をステンレス鋼製丸棒2から外し、図2(a)に示すように、板材1の曲率半径R1を測定した。
In Table 1, the sample number 1 of Ti92 mol% -Fe5 mol% -Sn3 mol% and the sample number 4 of Ti91 mol% -Cr5 mol% -Au4 mol% have a processing rate of 50% or more and are excellent. It can be seen that it has cold workability.
(3) Evaluation of shape recovery characteristics of plate material In order to evaluate the shape recovery characteristics of the plate material, as shown in FIG. 1, the plate material (thickness 0.3 mm, width 10 mm) 1 after quenching was set at room temperature (20 to 25 ° C.). ) Was held for 30 seconds in a state bent at 180 ° C. along a stainless steel round bar 2 having a diameter of 7 mm. Then, the board | plate material 1 was removed from the stainless steel round bar 2, and the curvature radius R1 of the board | plate material 1 was measured as shown to Fig.2 (a).

その後、板材1を電気炉に挿入して、加熱速度を10℃/分以上として加熱しながら、400℃以上まで加熱した後、室温まで空冷して、図2(b)に示すように、板材1の曲率半径R2を測定した。   Thereafter, the plate material 1 is inserted into an electric furnace, heated to 400 ° C. or higher while heating at a heating rate of 10 ° C./min or higher, and then air-cooled to room temperature, as shown in FIG. A radius of curvature R2 of 1 was measured.

そして、曲率半径R1とR2より、曲率ρ1(1/R1)とρ2(1/R2)を求め、〔(ρ1−ρ2)/ρ1〕×100(%)を形状回復率(表面最大回復歪み)として表1に示す。   Then, curvature ρ1 (1 / R1) and ρ2 (1 / R2) are obtained from the curvature radii R1 and R2, and [(ρ1−ρ2) / ρ1] × 100 (%) is the shape recovery rate (maximum surface recovery strain). As shown in Table 1.

表1において、すべての試料、すなわち、Ti92モル%−Fe5モル%−Sn3モル%の試料番号1と、Ti93モル%−Fe3モル%−Au4モル%の試料番号2と、Ti90モル%−Cr7モル%−Sn3モル%の試料番号3と、Ti91モル%−Cr5モル%−Au4モル%の試料番号4のすべては、形状回復率が50%以上であって、高温での良好な形状回復特性があることが確認できた。   In Table 1, all samples, namely sample number 1 of Ti 92 mol% -Fe 5 mol% -Sn 3 mol%, sample number 2 of Ti 93 mol% -Fe 3 mol% -Au 4 mol%, and Ti 90 mol% -Cr 7 mol Sample No. 3 of% -Sn 3 mol% and Sample No. 4 of Ti 91 mol% -Cr 5 mol% -Au 4 mol% all have a shape recovery rate of 50% or more and have good shape recovery characteristics at high temperatures. It was confirmed that there was.

以下の表2ないし表5に示す組成(モル%)のTi系合金を、上記実施例1と同じ方法により、インゴットと、厚さが0.3mmで幅が10mmの板材とを得、その板材(厚さが0.3mm、幅が10mm、長さが400mm)を実施例1と同じ方法により水中に焼き入れ処理した。   A Ti-based alloy having the composition (mol%) shown in Tables 2 to 5 below is obtained by the same method as in Example 1 to obtain an ingot and a plate material having a thickness of 0.3 mm and a width of 10 mm. (Thickness 0.3 mm, width 10 mm, length 400 mm) was quenched in water by the same method as in Example 1.

そして、インゴットについては実施例1と同じ方法により冷間加工性の評価を行い、焼き入れ後の板材については実施例1と同じ方法により形状回復特性の評価を行った。   The ingot was evaluated for cold workability by the same method as in Example 1, and the plate material after quenching was evaluated for shape recovery characteristics by the same method as in Example 1.

冷間加工性を評価する加工率と、形状回復特性を評価する形状回復率とを表2ないし表5に示す。加工率と形状回復率の意味は実施例1と同じである。   Tables 2 to 5 show processing rates for evaluating cold workability and shape recovery rates for evaluating shape recovery characteristics. The meanings of the processing rate and the shape recovery rate are the same as those in the first embodiment.

なお、表2および表3において、実験不可とは、冷間圧延時の割れが著しく、実験を続行できなかったものをいう。   In Table 2 and Table 3, “impossible to experiment” means that the cracking during cold rolling was remarkable and the experiment could not be continued.

Figure 0005512145
Figure 0005512145

表2は、Ti−Cr−Sn系合金の加工率と形状回復率を示す。表2において、試料番号5ないし13の本発明の実施例は、加工率が46%以上であって、優れた冷間加工性を備えていることが分かる。加工率は高い方が実用的な用途が拡がるという点で好ましい。一方、形状回復率については、試料番号13や後記する表3の試料番号28や後記する表4の試料番号35のように、必ずしも形状回復率の数値が高くなくても、その形状回復率に見合った実用上の用途がある。   Table 2 shows the processing rate and the shape recovery rate of the Ti—Cr—Sn alloy. In Table 2, it can be seen that the working examples of Sample Nos. 5 to 13 have a working rate of 46% or more and have excellent cold workability. A higher processing rate is preferable in that practical applications are expanded. On the other hand, with respect to the shape recovery rate, even if the shape recovery rate is not necessarily high, such as Sample No. 13, Sample No. 28 in Table 3 to be described later, and Sample No. 35 in Table 4 to be described later, the shape recovery rate is not limited. There are matching practical uses.

しかし、試料番号14ないし21の比較例のTi−Cr−Sn系合金はすべて形状回復特性を備えておらず、試料番号16、17および19のTi−Cr−Sn系合金は実質的に冷間加工できないほどに加工性が悪い。   However, all of the Ti—Cr—Sn alloys of the comparative examples of sample numbers 14 to 21 do not have shape recovery characteristics, and the Ti—Cr—Sn alloys of sample numbers 16, 17 and 19 are substantially cold. Processability is so bad that it cannot be processed.

Figure 0005512145
Figure 0005512145

表3は、Ti−Cr−Au系合金の加工率と形状回復率を示す。表3において、試料番号22ないし28の本発明の実施例は、加工率が50%以上であって、優れた冷間加工性を備えていることが分かる。   Table 3 shows the processing rate and shape recovery rate of the Ti—Cr—Au alloy. In Table 3, it can be seen that the working examples of Sample Nos. 22 to 28 have a working rate of 50% or more and have excellent cold workability.

しかし、試料番号29ないし32の比較例のTi−Cr−Au系合金はすべて形状回復特性を備えておらず、試料番号29、30および32のTi−Cr−Au系合金は実質的に冷間加工できないほどに加工性が悪い。   However, the Ti—Cr—Au alloys of Comparative Examples Nos. 29 to 32 do not have any shape recovery characteristics, and the Ti—Cr—Au alloys of Nos. 29, 30 and 32 are substantially cold. Processability is so bad that it cannot be processed.

Figure 0005512145
Figure 0005512145

表4は、Ti−Fe−Sn系合金の加工率と形状回復率を示す。表4において、試料番号33ないし35の本発明の実施例は、加工率が95%以上であって、極めて優れた冷間加工性を備えていることが分かる。   Table 4 shows the processing rate and shape recovery rate of the Ti—Fe—Sn alloy. In Table 4, it can be seen that the examples of the present invention with sample numbers 33 to 35 have a processing rate of 95% or more and have extremely excellent cold workability.

しかし、試料番号37ないし40の比較例のTi−Fe−Sn系合金は、加工率が40%以下であって冷間加工性が悪く、試料番号41および42の比較例のTi−Fe−Sn系合金は、実質的に冷間加工できないほどに加工性が悪い。また、試料番号36、38、40、41および42の比較例のTi−Fe−Sn系合金は形状回復特性を備えていない。   However, the Ti—Fe—Sn alloy of the comparative examples of sample numbers 37 to 40 has a working rate of 40% or less and poor cold workability, and the Ti—Fe—Sn of the comparative examples of sample numbers 41 and 42. The system alloy is so poor in workability that it cannot substantially be cold worked. Further, the Ti—Fe—Sn alloys of the comparative examples of sample numbers 36, 38, 40, 41 and 42 do not have shape recovery characteristics.

Figure 0005512145
Figure 0005512145

表5は、Ti−Fe−Au系合金の加工率と形状回復率を示す。表5において、試料番号43ないし46の本発明の実施例は、加工率が95%以上であって、極めて優れた冷間加工性と極めて優れた形状回復特性とを備えていることが分かる。   Table 5 shows the processing rate and shape recovery rate of the Ti—Fe—Au alloy. In Table 5, it can be seen that the examples of the present invention with sample numbers 43 to 46 have a processing rate of 95% or more and have extremely excellent cold workability and extremely excellent shape recovery characteristics.

しかし、試料番号47の比較例のTi−Fe−Au系合金は形状回復特性を備えていない。   However, the Ti—Fe—Au alloy of the comparative example of sample number 47 does not have shape recovery characteristics.

実施例2の実験結果を以下にまとめる。
(1)表2に示すように、Tiのβ相安定化に寄与する5.0ないし8.0モル%の第1の元素(Cr)と、ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Sn)とを合計で8.0ないし11.0モル%含み、残部がTiおよび不可避的不純物からなり、且つ、33%≦(第2の元素の含有量/第1の元素の含有量)≦73%である組成比を有するTi系合金は、優れた冷間加工性と良好な形状回復特性とを備えている。
(2)表3に示すように、Tiのβ相安定化に寄与する3.0ないし8.0モル%の第1の元素(Cr)と、ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Au)とを合計で5.0ないし14.0モル%含み、残部がTiおよび不可避的不純物からなり、且つ、25%≦(第2の元素の含有量/第1の元素の含有量)≦80%である組成比を有するTi系合金は、優れた冷間加工性と良好な形状回復特性とを備えている。
(3)表4に示すように、Tiのβ相安定化に寄与する4.0ないし6.0モル%の第1の元素(Fe)と、ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Sn)とを合計で7.0ないし12.0モル%含み、残部がTiおよび不可避的不純物からなり、且つ、60%≦(第2の元素の含有量/第1の元素の含有量)≦100%である組成比を有するTi系合金は、極めて優れた冷間加工性と良好な形状回復特性とを備えている。
(4)表5に示すように、Tiのβ相安定化に寄与する3.0ないし7.0モル%の第1の元素(Fe)と、ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素(Au)とを合計で7.0ないし11.0モル%含み、残部がTiおよび不可避的不純物からなり、且つ、57%≦(第2の元素の含有量/第1の元素の含有量)≦133%である組成比を有するTi系合金は、極めて優れた冷間加工性と極めて優れた形状回復特性とを備えている。
The experimental results of Example 2 are summarized below.
(1) As shown in Table 2, 5.0 to 8.0 mol% of the first element (Cr) contributing to Ti β-stabilization, ω brittleness suppression, and martensite thermoelasticity The total amount of the contributing second element (Sn) is 8.0 to 11.0 mol%, the balance is made of Ti and inevitable impurities, and 33% ≦ (content of second element / first The Ti-based alloy having a composition ratio of (element content) ≦ 73% has excellent cold workability and good shape recovery characteristics.
(2) As shown in Table 3, 3.0 to 8.0 mol% of the first element (Cr) contributing to stabilization of Ti β phase, suppression of ω brittleness, and thermal elasticity of martensite The total amount of the contributing second element (Au) is 5.0 to 14.0 mol%, the balance is made of Ti and inevitable impurities, and 25% ≦ (content of second element / first The Ti-based alloy having a composition ratio of ≦ 80% has excellent cold workability and good shape recovery characteristics.
(3) As shown in Table 4, 4.0 to 6.0 mol% of the first element (Fe) contributing to Ti β-phase stabilization, ω brittleness suppression, and martensite thermoelasticity The total amount of the second element (Sn) that contributes is 7.0 to 12.0 mol%, the balance is made of Ti and inevitable impurities, and 60% ≦ (content of second element / first The Ti-based alloy having a composition ratio of ≦ 100% has extremely good cold workability and good shape recovery characteristics.
(4) As shown in Table 5, 3.0 to 7.0 mol% of the first element (Fe) contributing to stabilization of Ti β phase, suppression of ω brittleness, and thermal elasticity of martensite The total amount of the contributing second element (Au) is 7.0 to 11.0 mol%, the balance is made of Ti and inevitable impurities, and 57% ≦ (content of second element / first The Ti-based alloy having a composition ratio of (element content) ≦ 133% has extremely excellent cold workability and extremely excellent shape recovery characteristics.

本発明は、歯列矯正ワイヤ、電子レンジダンパー、エアコン風向制御部材、炊飯器蒸気調圧弁、建築用の換気口、携帯電話アンテナ、ブラジャー用ワイヤ、メガネフレームなどに幅広く利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used for orthodontic wires, microwave oven dampers, air conditioner wind direction control members, rice cooker steam pressure regulating valves, architectural vents, mobile phone antennas, bra wires, glasses frames, and the like.

1 板材
2 ステンレス鋼製丸棒
1 Sheet material 2 Stainless steel round bar

Claims (5)

Tiのβ相安定化に寄与する第1の元素としてCrまたはFeを3.0ないし8.0モル%含み、
ω脆性の抑制とマルテンサイトの熱弾性化に寄与する第2の元素としてSnまたはAuを2.0ないし6.0モル%含み、
第1の元素と第2の元素とを合計で5.0モル%ないし14.0モル%含み、
残部がTiおよび不可避的不純物からなるTi合金を冷間加工及び焼入れすることによって得られる熱弾性マルテンサイトTi合金である、形状記憶合金。
Containing 3.0 to 8.0 mol% of Cr or Fe as the first element contributing to stabilization of the β phase of Ti,
It contains 2.0 to 6.0 mol% of Sn or Au as the second element contributing to the suppression of ω brittleness and the thermal elasticity of martensite,
A total of 5.0 mol% to 14.0 mol% of the first element and the second element,
A shape memory alloy which is a thermoelastic martensitic Ti alloy obtained by cold working and quenching a Ti alloy consisting of Ti and inevitable impurities.
5.0ないし8.0モル%のCrと、
2.0ないし4.0モル%のSnとを含み、
CrとSnとを合計で8.0ないし11.0モル%含み、
残部がTiおよび不可避的不純物からなり、且つ、33%≦(Snの含有量/Crの含有量)×100(%)≦73%である組成比を有する、請求項1に記載の形状記憶合金。
5.0 to 8.0 mole percent Cr;
2.0 to 4.0 mol% Sn,
A total of 8.0 to 11.0 mol% of Cr and Sn,
2. The shape memory alloy according to claim 1, wherein the balance is made of Ti and inevitable impurities and has a composition ratio of 33% ≦ (Sn content / Cr content) × 100 (%) ≦ 73%. .
3.0ないし8.0モル%のCrと、
2.0ないし6.0モル%のAuとを含み、
CrとAuとを合計で5.0ないし14.0モル%含み、
残部がTiおよび不可避的不純物からなり、且つ、25%≦(Auの含有量/Crの含有量)×100(%)≦80%である組成比を有する、請求項1に記載の形状記憶合金。
3.0 to 8.0 mol% Cr,
2.0 to 6.0 mol% Au,
Containing 5.0 to 14.0 mol% of Cr and Au in total,
2. The shape memory alloy according to claim 1, wherein the balance is made of Ti and inevitable impurities and has a composition ratio of 25% ≦ (Au content / Cr content) × 100 (%) ≦ 80%. .
4.0ないし6.0モル%のFeと、
3.0ないし6.0モル%のSnとを含み、
FeとSnとを合計で7.0ないし12.0モル%含み、
残部がTiおよび不可避的不純物からなり、且つ、60%≦(Snの含有量/Feの含有量)×100(%)≦100%である組成比を有する、請求項1に記載の形状記憶合金。
4.0 to 6.0 mol% Fe;
3.0 to 6.0 mol% Sn,
Containing 7.0 to 12.0 mol% of Fe and Sn in total,
The shape memory alloy according to claim 1, wherein the balance is made of Ti and inevitable impurities and has a composition ratio of 60% ≦ (Sn content / Fe content) × 100 (%) ≦ 100%. .
3.0ないし7.0モル%のFeと、
4.0モル%のAuとを含み、
FeとAuとを合計で7.0ないし11.0モル%含み、
残部がTiおよび不可避的不純物からなり、且つ、57%≦(Auの含有量/Feの含有量)×100(%)≦133%である組成比を有する、請求項1に記載の形状記憶合金。
3.0 to 7.0 mol% Fe;
4.0 mol% Au,
Containing 7.0 to 11.0 mol% of Fe and Au in total,
2. The shape memory alloy according to claim 1, wherein the balance is made of Ti and inevitable impurities and has a composition ratio of 57% ≦ (Au content / Fe content) × 100 (%) ≦ 133%. .
JP2009031774A 2008-02-14 2009-02-13 Shape memory alloy Active JP5512145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031774A JP5512145B2 (en) 2008-02-14 2009-02-13 Shape memory alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008033021 2008-02-14
JP2008033021 2008-02-14
JP2009031774A JP5512145B2 (en) 2008-02-14 2009-02-13 Shape memory alloy

Publications (3)

Publication Number Publication Date
JP2009215650A JP2009215650A (en) 2009-09-24
JP2009215650A5 JP2009215650A5 (en) 2013-07-04
JP5512145B2 true JP5512145B2 (en) 2014-06-04

Family

ID=41187786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031774A Active JP5512145B2 (en) 2008-02-14 2009-02-13 Shape memory alloy

Country Status (1)

Country Link
JP (1) JP5512145B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572794B2 (en) * 2009-07-16 2014-08-20 学校法人新潟工科大学 Low elastic titanium alloy
JP6621977B2 (en) * 2014-09-30 2019-12-18 国立大学法人東京工業大学 β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy
JP6005119B2 (en) * 2014-10-23 2016-10-12 国立大学法人東京工業大学 Super elastic alloy
CN115627385B (en) * 2022-08-17 2023-08-11 中国科学院合肥物质科学研究院 Ti-Sn-based alloy with high damping and excellent mechanical properties, and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111835A (en) * 1987-10-26 1989-04-28 Kobe Steel Ltd Low strength and high ductile ti alloy for cold working
JP4304897B2 (en) * 2000-12-20 2009-07-29 株式会社豊田中央研究所 Titanium alloy having high elastic deformability and method for producing the same
JP3884316B2 (en) * 2002-04-04 2007-02-21 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
JP4015080B2 (en) * 2003-07-18 2007-11-28 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
JP2007231313A (en) * 2006-02-28 2007-09-13 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY

Also Published As

Publication number Publication date
JP2009215650A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
EP1352979B1 (en) Super-elastic titanium alloy for medical uses
CN112639144B (en) Copper alloy material, method for producing same, and member or component made of copper alloy material
JP2007520630A (en) Beta titanium composition and method for producing the same
EP3775307B1 (en) High temperature titanium alloys
JP5512145B2 (en) Shape memory alloy
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JPWO2016013566A1 (en) Titanium alloy member having shape change characteristics in the same direction as the machining direction and method for producing the same
CN113373365B (en) Nano silicide reinforced refractory high-entropy alloy and preparation method thereof
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
EP3693483A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
CN109468492B (en) Titanium alloy plate with high impact toughness and processing technology thereof
US7501032B1 (en) High work output NI-TI-PT high temperature shape memory alloys and associated processing methods
CN112853230B (en) Low-layer-dislocation-energy face-centered cubic structure high-entropy shape memory alloy and preparation method thereof
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JP4477297B2 (en) Ti-Mo base alloy spring material
JP5605316B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
JPH1136024A (en) High-temperature-functioning shape memory alloy, and its production
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JPH0860277A (en) Nickel-titanium alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250