JP6621977B2 - β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy - Google Patents

β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy Download PDF

Info

Publication number
JP6621977B2
JP6621977B2 JP2014202317A JP2014202317A JP6621977B2 JP 6621977 B2 JP6621977 B2 JP 6621977B2 JP 2014202317 A JP2014202317 A JP 2014202317A JP 2014202317 A JP2014202317 A JP 2014202317A JP 6621977 B2 JP6621977 B2 JP 6621977B2
Authority
JP
Japan
Prior art keywords
alloy
intermediate material
type
cold working
superelastic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014202317A
Other languages
Japanese (ja)
Other versions
JP2016069709A (en
Inventor
秀樹 細田
秀樹 細田
泰宏 草野
泰宏 草野
奈央 岡野
奈央 岡野
稲邑朋也
正樹 田原
正樹 田原
住本 伸
伸 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSEN CO.,LTD
Tokyo Institute of Technology NUC
Original Assignee
TOKUSEN CO.,LTD
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSEN CO.,LTD, Tokyo Institute of Technology NUC filed Critical TOKUSEN CO.,LTD
Priority to JP2014202317A priority Critical patent/JP6621977B2/en
Publication of JP2016069709A publication Critical patent/JP2016069709A/en
Application granted granted Critical
Publication of JP6621977B2 publication Critical patent/JP6621977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、β型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法に係り、特に、板材や線材など所望形状の合金が冷間加工で好適に製造することができるβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法に関する。   The present invention relates to a method for producing a β-type Ti-based superelastic alloy and a β-type Ti-based superelastic alloy, and in particular, a β-type Ti capable of suitably producing an alloy having a desired shape such as a plate material or a wire by cold working. The present invention relates to a method for producing a superelastic alloy and a β-type superelastic alloy.

形状記憶合金は、一般的に、マルテンサイト変態に起因して、形状記憶特性、超弾性、又は、両特性を示す。形状記憶合金が室温において超弾性を示すと、通常のばね金属よりも、繰り返し変形特性が格段に向上する。そのため、室温において形状記憶合金が超弾性を示すことは、材料設計の観点から好ましい結果の一つと言える。   Shape memory alloys generally exhibit shape memory properties, superelasticity, or both properties due to martensitic transformation. When the shape memory alloy exhibits superelasticity at room temperature, the repeated deformation characteristics are remarkably improved as compared with a normal spring metal. Therefore, it can be said that one of the preferable results from the viewpoint of material design is that the shape memory alloy exhibits superelasticity at room temperature.

Ti−Ni系形状記憶金属は、室温において、上記の両特性を示すことが明らかになっている。   It has been clarified that a Ti—Ni-based shape memory metal exhibits both the above characteristics at room temperature.

しかしながら、他のTi系形状記憶合金が、室温において、形状記憶特性及び超弾性の両特性を有することは稀であり、どちらか一方の特性を示すことが一般的である。これは、Ti系形状記憶合金を組成する元素数が3個以上であることが多いこと、添加元素の濃度が0.1%でも変化すると所望の特性が生じないことがあるくらいに濃度にシビアであること、組成元素が同じでもわずかな濃度変化によって加工方法が異なることが多いこと、などの理想的な合金組成や加工方法等を発見することが非常に困難であることに起因すると考えられる。   However, other Ti-based shape memory alloys rarely have both shape memory characteristics and superelastic characteristics at room temperature, and generally exhibit either one of the characteristics. This is because the number of elements composing the Ti-based shape memory alloy is often 3 or more, and the concentration is severe enough that the desired characteristics may not occur if the concentration of the additive element changes even at 0.1%. It is thought that this is because it is very difficult to find an ideal alloy composition, processing method, etc. .

また、本願発明者は、過去に、所定の組成で構成されたβ型Ti系合金が形状記憶特性を示すことを明らかにしている(特許文献1を参照)。   In addition, the inventor of the present application has clarified in the past that a β-type Ti-based alloy composed of a predetermined composition exhibits shape memory characteristics (see Patent Document 1).

特開2009−215650号公報JP 2009-215650 A

しかしながら、上記した所定の組成で構成されたβ型Ti系合金が超弾性を示すことはまだ明らかになっていないという問題があった。   However, there has been a problem that it has not yet been clarified that a β-type Ti alloy composed of the above-described predetermined composition exhibits superelasticity.

そこで、本発明はこれらの点に鑑みてなされたものであり、β型Ti系合金で超弾性を示すβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法を提供することを本発明の目的としている。   Accordingly, the present invention has been made in view of these points, and provides a β-type Ti-based superelastic alloy that exhibits superelasticity with a β-type Ti-based alloy and a method for producing a β-type Ti-based superelastic alloy. It is an object of the present invention.

(1)前述した目的を達成するため、本発明のβ型Ti系超弾性合金は、Ti‐X1mol%Cr‐X2mol%Snであり、かつ、4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす、ことを特徴とする。   (1) In order to achieve the object described above, the β-type Ti superelastic alloy of the present invention is Ti—X1 mol% Cr—X2 mol% Sn, and 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and 0.8 ≦ X1 / X2 ≦ 1.5 are all satisfied.

これにより、Ti系合金が室温において形状回復率が10%以上の超弾性を示すことができる。   Thereby, the Ti-based alloy can exhibit superelasticity with a shape recovery rate of 10% or more at room temperature.

(2)また、本発明のβ型Ti系超弾性合金は、4.5≦X1≦5.5、4.5≦X2≦5.5、9.5<X1+X2<10.5、及び、0.8≦X1/X2≦1.2、の条件を更にすべて満たす、ことが好ましい。   (2) Further, the β-type Ti-based superelastic alloy of the present invention has 4.5 ≦ X1 ≦ 5.5, 4.5 ≦ X2 ≦ 5.5, 9.5 <X1 + X2 <10.5, and 0 It is preferable that all the conditions of .8 ≦ X1 / X2 ≦ 1.2 are further satisfied.

これにより、Ti系合金が室温において形状回復率が40%以上の超弾性を示すことができる。   Thereby, the Ti-based alloy can exhibit superelasticity with a shape recovery rate of 40% or more at room temperature.

(3)また、前述した目的を達成するため、本発明のβ型Ti系超弾性合金の製造方法は、上記(1)又は(2)に記載のβ型Ti系超弾性合金と同じ組成であって冷間加工前の状態の合金である中間材を製造する中間材製造工程と、中間材に接触する部分の加工部材の温度を313〜353K、冷間加工時における中間材の平均温度を293K〜393Kとして、中間材に冷間加工を行う冷間加工工程と、を備えることを特徴とする。   (3) Further, in order to achieve the above-described object, the production method of the β-type Ti-based superelastic alloy of the present invention has the same composition as the β-type Ti-based superelastic alloy described in (1) or (2) above. The intermediate material manufacturing process for manufacturing the intermediate material, which is an alloy in the state before cold working, and the temperature of the processed member in the part in contact with the intermediate material is 313 to 353K, and the average temperature of the intermediate material during cold working is 293K to 393K, including a cold working process for cold working the intermediate material.

これにより、上記(1)又は(2)に記載のβ型Ti系超弾性合金の中間材に対して割れやヒビを生じさせることなく所望形状に冷間加工することができる。   Thereby, it can cold-work into a desired shape, without producing a crack and a crack with respect to the intermediate material of (beta) type | system | group Ti superelastic alloy as described in said (1) or (2).

(4)また、本発明のβ型Ti系超弾性合金の製造方法の冷間加工工程において、中間材に対する加工速度を20m/分以下として、中間材に冷間加工を行う、ことが好ましい。   (4) Further, in the cold working step of the method for producing a β-type Ti-based superelastic alloy of the present invention, it is preferable to perform cold working on the intermediate material at a working speed of 20 m / min or less for the intermediate material.

これにより、中間材における急激な温度上昇が抑えられて中間材の内部に脆い析出物が発生することを抑制することができるので、中間材に対して割れやヒビを生じさせることなく所望形状に冷間加工することができる。   As a result, a rapid temperature rise in the intermediate material can be suppressed and brittle precipitates can be prevented from being generated inside the intermediate material, so that the intermediate material has a desired shape without causing cracks or cracks. Can be cold worked.

(5)また、本発明のβ型Ti系超弾性合金の製造方法は、冷間加工工程における中間材の初期厚みに対する総加工率が40%以上であって中間材に割れ又はヒビが生じる前に、中間材に対して焼鈍を行う中間焼鈍工程と、を更に備えることを特徴とする。   (5) Further, in the method for producing a β-type Ti-based superelastic alloy according to the present invention, the total working rate with respect to the initial thickness of the intermediate material in the cold working process is 40% or more and before the intermediate material is cracked or cracked. And an intermediate annealing step for annealing the intermediate material.

これにより、中間材に対して最大で総加工率が97%以上の冷間加工を行うことができる。   Thereby, it is possible to perform cold working with a total working rate of 97% or more at the maximum with respect to the intermediate material.

(6)また、本発明のβ型Ti系超弾性合金の製造方法の冷間加工工程において、中間材に対する1回あたりの平均加工率を32.5%以下として、冷間材に冷間加工を行うことを特徴とする。   (6) Further, in the cold working step of the method for producing a β-type Ti-based superelastic alloy according to the present invention, the average working rate per one time with respect to the intermediate material is set to 32.5% or less, and the cold working is performed on the cold working material. It is characterized by performing.

これにより、総加工率が40%以下などの低い総加工率において中間材に割れやヒビを生じさせることを抑制させることができる。   Thereby, it is possible to prevent the intermediate material from being cracked or cracked at a low total processing rate such as 40% or less.

本発明のβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法によれば、室温において超弾性を示す板材や線材等の所望形状の材料を冷間加工で製造できるので、実用可能なNiフリー超弾性合金を提供することができるという効果を奏する。   According to the β-type Ti-based superelastic alloy and the β-type Ti-based superelastic alloy manufacturing method of the present invention, a material having a desired shape such as a plate material or a wire that exhibits superelasticity at room temperature can be manufactured by cold working. There is an effect that a possible Ni-free superelastic alloy can be provided.

以下、本発明のβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法に関する本実施例を説明する。なお、本実施例においては、室温(293K〜297K)において形状回復率5%以上の超弾性を示し、かつ、主に室温以外において形状記憶効果を示すβ型Ti系合金を「β型Ti系超弾性合金」という。また、形状回復率5%未満の超弾性を示し、かつ、主に室温以外において形状記憶効果を示すβ型Ti系合金を「β型Ti系形状記憶合金」という。   Hereinafter, the present Example regarding the manufacturing method of (beta) type | system | group Ti type | system | group superelastic alloy and (beta) type Ti type | system | group superelastic alloy of this invention is demonstrated. In this example, a β-type Ti alloy showing superelasticity with a shape recovery rate of 5% or more at room temperature (293K to 297K) and exhibiting a shape memory effect mainly at other than room temperature is referred to as “β-type Ti-based”. It is called “superelastic alloy”. A β-type Ti-based alloy that exhibits superelasticity with a shape recovery rate of less than 5% and exhibits a shape memory effect mainly at other than room temperature is referred to as a “β-type Ti-based shape memory alloy”.

[1]組成
まずは、本実施例のβ型Ti系超弾性合金を説明する。
[1] Composition First, the β-type Ti-based superelastic alloy of this example will be described.

[1−1]金属添加元素の選定基準
[1−1−1]融点
Ti−Nb系合金やTi−Mo系合金などの他のβ型Ti系形状記憶合金におけるNb(融点:2468℃)やMo(融点:2620℃)などのβ安定型元素の融点はTi(融点:1668℃)の融点よりも800℃以上も高いため、アーク溶解法などの金属溶解法による合金化が難しいという問題点がある。そのため、金属添加元素の融点は金属溶解法での溶解が容易な2000℃以下であることが好ましい。
[1-1] Selection Criteria for Metal Additive Elements [1-1-1] Melting Point Nb (melting point: 2468 ° C.) in other β-type Ti-based shape memory alloys such as Ti—Nb alloys and Ti—Mo alloys The β-stable element such as Mo (melting point: 2620 ° C.) has a melting point higher than that of Ti (melting point: 1668 ° C.) by 800 ° C. There is. Therefore, the melting point of the metal-added element is preferably 2000 ° C. or less, which can be easily dissolved by the metal melting method.

[1−1−2]沸点
添加元素の沸点がTiの融点(1668℃)以下では、Tiの溶解中に添加元素が気化(蒸発)するという問題点がある。そのため、添加元素の沸点はTiの融点(1668℃)以上であることが好ましい。
[1-1-2] Boiling point When the boiling point of the additive element is equal to or lower than the melting point of Ti (1668 ° C.), there is a problem that the additive element is vaporized (evaporated) during dissolution of Ti. Therefore, the boiling point of the additive element is preferably equal to or higher than the melting point of Ti (1668 ° C.).

[1−1−3]格子ひずみ
β型Ti系合金が超弾性を発揮するメカニズムは、母相と呼ばれる体心立方晶βと熱弾性型マルテンサイト相と呼ばれる斜方晶α”との2相間で相互に生じる格子変形に起因する。この格子変形が相変態を引き起こす。相変態を引き起こすひずみ(以下、「相変態ひずみ」という。)の最大値は超弾性ひずみの最大値となるため、超弾性ひずみを増大させるためには相変態ひずみを増大させる必要がある。
[1-1-3] Lattice strain The mechanism by which the β-type Ti-based alloy exhibits superelasticity is between two phases of a body-centered cubic β called a parent phase and an orthorhombic α ″ called a thermoelastic martensite phase. This lattice deformation causes a phase transformation, and the maximum value of the strain that causes the phase transformation (hereinafter referred to as “phase transformation strain”) is the maximum value of the superelastic strain. In order to increase the elastic strain, it is necessary to increase the phase transformation strain.

ここで、Ti−Ni系超弾性合金における相変態ひずみの最大値は10.5%であり、Ti−Nb系超弾性合金などのβ型Ti系超弾性合金における相変態ひずみの最大値は3%程度である(Ti−16Nb−4.8Sn:3.3%、Ti−24Nb−3Al:3.0%)。そのため、相変態ひずみの最大値が3%を超えるβ型Ti系超弾性合金は、従来のβ型Ti系超弾性合金と比較して、優れた超弾性を発揮するといえる。   Here, the maximum value of the phase transformation strain in the Ti—Ni based superelastic alloy is 10.5%, and the maximum value of the phase transformation strain in the β-type Ti based superelastic alloy such as the Ti—Nb based superelastic alloy is 3%. % (Ti-16Nb-4.8Sn: 3.3%, Ti-24Nb-3Al: 3.0%). Therefore, it can be said that a β-type Ti superelastic alloy having a maximum phase transformation strain exceeding 3% exhibits superior superelasticity as compared with a conventional β-type Ti superelastic alloy.

[1−2]本合金の組成
本実施例において試作されたβ型Ti系超弾性合金及びβ型Ti系形状記憶合金(以下、「本合金」という。)の組成は、Ti‐X1mol%Cr‐X2mol%Snである。本合金の金属添加元素にCr及びSnを選択した理由は、本合金の金属添加元素の融点及び沸点が上記「(1−1−1)融点」及び「(1−1−2)沸点」の選定基準を満たすとともに、本実施例の前に行った事前実験においてTi−Cr−Sn系合金が「(1−1−3)格子ひずみ」の選定基準を満たす可能性があるという印象が得られたためである。
[1-2] Composition of the present alloy The compositions of the β-type Ti-based superelastic alloy and β-type Ti-based shape memory alloy (hereinafter referred to as “the present alloy”) manufactured in this example are Ti—X1 mol% Cr. -X2 mol% Sn. The reason for selecting Cr and Sn as the metal additive element of this alloy is that the melting point and boiling point of the metal additive element of this alloy are the above-mentioned “(1-1-1) melting point” and “(1-1-2) boiling point”. In addition to satisfying the selection criteria, an impression is obtained that the Ti—Cr—Sn-based alloy may satisfy the selection criteria of “(1-1-3) lattice strain” in a preliminary experiment performed before this example. This is because.

[1−2−1]Tiの選択理由及びその濃度(mol%)
Tiは、本合金におけるベース元素である。Tiは、軽量であり、強度、耐食性、生体適合性に優れているからである。Tiの濃度(mol%)は、100mol%からCrの濃度X1(mol%)及びSnの濃度X2(mol%)並びに不可避不純物が混入された場合はその不可避不純物の濃度α(mol%)を加えて得た合計濃度X1+X2+α(mol%)を除して得た濃度100−(X1+X2+α)(mol%)である。
[1-2-1] Ti selection reason and concentration (mol%)
Ti is a base element in this alloy. This is because Ti is lightweight and has excellent strength, corrosion resistance, and biocompatibility. The concentration of Ti (mol%) is 100 mol% to Cr concentration X1 (mol%) and Sn concentration X2 (mol%), and when inevitable impurities are mixed, the concentration α (mol%) of the inevitable impurities is added. The concentration is 100− (X1 + X2 + α) (mol%) obtained by dividing the total concentration X1 + X2 + α (mol%) obtained.

[1−2−2]Crの添加理由及びその濃度X1(mol%)
Crは、本合金におけるβ相安定化元素である。β相安定化元素は、本合金のMs点(マルテンサイト変態開始温度)を低下させることにより、室温において本合金が超弾性を発揮するための添加元素である。言い換えると、Crの濃度は、Ms点を所望の温度に調整するため、本合金の超弾性の性能差に直結する。そのため、本発明者は、過去の経験に基づき、0.0≦X1≦9.0を満たすように、本合金に添加されるCrの濃度X1(mol%)を設定した。
[1-2-2] Reason for addition of Cr and its concentration X1 (mol%)
Cr is a β-phase stabilizing element in this alloy. The β-phase stabilizing element is an additive element for the present alloy to exhibit superelasticity at room temperature by lowering the Ms point (martensitic transformation start temperature) of the present alloy. In other words, the Cr concentration is directly related to the superelastic performance difference of the present alloy in order to adjust the Ms point to a desired temperature. Therefore, the present inventor set the concentration X1 (mol%) of Cr added to the alloy so as to satisfy 0.0 ≦ X1 ≦ 9.0 based on past experience.

[1−2−3]Snの添加理由及びその濃度X2(mol%)
Snは、本合金におけるω脆性抑制元素である。ω脆性抑制元素は、残留β相からα相への中間生成物として生じやすいω相によるω脆性を抑制するための添加元素である。ω相が多く形成されると、逆変態が阻害され、超弾性が発揮しなくなる。また、Snの濃度が濃くなるとω脆性の抑制効果は高まるが、ω相以外の第二相が形成され、形状記憶特性が低下すると本発明者は考える。そのため、本発明者は、過去の経験に基づき、0.0≦X2≦6.0を満たすように、本合金に添加されるSnの濃度X2(mol%)を設定した。
[1-2-3] Reason for addition of Sn and its concentration X2 (mol%)
Sn is an ω brittleness suppressing element in the present alloy. The ω brittleness suppressing element is an additive element for suppressing ω brittleness due to the ω phase that is likely to occur as an intermediate product from the residual β phase to the α phase. When a large number of ω phases are formed, reverse transformation is inhibited and superelasticity is not exhibited. In addition, when the Sn concentration is increased, the effect of suppressing the ω brittleness is enhanced, but the present inventor considers that the second phase other than the ω phase is formed and the shape memory characteristics are deteriorated. Therefore, the present inventor has set the concentration X2 (mol%) of Sn added to the alloy so as to satisfy 0.0 ≦ X2 ≦ 6.0 based on past experience.

[1−2−4]添加元素(Cr、Sn)の合計濃度X1+X2(mol%)
Snが本合金(Ti‐Cr‐Sn系超弾性合金)に添加される場合、Snは、Crと同様、Msを低下させる効果をも奏する。そのため、Cr及びSnがβ型Ti系超弾性合金に添加される場合、Cr及びSnの各濃度の和となる添加元素の合計濃度X1+X2(mol%)もMs点の調整において重要な因子となると本発明者は考える。そのため、本発明者は、過去の経験に基づき、3.0≦X1+X2≦12.0を満たすように、本合金に添加される添加元素の合計濃度X1+X2(mol%)を設定した。
[1-2-4] Total concentration of additive elements (Cr, Sn) X1 + X2 (mol%)
When Sn is added to this alloy (Ti—Cr—Sn superelastic alloy), Sn also has the effect of lowering Ms, like Cr. Therefore, when Cr and Sn are added to the β-type Ti-based superelastic alloy, the total concentration X1 + X2 (mol%) of the additive element that is the sum of the concentrations of Cr and Sn is also an important factor in adjusting the Ms point. The inventor thinks. Therefore, the present inventor has set the total concentration X1 + X2 (mol%) of the additive element added to the alloy so as to satisfy 3.0 ≦ X1 + X2 ≦ 12.0 based on past experience.

[1−2−5]添加元素(Cr、Sn)の濃度比X1/X2
本合金が超弾性を発揮するためには、Ms点の調整とω相抑制効果のバランスも重要であると本発明者は考える。このバランスが適切か否かを判断する因子が添加元素の濃度比X1/X2であると本発明者は考える。そのため、本発明者は、過去の経験に基づき、0.1<X1/X2<10.0を満たすように、本合金に添加される添加元素の濃度比X1/X2を設定した。
[1-2-5] Concentration ratio X1 / X2 of additive elements (Cr, Sn)
The present inventor considers that the balance between the adjustment of the Ms point and the effect of suppressing the ω phase is also important for the present alloy to exhibit superelasticity. The present inventor considers that the factor for determining whether this balance is appropriate is the concentration ratio X1 / X2 of the additive element. Therefore, the present inventor has set the concentration ratio X1 / X2 of the additive element added to the alloy so as to satisfy 0.1 <X1 / X2 <10.0 based on past experience.

[2]製造工程
次に、本実施例におけるβ型Ti系超弾性合金の製造方法を説明する。
[2] Manufacturing Process Next, a manufacturing method of the β-type Ti superelastic alloy in the present embodiment will be described.

本実施例におけるβ型Ti系超弾性合金の製造方法は、中間材製造工程と、冷間加工工程と、を備える。また、本実施例におけるβ型Ti系超弾性合金の製造方法は、均質化処理と、中間焼鈍工程と、溶体化処理工程と、を更に備えることが好ましい。   The manufacturing method of the β-type Ti-based superelastic alloy in the present embodiment includes an intermediate material manufacturing process and a cold working process. Moreover, it is preferable that the manufacturing method of the β-type Ti-based superelastic alloy in the present embodiment further includes a homogenization treatment, an intermediate annealing step, and a solution treatment step.

[2−1]中間材製造工程
本合金の中間材は、非消耗タングステン電極型アルゴンアーク溶解炉を用いて各組成元素の原料を溶解することによりインゴット状に作製された。中間材とは、本実施例において、冷間加工工程前において製造された本合金と組成が同じ合金をいう。
[2-1] Intermediate Material Manufacturing Process The intermediate material of this alloy was produced in an ingot shape by melting the raw materials of each composition element using a non-consumable tungsten electrode type argon arc melting furnace. In this embodiment, the intermediate material refers to an alloy having the same composition as that of the present alloy manufactured before the cold working process.

[2−2]冷間加工工程
[2−2−1]本合金の形状
均質化処理後の中間材は、冷間加工工程により所望の形状の本合金に加工された。本合金の形状としては、板材、線材その他の所望形状から選択可能である。また、中間材の加工後の形状としても、板材、線材その他の所望形状から選択可能である。つまり、加工前後の形状については、板材や線材などの特定の形状に限定されない。本実施例において、中間材及び本合金は板材に加工された。
[2-2] Cold working step [2-2-1] Shape of the main alloy The intermediate material after the homogenization treatment was processed into the main alloy having a desired shape by the cold working step. The shape of the alloy can be selected from plate materials, wire materials, and other desired shapes. Also, the shape of the intermediate material after processing can be selected from plate materials, wire materials, and other desired shapes. That is, the shape before and after processing is not limited to a specific shape such as a plate material or a wire material. In this example, the intermediate material and the present alloy were processed into plate materials.

[2−2−2]加工温度
[2−2−2−1]冷間加工の定義
冷間加工における加工温度の上限は、一般的に、再結晶温度といわれている。つまり、加工温度が合金の融点の1/2の場合、その加工は冷間加工に分類される。
[2-2-2] Processing temperature [2-2-2-1] Definition of cold processing The upper limit of the processing temperature in cold processing is generally called recrystallization temperature. That is, when the processing temperature is ½ of the melting point of the alloy, the processing is classified as cold processing.

本実施例においては、本合金に対して約1273K(1000℃)で2時間の加熱を行っても本合金が全く溶解しなかった。このことから、本合金の融点は、低くても約1273K(1000℃)以上である。そのため、本合金の再結晶温度は、低くてもその温度の1/2の温度637K(364℃)以上である。つまり、本合金に対する加工温度が637K(364℃)以下で行われる加工は冷間加工に分類される。   In this example, even when the alloy was heated at about 1273 K (1000 ° C.) for 2 hours, the alloy did not dissolve at all. From this, the melting point of this alloy is at least about 1273 K (1000 ° C.) at least. Therefore, the recrystallization temperature of this alloy is at least 637K (364 ° C.), which is half that temperature, at the lowest. That is, processing performed at a processing temperature of 637 K (364 ° C.) or less for this alloy is classified as cold processing.

[2−2−2−2]加工温度の設定
中間材に接触する部分の加工部材温度を室温(293K(20℃))、313〜353K(40〜80℃)、及び、373K(100℃)の3タイプに設定して、中間材を冷間加工した。これは、加工時における中間材の温度を制御するためである。なお、加工部材とは、圧延加工用又は押出加工用のローラー、引抜加工用のスリッターやダイス、プレス加工用の金型など、冷間加工装置において中間材に直接接触する部材である。
[2-2-2-2] Setting of processing temperature The processing member temperature of the part which contacts an intermediate material is room temperature (293K (20 degreeC)), 313-353K (40-80 degreeC), and 373K (100 degreeC). The intermediate material was cold worked. This is for controlling the temperature of the intermediate material during processing. The processed member is a member that comes into direct contact with an intermediate material in a cold processing apparatus, such as a roller for rolling or extrusion, a slitter or die for drawing, and a die for pressing.

また、冷間加工工程において、冷間加工時における中間材の平均温度は、293K(20℃)〜393K(120℃)に設定された。中間材温度の過低下又は過上昇により、中間材の内部に脆性破壊を生じる原因が発生することを抑制するためである。   In the cold working step, the average temperature of the intermediate material during cold working was set to 293K (20 ° C.) to 393 K (120 ° C.). This is to prevent the occurrence of brittle fracture inside the intermediate material due to excessive decrease or increase in the intermediate material temperature.

[2−2−3]加工率
本発明者は、冷間加工前後の中間材全体の総加工率を97%以上に設定した。加工率の計算方法は、加工前後における断面厚さの減少率である。総加工率を97%以上に設定した理由は、経験上、Ti系合金の冷間加工性が優れているか否かを判断するための基準値になり得ると本発明者は考えたからである。
[2-2-3] Processing rate The inventor set the total processing rate of the entire intermediate material before and after the cold working to 97% or more. The processing rate calculation method is a reduction rate of the cross-sectional thickness before and after processing. The reason why the total working rate is set to 97% or more is that the present inventor considered that it can be a reference value for judging whether or not the cold workability of the Ti-based alloy is excellent.

冷間加工前の中間材の初期厚みが10mmであり、その総加工率を約97%に設定した場合、冷間加工後の中間材である本合金(本実施例においては板材)の最終厚みは0.3mmである。   When the initial thickness of the intermediate material before cold working is 10 mm and the total working rate is set to about 97%, the final thickness of the alloy (the plate material in this embodiment), which is the intermediate material after cold working. Is 0.3 mm.

また、中間材の初期厚みからその最終厚みまでに行われる冷間加工の回数は、本発明者による中間材の冷間加工経験に基づき、10〜30回に設定された。なお、1回あたりの平均加工率X、冷間加工回数N、及び、中間材全体に占める総加工率Zは、以下の式(数1)の通りとなる。   The number of cold workings performed from the initial thickness of the intermediate material to its final thickness was set to 10 to 30 times based on the experience of cold working of the intermediate material by the inventor. In addition, the average processing rate X per time, the number N of cold processings, and the total processing rate Z which occupies for the whole intermediate material are as the following formula | equation (Formula 1).

つまり、上記式に上記の総加工率及び冷間加工回数を当てはめると、1回あたりの平均加工率が11.5%〜32.5%であると算出できる。つまり、本発明者は、中間材に対する1回あたりの平均加工率を32.5%以下に設定したとも言い換えられる。   That is, when the above total processing rate and the number of cold processing are applied to the above formula, the average processing rate per time can be calculated to be 11.5% to 32.5%. In other words, the present inventor can also paraphrase that the average processing rate per process for the intermediate material is set to 32.5% or less.

[2−2−3]加工速度
本発明者は、冷間加工の加工速度を20m/分、又は、10m/分のいずれかに設定した。加工速度を変化させた理由は、冷間加工の加工速度が20m/分の場合に加工速度が速すぎて割れやヒビなどの脆性破壊を生じた中間材があったからである。
[2-2-3] Processing speed The inventor set the processing speed of the cold processing to either 20 m / min or 10 m / min. The reason for changing the processing speed is that when the processing speed of cold processing was 20 m / min, there was an intermediate material that was too fast and caused brittle fractures such as cracks and cracks.

[2−3]熱処理工程
[2−3−1]均質化処理工程
中間材製造工程後であって冷間加工工程前において、中間材に対し、1273K(1000℃)で2時間の均質化処理が施された。溶解や熱処理に伴う組成の変化は各濃度に対して±0.3mol%以下であった。
[2-3] Heat treatment process [2-3-1] Homogenization process After the intermediate material manufacturing process and before the cold working process, the intermediate material is homogenized for 2 hours at 1273 K (1000 ° C.). Was given. The change in composition accompanying dissolution and heat treatment was ± 0.3 mol% or less for each concentration.

[2−3−2]中間焼鈍工程
中間焼鈍工程においては、冷間加工工程における中間材の初期厚みに対する総加工率が40%以上であって中間材に割れ又はヒビが生じる前に、中間材に対して中間焼鈍を行った。これは、冷間加工時に中間材の内部に生じた加工圧を下げて容易に加工するためである。中間焼鈍の条件は、Ar雰囲気下、焼鈍温度1173K(900℃)、焼鈍時間30分である。そして、中間焼鈍後に所望の総加工率になるまで、中間材に対して冷間加工を続けた。
[2-3-2] Intermediate annealing step In the intermediate annealing step, the total working rate with respect to the initial thickness of the intermediate material in the cold working step is 40% or more, and before the intermediate material is cracked or cracked, the intermediate material Was subjected to intermediate annealing. This is because the working pressure generated inside the intermediate material during the cold working is reduced to facilitate the working. The conditions for the intermediate annealing are an annealing temperature of 1173 K (900 ° C.) and an annealing time of 30 minutes in an Ar atmosphere. Then, cold working was continued on the intermediate material until the desired total working rate was achieved after the intermediate annealing.

[2−3−3]溶体化処理工程
本合金に対し、真空雰囲気下、1073K(800℃)〜1473K(1200℃)、30分の溶体化処理が行われた後、水中への焼き入れが行われた。
[2-3-3] Solution Treatment Step This solution was subjected to solution treatment in a vacuum atmosphere at 1073 K (800 ° C.) to 1473 K (1200 ° C.) for 30 minutes, and then quenched into water. It was conducted.

[3]評価
表1は、本実施例として作製した本合金の組成及び特性を示す。
[3] Evaluation Table 1 shows the composition and characteristics of this alloy produced as this example.

表1に記載の「試料番号」欄には、試料番号1〜26と名付けられた本合金の超弾性の有無及び各物理特性が記載されている。   In the “sample number” column shown in Table 1, the presence / absence of superelasticity and physical properties of the alloys named as sample numbers 1 to 26 are described.

[3−1]超弾性評価
本発明者は、株式会社島津製作所製の引張試験機(AG−500N、ロードセル最大荷重:1kN)を用いて、本合金に対し、引張試験による超弾性評価を行った。
[3-1] Superelasticity Evaluation The present inventor performed superelasticity evaluation by a tensile test on the alloy using a tensile tester (AG-500N, load cell maximum load: 1 kN) manufactured by Shimadzu Corporation. It was.

[3−1−1]評価方法
引張試験の方法は次の通りである。まず、本発明者は、室温(293〜298K(20〜25℃))において、引張速度が5×10−4m/分の一定速度で、引張ひずみが4%になるまで、本合金に荷重を印加した。その後、本発明者は本合金を除荷し、残留ひずみを測定することにより、超弾性による本合金の形状回復率を求めた。超弾性による形状回復率は、以下の数2の通りである。
[3-1-1] Evaluation method The method of the tensile test is as follows. First, the inventor applied a load to the alloy at room temperature (293 to 298 K (20 to 25 ° C.) at a constant speed of 5 × 10 −4 m / min until the tensile strain reached 4%. Was applied. Thereafter, the present inventor obtained the shape recovery rate of the alloy by superelasticity by unloading the alloy and measuring the residual strain. The shape recovery rate due to superelasticity is as shown in Equation 2 below.

ここで、塑性ひずみ=引張ひずみ(4%)−弾性ひずみ、回復ひずみ=塑性ひずみ−残留ひずみ、である。   Here, plastic strain = tensile strain (4%) − elastic strain, recovery strain = plastic strain−residual strain.

また、表1の「超弾性」欄において、「○」は「形状回復率が40%以上」、「△」は「形状回復率が5%〜40%」、「×」は「形状回復率が5%未満、又は、引張試験途中に本合金が破断」、を示している。   Further, in the “Superelastic” column of Table 1, “◯” indicates “shape recovery rate is 40% or more”, “Δ” indicates “shape recovery rate is 5% to 40%”, and “×” indicates “shape recovery rate”. Is less than 5%, or the alloy breaks during the tensile test.

[3−1−2]超弾性有無の評価
本合金が超弾性を発揮することは、表1に記載の試料番号3〜5、8〜10、15、16及び20における「超弾性」欄に示されている。つまり、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす場合、本合金は超弾性を示すことが明らかとなった。各添加元素の組成誤差が±0.2mol%と仮定すると、上記の条件は、3.8<X1<6.2、3.8<X2<6.2、8.8<X1+X2<10.7、及び、0.6<X1/X2<1.7、であっても成立すると考えられる。
[3-1-2] Evaluation of the presence or absence of superelasticity This alloy exhibits superelasticity in the “superelasticity” column in sample numbers 3 to 5, 8 to 10, 15, 16 and 20 shown in Table 1. It is shown. That is, this alloy (Ti—X1 mol% Cr—X2 mol% Sn) is 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and When all the conditions of 8 ≦ X1 / X2 ≦ 1.5 are satisfied, it has been revealed that this alloy exhibits superelasticity. Assuming that the composition error of each additive element is ± 0.2 mol%, the above conditions are 3.8 <X1 <6.2, 3.8 <X2 <6.2, 8.8 <X1 + X2 <10.7. And 0.6 <X1 / X2 <1.7.

また、表1に記載の試料番号5、10及び15における「超弾性」欄が示すように、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.5≦X1≦5.5、4.5≦X2≦5.5、9.5<X1+X2<10.5、及び、0.8≦X1/X2≦1.2、の条件をすべて満たす場合、本合金は超弾性を示すことが明らかとなった。上記と同様、各添加元素の組成誤差が±0.2mol%と仮定すると、上記の条件は、4.3<X1<5.7、4.3<X2<5.7、9.3<X1+X2<10.7、及び、0.6<X1/X2<1.4、であっても成立すると考えられる。   Further, as shown in the “superelasticity” column in sample numbers 5, 10 and 15 shown in Table 1, this alloy (Ti—X1 mol% Cr—X2 mol% Sn) is 4.5 ≦ X1 ≦ 5.5, 4 It is clear that this alloy exhibits superelasticity when all the conditions of 0.5 ≦ X2 ≦ 5.5, 9.5 <X1 + X2 <10.5, and 0.8 ≦ X1 / X2 ≦ 1.2 are satisfied. It became. As above, assuming that the composition error of each additive element is ± 0.2 mol%, the above conditions are 4.3 <X1 <5.7, 4.3 <X2 <5.7, 9.3 <X1 + X2. Even if <10.7 and 0.6 <X1 / X2 <1.4, it is considered to hold.

そして、本合金の組成がTi‐5mol%Cr‐5mol%Sn(X1≒X2≒5.0、X1+X2≒10.0、及び、X1/X2≒1.0)の場合、形状回復率が最大で90%以上を示した。   When the composition of this alloy is Ti-5 mol% Cr-5 mol% Sn (X1≈X2≈5.0, X1 + X2≈10.0, and X1 / X2≈1.0), the shape recovery rate is maximum. It showed 90% or more.

さらに、本合金の一例であるTi‐5mol%Cr‐5mol%Snの相変態ひずみを実験結果に基づき算出したところ、その相変態ひずみの最大値は8.7%であった。これは、Ti−Ni系超弾性合金における相変態ひずみの最大値(10.5%)やTi系合金における格子ひずみの理論最大値(9.3%)に近似する。つまり、本合金であるTi−Cr−Sn系超弾性合金の超弾性は、Ti−Ni系合金の超弾性に近い性能を発揮することが明らかとなった。   Furthermore, when the phase transformation strain of Ti-5 mol% Cr-5 mol% Sn, which is an example of this alloy, was calculated based on the experimental results, the maximum value of the phase transformation strain was 8.7%. This approximates the maximum value (10.5%) of the phase transformation strain in the Ti—Ni superelastic alloy and the theoretical maximum value (9.3%) of the lattice strain in the Ti-based alloy. That is, it has been clarified that the superelasticity of the Ti—Cr—Sn based superelastic alloy, which is the present alloy, exhibits performance close to that of the Ti—Ni based alloy.

[3−2]加工性評価
本発明者は、上記の冷間加工に基づき、本合金の加工性を評価した。
[3-2] Workability evaluation The inventor evaluated the workability of the present alloy based on the cold work described above.

[3−2―1]評価方法
表1の「加工性」とは、本実施例の中間材に対し、加工部材温度を313〜353K(40℃〜80℃)、冷間加工時における中間材の平均温度を293K〜393K(20℃〜120℃)、加工速度を20m/分又は10m/分以下とした冷間加工(以下、「本冷間加工」という。)を行って得た本合金が示す冷間加工性である。表1の「加工性」欄において、「◎」は「本冷間加工の総加工率(以下、「本冷間加工率」という。)が40%以上かつ加工速度が10m/分〜20m/分の場合に本合金に割れが生じなかった合金」、「○」は「本冷間加工率が40%以上かつ加工速度が10m/分以下の場合に本合金に割れが生じなかった合金」、「△」は「本冷間加工率が10%〜40%の場合に本合金にヒビや割れが生じた合金」、「×」は「本冷間加工率が0%〜10%の場合に本合金にヒビや割れが生じた合金」を示している。
[3-2-1] Evaluation Method “Processability” in Table 1 means that the intermediate member in this example has an intermediate member temperature of 313 to 353 K (40 ° C. to 80 ° C.) and an intermediate member during cold working. This alloy obtained by performing cold working (hereinafter referred to as “main cold working”) at an average temperature of 293 K to 393 K (20 ° C. to 120 ° C.) and a working speed of 20 m / min or 10 m / min or less. Is cold workability. In the “Workability” column of Table 1, “◎” indicates that “the total processing rate of the main cold processing (hereinafter referred to as“ the main cold processing rate ”) is 40% or more and the processing speed is 10 m / min to 20 m / min. "The alloy in which cracking did not occur in this alloy in the case of minutes", "○" was "the alloy in which cracking did not occur in this alloy when the main cold working rate was 40% or more and the processing speed was 10 m / min or less" , “△” means “alloy where the main cold working rate is 10% to 40%, and this alloy is cracked or cracked”, and “×” means “when the main cold working rate is 0% to 10%. Shows an alloy in which the alloy is cracked or cracked.

一方、表1の「比較加工性」とは、本合金と同じ組成の合金に対して冷間加工条件を室温(約297K=20℃)とし、冷間加工時における中間材の平均温度を設定せず、かつ、加工速度を20m/分とした冷間加工(以下、「比較加工」という。)を行って得た合金(以下、「比較合金」という。)が示す冷間加工性である。表1の「比較加工性」欄において、○は「比較加工による総加工率(以下、「比較加工率」という。)が40%以上の場合に比較合金に割れが生じなかった合金」、△は「比較加工率が10%〜40%の場合に比較合金にヒビや割れが生じた合金」、×は「比較加工率が0%〜10%の場合に比較合金にヒビや割れが生じた合金」を示している。つまり、「比較加工性」の評価に対して「加工性」の評価が優れている場合、それは本合金に対して本冷間加工が比較加工よりも適していることを意味する。   On the other hand, the “comparative workability” in Table 1 is that the cold working conditions are set to room temperature (about 297 K = 20 ° C.) for an alloy having the same composition as this alloy, and the average temperature of the intermediate material during cold working is set. And cold workability exhibited by an alloy (hereinafter referred to as “comparative alloy”) obtained by performing cold working (hereinafter referred to as “comparative alloy”) at a processing speed of 20 m / min. . In the “comparative workability” column of Table 1, “◯” indicates “an alloy in which cracking did not occur in the comparative alloy when the total processing rate by comparative processing (hereinafter referred to as“ comparative processing rate ”) is 40% or more”, Δ Is “an alloy in which cracks and cracks occur in the comparative alloy when the comparative processing rate is 10% to 40%”, and “X” is a crack and cracks in the comparative alloy when the comparative processing rate is 0% to 10% "Alloy". That is, if the evaluation of “workability” is superior to the evaluation of “comparative workability”, this means that the present cold work is more suitable than the comparative work for this alloy.

[3−2−2]加工性良否の評価
超弾性を発揮する本合金に対する本冷間加工の加工性が良好なことは、表1に記載の試料番号3〜5、8〜10、15、16及び20における「冷間加工性」欄の「◎」又は「○」が示している。また、超弾性を発揮する本合金に対する本冷間加工が比較加工に対して優位であることは、表1に記載の上記と同一の試料番号における「比較加工性」欄の「△」又は「×」が示している。
[3-2-2] Evaluation of good workability Good workability of the present cold work on the present alloy exhibiting superelasticity is good because of sample numbers 3 to 5, 8 to 10, 15 shown in Table 1, 16 and 20 indicate “20” or “◯” in the “cold workability” column. In addition, the fact that the present cold working for the present alloy exhibiting superelasticity is superior to the comparative working is that “△” in the “Comparative workability” column in the same sample number as described above in Table 1 or “ "X" indicates.

つまり、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす場合、本合金は、本冷間加工の加工性が良好な結果を示すことが明らかとなった。そして、中間材と接触する部分の加工部材の温度を313〜353K(40〜80℃)、冷間加工時における中間材の平均温度を293K〜393K(20〜120℃)にすれば、本合金の加工性が良好となることが明らかとなった。   That is, this alloy (Ti—X1 mol% Cr—X2 mol% Sn) is 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and When all the conditions of 8 ≦ X1 / X2 ≦ 1.5 are satisfied, it has been revealed that the present alloy exhibits a good workability in the cold working. And if the temperature of the processing member of the part which contacts an intermediate material shall be 313-353K (40-80 degreeC) and the average temperature of the intermediate material at the time of cold work shall be 293K-393K (20-120 degreeC), this alloy It became clear that the workability of the was improved.

それに対し、加工部材の温度が313K未満だと中間材が冷間加工時にヒビや割れを生じた。これは、冷間加工時における中間材の平均温度が293K(20℃)未満となり、中間材の内部に水素脆性が誘発されやすくなることが原因であると本発明者は考える。同様に、加工部材の温度が353Kを超えた場合にも冷間加工時にロールに接した中間材の表面にヒビや割れが生じた。これは、冷間加工時における中間材の平均温度が393K(120℃)を超えることにより、中間材の内部にω脆性が誘発されやすくなることが原因であると本発明者は考える。   On the other hand, if the temperature of the processed member was less than 313K, the intermediate material cracked or cracked during cold working. The inventor believes that this is because the average temperature of the intermediate material during cold working is less than 293 K (20 ° C.), and hydrogen embrittlement is likely to be induced inside the intermediate material. Similarly, even when the temperature of the processed member exceeded 353 K, cracks and cracks occurred on the surface of the intermediate material that was in contact with the roll during cold processing. The inventor believes that this is because the average temperature of the intermediate material during cold working exceeds 393 K (120 ° C.), so that ω brittleness is easily induced inside the intermediate material.

また、表1に記載の試料番号5、10及び15における「冷間加工性」欄が示すように、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.5≦X1≦5.5、4.5≦X2≦5.5、9.5<X1+X2<10.5、及び、0.8≦X1/X2≦1.2、の条件をすべて満たす場合、本合金は、加工部材温度が313〜353K(40℃〜80℃)であって、かつ、加工速度を20m/分から10m/分以下に低下させたときに、良好な冷間加工性を示すことが明らかとなった。これは、加工速度を遅くした優位性が示されているといえる。つまり、加工速度を遅くすることにより、冷間加工時における中間材の平均温度の急上昇を抑制することが容易になることに起因すると本発明者は考える。   Further, as shown in the “cold workability” column in sample numbers 5, 10 and 15 shown in Table 1, this alloy (Ti—X1 mol% Cr—X2 mol% Sn) is 4.5 ≦ X1 ≦ 5.5. 4.5 ≦ X2 ≦ 5.5, 9.5 <X1 + X2 <10.5, and 0.8 ≦ X1 / X2 ≦ 1.2, this alloy has a workpiece temperature of It was 313 to 353 K (40 ° C. to 80 ° C.) and when the processing speed was reduced from 20 m / min to 10 m / min or less, it was revealed that good cold workability was exhibited. This can be said to show the superiority of slowing the processing speed. That is, the present inventor believes that it is easy to suppress a rapid increase in the average temperature of the intermediate material during the cold working by slowing the working speed.

以上のことから、本合金のすべての組成のうちSnが低濃度によりω脆性が起こりやすい組成の場合の本合金であっても、所定の加工部材温度や加工速度の条件を満たすことにより、本合金に対して、望まない熱履歴を与えることなく、冷間加工を行うことが可能になることが明らかとなった。   From the above, even if this alloy has a composition in which ω embrittlement is likely to occur due to a low concentration of Sn among all the compositions of this alloy, the present It has become clear that it is possible to perform cold working on an alloy without giving an undesirable thermal history.

なお、上記と同様、各添加元素の組成誤差を考慮すると、上記の条件は±0.2mol%であっても成立すると考えられる。
[3−2]延性評価
本発明者は、室温(293〜298K(20〜25℃))において、本合金に引張試験を行い、本合金の延性評価を行った。
In the same manner as described above, when the composition error of each additive element is taken into consideration, it is considered that the above condition is established even if the condition is ± 0.2 mol%.
[3-2] Ductility evaluation The present inventor conducted a tensile test on the alloy at room temperature (293 to 298K (20 to 25 ° C)) to evaluate the ductility of the alloy.

延性評価における引張試験の条件は次の通りである。本発明者は、室温において、引張速度5×10−4m/分の一定速度で破断するまで荷重をかけ、本合金が破断する際の最大引張強度と破断伸びを測定した。 The conditions of the tensile test in the ductility evaluation are as follows. The present inventor measured the maximum tensile strength and elongation at break when the alloy was broken at room temperature until it was broken at a constant rate of 5 × 10 −4 m / min.

表1の「最大引張強度」、「破断伸び」及び「延性」の各欄は延性評価の結果を示している。ここで、延性欄に記載された「○」は「本合金の破断伸びが10%以上」、「×」は「本合金の破断伸びが10%未満」を示している。   Each column of “Maximum tensile strength”, “Elongation at break” and “Ductility” in Table 1 shows the results of ductility evaluation. Here, “◯” described in the ductility column indicates “the breaking elongation of the alloy is 10% or more”, and “x” indicates “the breaking elongation of the alloy is less than 10%”.

超弾性を発揮する本合金に対する延性が良好なことは、表1に記載の試料番号3〜5、8〜10、15、16及び20における「延性」欄の「○」が示している。つまり、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす場合、本合金は、10%以上の延性を示すことが明らかとなった。   The good ductility of the present alloy exhibiting superelasticity is indicated by “◯” in the “Ductility” column in sample numbers 3 to 5, 8 to 10, 15, 16 and 20 shown in Table 1. That is, this alloy (Ti—X1 mol% Cr—X2 mol% Sn) is 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and When all the conditions of 8 ≦ X1 / X2 ≦ 1.5 were satisfied, it was revealed that this alloy exhibits a ductility of 10% or more.

[3−4]添加元素の濃度評価
[3−4−1]Crの濃度X1(mol%)
表1の「超弾性」欄及び「相」欄の結果から推測すると、Crの濃度X1が3.5mol%より少ない場合、超弾性の発揮に必要な熱弾性型マルテンサイト相が本合金内に生成又は誘起されない、と本発明者は考える。また、Crの濃度X1が6.5mol%より多い場合にも同様と考える。この場合の理由としては、本合金に対して応力を印加しても超弾性の発揮に必要な熱弾性型マルテンサイト相が誘起されず、母相のβ相が本合金内に安定的に存在してしまうことに起因する、と本発明者は考える。
[3-4] Concentration evaluation of additive elements [3-4-1] Cr concentration X1 (mol%)
Presuming from the results in the “superelastic” column and “phase” column of Table 1, when the Cr concentration X1 is less than 3.5 mol%, the thermoelastic martensite phase necessary for exerting superelasticity is present in the alloy. The inventor believes that it is not generated or induced. The same applies when the Cr concentration X1 is higher than 6.5 mol%. The reason for this is that even if stress is applied to the alloy, the thermoelastic martensite phase necessary to exert superelasticity is not induced, and the β phase of the parent phase is stably present in the alloy. This inventor thinks that it originates in doing.

[3−4−2]Snの濃度X2(mol%)
表1に記載の試料番号2、6、12、17等の「冷間加工性」欄の結果が示すように、本合金に添加されたSnの濃度X2が3.0mol%以下の場合、冷間加工性が良好でないことが明らかとなった。これは、ω脆性の抑制が不十分であることに起因する、と本発明者は考える。
[3-4-2] Sn concentration X2 (mol%)
As shown by the results in the “cold workability” column of sample numbers 2, 6, 12, and 17 shown in Table 1, when the concentration X2 of Sn added to the alloy is 3.0 mol% or less, It became clear that the inter-workability was not good. The present inventor believes that this is caused by insufficient suppression of ω brittleness.

また、表1に記載の試料番号11の「冷間加工性」欄の結果が示すように、本合金に添加されたSnの濃度X2が6.0mol%を超える場合、Snを含む析出相が本合金内に析出することによって本合金が脆化するためである、と本発明者は考える。   Further, as shown in the results of the “cold workability” column of Sample No. 11 shown in Table 1, when the concentration X2 of Sn added to the alloy exceeds 6.0 mol%, the precipitate phase containing Sn is The present inventor thinks that this is because the alloy is embrittled by precipitation in the alloy.

[3−5]結晶構造の分析
[3−5−1]形状記憶効果及び超弾性と結晶構造との関係
Ti金属又はTi系合金において応力誘起変態相(準安定相)は六方晶系のω相、六方晶系のα’相及び斜方晶系のα”相の3種がある。そして、その3種類の相のうち形状記憶効果又は超弾性が生じるためのマルテンサイト相は、熱弾性型マルテンサイト相であるα”相のみである。つまり、Ti系合金が形状記憶効果又は超弾性を発揮するためには、そのTi系合金が、応力誘起変態を生じるだけでなく、熱弾性型マルテンサイト相のα”相を生じることが必要である。
[3-5] Analysis of crystal structure [3-5-1] Relationship between shape memory effect and superelasticity and crystal structure In Ti metal or Ti alloy, the stress-induced transformation phase (metastable phase) is hexagonal ω. Phase, hexagonal α ′ phase and orthorhombic α ″ phase. Of these three types, the martensite phase that causes shape memory effect or superelasticity is thermoelastic Only α ”phase, which is a type martensite phase. In other words, in order for a Ti-based alloy to exhibit a shape memory effect or superelasticity, it is necessary that the Ti-based alloy not only cause stress-induced transformation but also generate an α ″ phase of a thermoelastic martensite phase. is there.

[3−5−2]結晶構造の解析
表1の試料番号3〜5、8〜10、15、16及び20における「相」欄に示すように、本合金(Ti‐X1mol%Cr‐X2mol%Sn)が4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす場合、本合金は母相のβ単相又は熱弾性型マルテンサイト相であるα”相が残留したβ相であることが明らかとなった。言い換えると、本合金が室温でβ単相又はα”相が残留したβ相を示す場合、本合金が超弾性又は形状記憶効果を示す可能性があることが明らかとなった。
[3-5-2] Analysis of Crystal Structure As shown in the “Phase” column of sample numbers 3 to 5, 8 to 10, 15, 16 and 20 in Table 1, the present alloy (Ti—X1 mol% Cr—X2 mol%) Sn) is 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and 0.8 ≦ X1 / X2 ≦ 1.5. When all of these conditions are satisfied, it was revealed that the alloy is a β phase in which the parent phase β single phase or the thermoelastic martensite phase α ″ phase remains. In other words, the alloy is a β single phase at room temperature. Alternatively, when the α ″ phase indicates a remaining β phase, it has been found that the present alloy may exhibit superelasticity or a shape memory effect.

なお、各添加元素の組成誤差が±0.2mol%と仮定すると、上記の条件は、3.8<X1<6.2、3.8<X2<6.2、8.8<X1+X2<10.7、及び、0.6<X1/X2<1.7、であっても成立すると考えられる。   Assuming that the composition error of each additive element is ± 0.2 mol%, the above conditions are 3.8 <X1 <6.2, 3.8 <X2 <6.2, 8.8 <X1 + X2 <10. .7 and 0.6 <X1 / X2 <1.7.

[4]効果
次に、本実施例のβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法に関する効果を説明する。
[4] Effects Next, effects related to the manufacturing method of the β-type Ti-based superelastic alloy and the β-type Ti-based superelastic alloy of this example will be described.

(1)本実施例のβ型Ti系超弾性合金は、Ti‐X1mol%Cr‐X2mol%Snであり、かつ、4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、の条件をすべて満たす、ことを特徴とする。   (1) The β-type Ti-based superelastic alloy of this example is Ti—X1 mol% Cr—X2 mol% Sn, and 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, All of the conditions of 9.0 ≦ X1 + X2 ≦ 10.5 and 0.8 ≦ X1 / X2 ≦ 1.5 are satisfied.

これにより、Ti系合金が室温において形状回復率が10%以上の超弾性を示すことができる。   Thereby, the Ti-based alloy can exhibit superelasticity with a shape recovery rate of 10% or more at room temperature.

(2)また、本実施例のβ型Ti系超弾性合金は、4.5≦X1≦5.5、4.5≦X2≦5.5、9.5<X1+X2<10.5、及び、0.8≦X1/X2≦1.2、の条件を更にすべて満たす、ことが好ましい。   (2) Further, the β-type Ti-based superelastic alloy of this example has 4.5 ≦ X1 ≦ 5.5, 4.5 ≦ X2 ≦ 5.5, 9.5 <X1 + X2 <10.5, and It is preferable that all the conditions of 0.8 ≦ X1 / X2 ≦ 1.2 are further satisfied.

これにより、Ti系合金が室温において形状回復率が40%以上の超弾性を示すことができる。   Thereby, the Ti-based alloy can exhibit superelasticity with a shape recovery rate of 40% or more at room temperature.

(3)また、本実施例のβ型Ti系超弾性合金の製造方法は、上記(1)又は(2)に記載のβ型Ti系超弾性合金と同じ組成であって冷間加工前の状態の合金である中間材を製造する中間材製造工程と、中間材に接触する部分の加工部材の温度を313〜353K、冷間加工時における中間材の平均温度を293K〜393Kとして、中間材に冷間加工を行う冷間加工工程と、を備えることを特徴とする。   (3) Moreover, the manufacturing method of the β-type Ti-based superelastic alloy of this example has the same composition as that of the β-type Ti-based superelastic alloy described in (1) or (2) above, and before the cold working. Intermediate material production process for producing an intermediate material that is an alloy in the state, the temperature of the processed member in the part contacting the intermediate material is 313 to 353K, the average temperature of the intermediate material during cold working is 293K to 393K, the intermediate material And a cold working step for performing cold working.

これにより、上記(1)又は(2)に記載のβ型Ti系超弾性合金の中間材に対して割れやヒビを生じさせることなく所望形状に冷間加工することができる。   Thereby, it can cold-work into a desired shape, without producing a crack and a crack with respect to the intermediate material of (beta) type | system | group Ti superelastic alloy as described in said (1) or (2).

(4)また、本実施例のβ型Ti系超弾性合金の製造方法の冷間加工工程において、中間材に対する加工速度を20m/分以下として、中間材に冷間加工を行う、ことが好ましい。   (4) Further, in the cold working step of the method for producing the β-type Ti-based superelastic alloy of the present embodiment, it is preferable that the working speed for the intermediate material is 20 m / min or less and the intermediate material is cold worked. .

これにより、中間材における急激な温度上昇が抑えられて中間材の内部に脆い析出物が発生することを抑制することができるので、中間材に対して割れやヒビを生じさせることなく所望形状に冷間加工することができる。   As a result, a rapid temperature rise in the intermediate material can be suppressed and brittle precipitates can be prevented from being generated inside the intermediate material, so that the intermediate material has a desired shape without causing cracks or cracks. Can be cold worked.

(5)また、本実施例のβ型Ti系超弾性合金の製造方法は、冷間加工工程における中間材の初期厚みに対する総加工率が40%以上であって中間材に割れ又はヒビが生じる前に、中間材に対して焼鈍を行う中間焼鈍工程と、を更に備えることを特徴とする。   (5) Further, in the method for producing a β-type Ti-based superelastic alloy of this example, the total working rate with respect to the initial thickness of the intermediate material in the cold working process is 40% or more, and the intermediate material is cracked or cracked. An intermediate annealing step of annealing the intermediate material before is further provided.

これにより、中間材に対して最大で総加工率が97%以上の冷間加工を行うことができる。   Thereby, it is possible to perform cold working with a total working rate of 97% or more at the maximum with respect to the intermediate material.

(6)また、本実施例のβ型Ti系超弾性合金の製造方法の冷間加工工程において、中間材に対する1回あたりの平均加工率を32.5%以下として、冷間材に冷間加工を行うことを特徴とする。   (6) Further, in the cold working step of the method for producing the β-type Ti-based superelastic alloy of this example, the average working rate per one time with respect to the intermediate material is set to 32.5% or less, It is characterized by processing.

これにより、総加工率が40%以下などの低い総加工率において中間材に割れやヒビを生じさせることを抑制させることができる。   Thereby, it is possible to prevent the intermediate material from being cracked or cracked at a low total processing rate such as 40% or less.

すなわち、本実施例のβ型Ti系超弾性合金及びβ型Ti系超弾性合金の製造方法によれば、室温において超弾性を示す板材や線材等の所望形状の材料を冷間加工で製造できるので、実用可能なNiフリー超弾性合金を提供することができるという効果を奏する。   That is, according to the manufacturing method of the β-type Ti-based superelastic alloy and β-type Ti-based superelastic alloy of the present embodiment, it is possible to manufacture a material having a desired shape, such as a plate material or a wire material, that exhibits superelasticity at room temperature. As a result, a practical Ni-free superelastic alloy can be provided.

なお、本発明は、前述した実施例に限定されるものではなく、必要に応じて種々の変更が可能である。   In addition, this invention is not limited to the Example mentioned above, A various change is possible as needed.

例えば、本発明のβ型Ti系超弾性合金に対して、Sc、Y、La、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Al、Ga、In、Si、Ge、B、C、N、Oを追加の添加元素とすることが可能である。理由は次の通りである。本合金にSc、Y、Laを添加した場合、添加元素は本合金内の酸素を奪い取って析出硬化に寄与する。本合金にZr、Hfを添加した場合、添加元素は本合金のTiに置き換わり、本合金を固溶強化及びβ安定化に寄与する。本合金にV、Nb、Ta、W、Mnを添加した場合、添加元素はCrに置き換わりβ安定化に寄与する。本合金にFe、Co、Niを添加した場合、添加元素は本合金のCrに置き換わるためβ安定化及び強化に寄与する。本合金にAl、Ga、In、Si、Geを添加した場合、添加元素は本合金のSnに置き換わり、本合金のω脆性を抑制する。本合金にB、C、N、Oを添加した場合、添加元素B、C、N、Oは格子間侵入型元素として本合金を固溶強化させる。   For example, for the β-type Ti-based superelastic alloy of the present invention, Sc, Y, La, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Al, Ga, In, Si, Ge, B, C, N, and O can be added as additional elements. The reason is as follows. When Sc, Y, and La are added to the alloy, the additive elements take up oxygen in the alloy and contribute to precipitation hardening. When Zr and Hf are added to this alloy, the additive element replaces Ti of this alloy, contributing to solid solution strengthening and β stabilization. When V, Nb, Ta, W, or Mn is added to this alloy, the additive element replaces Cr and contributes to β stabilization. When Fe, Co, or Ni is added to the alloy, the additive element replaces Cr of the alloy, contributing to β stabilization and strengthening. When Al, Ga, In, Si, or Ge is added to the alloy, the additive element replaces Sn of the alloy and suppresses ω brittleness of the alloy. When B, C, N, and O are added to this alloy, the additive elements B, C, N, and O strengthen the solid solution as interstitial interstitial elements.

Claims (6)

Ti‐X1mol%Cr‐X2mol%Snであり、かつ、以下(A)及び(B)の条件をすべて満たすことを特徴とするβ型Ti系超弾性合金。
(A)4.0≦X1≦6.0、4.0≦X2≦6.0、9.0≦X1+X2≦10.5、及び、0.8≦X1/X2≦1.5、
(B)当該β型Ti系超弾性合金が室温(293K〜297K)において形状回復率5%以上の超弾性を示す。
A β-type Ti-based superelastic alloy which is Ti—X1 mol% Cr—X2 mol% Sn and satisfies all the following conditions (A) and (B).
(A) 4.0 ≦ X1 ≦ 6.0, 4.0 ≦ X2 ≦ 6.0, 9.0 ≦ X1 + X2 ≦ 10.5, and 0.8 ≦ X1 / X2 ≦ 1.5,
(B) The β-type Ti-based superelastic alloy exhibits superelasticity with a shape recovery rate of 5% or more at room temperature (293K to 297K).
前記(A)及び(B)の条件に加えて以下(C)の条件も併せて満たすことを特徴とする請求項1に記載のβ型Ti系超弾性合金。
(C)4.5≦X1≦5.5、4.5≦X2≦5.5、9.5<X1+X2<10.5、及び、0.8≦X1/X2≦1.2。
2. The β-type Ti superelastic alloy according to claim 1, wherein in addition to the conditions (A) and (B), the following condition (C) is also satisfied.
(C) 4.5 ≦ X1 ≦ 5.5, 4.5 ≦ X2 ≦ 5.5, 9.5 <X1 + X2 <10.5, and 0.8 ≦ X1 / X2 ≦ 1.2.
請求項1又は請求項2に記載のβ型Ti系超弾性合金と同じ組成であって冷間加工前の状態の合金である中間材を製造する中間材製造工程と、
前記中間材に接触する部分の加工部材の温度を313〜353K、冷間加工時における中間材の平均温度を293K〜393Kとして、前記中間材に冷間加工を行う冷間加工工程と、
を備えることを特徴とする請求項1又は請求項2に記載のβ型Ti系超弾性合金の製造方法。
An intermediate material manufacturing step of manufacturing an intermediate material that is the same composition as the β-type Ti-based superelastic alloy according to claim 1 or 2 and is an alloy in a state before cold working,
A cold working step of performing cold working on the intermediate material, assuming that the temperature of the processing member in contact with the intermediate material is 313 to 353K, and the average temperature of the intermediate material during cold working is 293K to 393K;
The method for producing a β-type Ti-based superelastic alloy according to claim 1 or 2, characterized by comprising:
前記冷間加工工程において、前記中間材に対する加工速度を20m/分以下として、前記中間材に冷間加工を行う
ことを特徴とする請求項3に記載のβ型Ti系超弾性合金の製造方法。
4. The method for producing a β-type Ti superelastic alloy according to claim 3, wherein in the cold working step, the intermediate material is cold worked at a working speed of 20 m / min or less. .
前記冷間加工工程における前記中間材の初期厚みに対する総加工率が40%以上であって前記中間材に割れ又はヒビが生じる前に、前記中間材に対して焼鈍を行う中間焼鈍工程と、
を更に備えることを特徴とする請求項3又は請求項4に記載のβ型Ti系超弾性合金の製造方法。
An intermediate annealing step of annealing the intermediate material before the intermediate material has a total processing rate of 40% or more with respect to the initial thickness of the intermediate material in the cold working step and cracking or cracking occurs in the intermediate material,
The method for producing a β-type Ti-based superelastic alloy according to claim 3 or 4, further comprising:
前記冷間加工工程において、前記中間材に対する1回あたりの平均加工率を32.5%以下として、前記冷間材に冷間加工を行う
ことを特徴とする請求項3から請求項5のいずれか1項に記載のβ型Ti系超弾性合金の製造方法。
6. The cold working process according to claim 3, wherein in the cold working step, cold working is performed on the cold material with an average working rate per one time of the intermediate material set to 32.5% or less. A method for producing a β-type Ti-based superelastic alloy according to claim 1.
JP2014202317A 2014-09-30 2014-09-30 β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy Active JP6621977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202317A JP6621977B2 (en) 2014-09-30 2014-09-30 β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202317A JP6621977B2 (en) 2014-09-30 2014-09-30 β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy

Publications (2)

Publication Number Publication Date
JP2016069709A JP2016069709A (en) 2016-05-09
JP6621977B2 true JP6621977B2 (en) 2019-12-18

Family

ID=55864102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202317A Active JP6621977B2 (en) 2014-09-30 2014-09-30 β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy

Country Status (1)

Country Link
JP (1) JP6621977B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512145B2 (en) * 2008-02-14 2014-06-04 国立大学法人東京工業大学 Shape memory alloy

Also Published As

Publication number Publication date
JP2016069709A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP7337207B2 (en) titanium alloy
EP2963135B1 (en) Manufacturing process of ni based superalloy and member of ni based superalloy, ni based superalloy, member of ni based superalloy, forged billet of ni based superalloy, component of ni based superalloy, structure of ni based superalloy, boiler tube, combustor liner, gas turbine blade, and gas turbine disk
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP6521071B2 (en) Titanium material for hot rolling
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP5912094B2 (en) Cu-Al-Mn bar and plate manufacturing method exhibiting stable superelasticity
JPWO2012115187A1 (en) Ti-Mo alloy and manufacturing method thereof
JP5725630B1 (en) Ni-base alloy with excellent hot forgeability and corrosion resistance
JP2006111935A (en) NEAR beta-TYPE TITANIUM ALLOY
JP2010275606A (en) Titanium alloy
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JPWO2019043882A1 (en) Titanium plate
JP2014001421A (en) Titanium alloy material having high intensity and excellent cold rolling property
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP5512145B2 (en) Shape memory alloy
JP6621977B2 (en) β-type Ti-based superelastic alloy and method for producing β-type Ti-based superelastic alloy
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
JP2017110244A (en) Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector
JP2013181246A (en) Hard pure titanium plate having excellent impact resistance and method for producing the same
TWI585212B (en) Nickel-based alloy and method of producing thereof
JP2007051355A (en) MANUFACTURING METHOD OF THIN Co3Ti SHEET, AND THIN Co3Ti SHEET
TWI564398B (en) Nickel-based alloy and method of producing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6621977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250