JP6645816B2 - Ferritic stainless steel - Google Patents

Ferritic stainless steel Download PDF

Info

Publication number
JP6645816B2
JP6645816B2 JP2015233032A JP2015233032A JP6645816B2 JP 6645816 B2 JP6645816 B2 JP 6645816B2 JP 2015233032 A JP2015233032 A JP 2015233032A JP 2015233032 A JP2015233032 A JP 2015233032A JP 6645816 B2 JP6645816 B2 JP 6645816B2
Authority
JP
Japan
Prior art keywords
content
less
stainless steel
ferritic stainless
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015233032A
Other languages
Japanese (ja)
Other versions
JP2017101267A (en
Inventor
知洋 石井
知洋 石井
光幸 藤澤
光幸 藤澤
力 上
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015233032A priority Critical patent/JP6645816B2/en
Publication of JP2017101267A publication Critical patent/JP2017101267A/en
Application granted granted Critical
Publication of JP6645816B2 publication Critical patent/JP6645816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、深絞り加工の後に溶接によって接合が行われる構造体の製造に好適に用いられる、溶接部の形状および耐食性に優れるフェライト系ステンレス鋼に関する。   TECHNICAL FIELD The present invention relates to a ferritic stainless steel excellent in shape and corrosion resistance of a weld portion, which is suitably used for manufacturing a structure to be joined by welding after deep drawing.

従来、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼や高張力鋼板などと比較して、プレス成形性の面で劣っており、優れたプレス成形性が必要とされる用途にはその使用が制限されてきた。   Conventionally, ferritic stainless steel is inferior in press formability as compared with austenitic stainless steel and high-tensile steel sheet, and its use is limited to applications that require excellent press formability. Have been.

しかし、近年のフェライト系ステンレス鋼のプレス成形性、特に深絞り加工性の向上は目覚しく、厳しいプレス加工が施される用途、たとえば厨房用材料や電気機器部品、自動車用部品などへのフェライト系ステンレス鋼の適用が進んでいる。   However, the press formability of ferritic stainless steel in recent years, especially the deep drawability, has been remarkably improved, and ferrite stainless steel is used for applications where severe press processing is performed, such as kitchen materials, electrical equipment parts, and automotive parts. The application of steel is progressing.

特許文献1には深絞り性に優れたフェライト系ステンレス鋼板が開示されている。この鋼板では、鋼の成分組成と製造条件を適正範囲に制御し、仕上焼鈍後の鋼板の平均r値を2.0以上、平均結晶粒径を50μm以下、かつ、(引張強度(MPa)×平均r値)/(結晶粒径(μm)))を20以上とすることにより、深絞り性を改善している。   Patent Literature 1 discloses a ferritic stainless steel sheet having excellent deep drawability. In this steel sheet, the composition of the steel and the manufacturing conditions are controlled within appropriate ranges, the average r value of the steel sheet after finish annealing is 2.0 or more, the average crystal grain size is 50 μm or less, and (tensile strength (MPa) × By setting the (average r value) / (crystal grain size (μm))) to 20 or more, the deep drawability is improved.

特許文献2には、プレス成形性に優れたフェライト系ステンレス冷延鋼板が開示されている。この鋼板では、AlNの微細析出を防止して微細AlNによる析出強化を低減するとともに、フェライト粒径を10μm未満とすることにより局部伸びを増加させ、さらに、フェライト粒内のCr炭窒化物の平均粒径を0.6μm以上とすることにより均一伸びを向上させて、プレス成形性を向上させている。   Patent Document 2 discloses a ferritic stainless steel cold-rolled steel sheet having excellent press formability. In this steel sheet, the precipitation of AlN is prevented and the precipitation strengthening due to the fine AlN is reduced, the local elongation is increased by reducing the ferrite grain size to less than 10 μm, and the average of Cr carbonitride in the ferrite grains is further increased. By setting the particle size to 0.6 μm or more, uniform elongation is improved, and press formability is improved.

また、特許文献3には深絞り性に優れたフェライト系ステンレス鋼板が開示されている。この鋼板では、熱間圧延条件を調整することにより、平均フェライト結晶粒径が40μm以下であり、圧延方向と板厚方向からなる断面に占める{111}//NDとの方位差が10°以内のフェライト結晶粒の割合が20%以上として、深絞り性を向上している。   Patent Document 3 discloses a ferritic stainless steel sheet having excellent deep drawability. In this steel sheet, by adjusting the hot rolling conditions, the average ferrite crystal grain size is 40 μm or less, and the azimuth difference between {111} // ND occupying the cross section composed of the rolling direction and the thickness direction is within 10 °. When the ratio of ferrite crystal grains is 20% or more, the deep drawability is improved.

しかしながら、これらのプレス成形性に優れたフェライト系ステンレス鋼板を用いても厳しいプレス成形を行った際に発生する縦割れの発生は必ずしも十分に抑制することはできない。   However, even if these ferritic stainless steel sheets having excellent press-formability are used, it is not always possible to sufficiently suppress the occurrence of vertical cracks that occur when severe press-forming is performed.

この縦割れを抑制するために特許文献4には深絞り性、耐2次加工脆性および耐食性に優れるフェライト系ステンレス鋼板が開示されている。この鋼板では、Nbおよび/またはTiならびにB、Vを適正量添加することに加え、仕上焼鈍し、酸洗した後あるいはさらにスキンパス圧延した後の鋼板の平均結晶粒径を40μm以下かつ表面粗さRaを0.30μm以下とすることで、深絞り性と耐2次加工脆性を両立している。   Patent Document 4 discloses a ferritic stainless steel sheet excellent in deep drawability, secondary work brittleness and corrosion resistance in order to suppress this vertical crack. In this steel sheet, in addition to the proper addition of Nb and / or Ti and B and V, the steel sheet after finish annealing, pickling or further skin pass rolling has an average crystal grain size of 40 μm or less and a surface roughness of not more than 40 μm. By setting Ra to 0.30 μm or less, both the deep drawability and the resistance to secondary working brittleness are achieved.

特開2003−138349号公報JP 2003-138349 A 特開2007−119847号公報JP 2007-119847 A 特開2009−299116号公報JP 2009-299116 A 特開2003−201547号公報JP-A-2003-201547

しかし、特許文献4のフェライト系ステンレス鋼板を用いても、特に、プレス成形後に溶接を行った場合に発生する溶接部近傍の割れは、完全に防止することはできない。   However, even if the ferritic stainless steel sheet of Patent Document 4 is used, cracks in the vicinity of the welded portion, which occur particularly when welding is performed after press forming, cannot be completely prevented.

従来技術の抱える上記のような問題点に鑑み、本発明は、深絞り加工の後に溶接を行った際に、溶接の熱影響による膨張収縮および変形による応力によって溶接部近傍での割れが発生しにくく、溶接部近傍の耐食性に優れるフェライト系ステンレス鋼を提供することを目的とする。   In view of the above problems of the prior art, the present invention, when performing welding after deep drawing, cracks near the weld due to expansion and contraction due to the heat effect of welding and stress due to deformation, An object of the present invention is to provide a ferritic stainless steel that is difficult to be formed and has excellent corrosion resistance in the vicinity of a weld.

本発明者らは、上記課題を解決するために、フェライト系ステンレス鋼の成分組成と溶接部近傍での割れおよび耐食性との相関を調査し、以下の(1)〜(3)の知見を得た。   The present inventors have investigated the correlation between the component composition of ferritic stainless steel and cracking and corrosion resistance in the vicinity of a weld in order to solve the above problems, and obtained the following findings (1) to (3). Was.

(1)深絞り加工により結晶粒界の強度が低下した領域に対して溶接を行うと、溶接の熱により溶接部近傍に発生した膨張および収縮の応力によって溶接部近傍に割れが発生する。   (1) When welding is performed on a region in which the strength of the crystal grain boundary has been reduced by deep drawing, cracks are generated near the welded portion due to expansion and shrinkage stress generated near the welded portion due to welding heat.

(2)Coの添加は熱膨張係数を減少させるため、溶接の熱による膨張および収縮が減少し、溶接部の変形および溶接部近傍での応力が低下する。その結果、Co添加によって溶接部近傍の割れが発生しにくくなる。   (2) Since the addition of Co decreases the coefficient of thermal expansion, expansion and contraction due to welding heat are reduced, and deformation of the weld and stress near the weld are reduced. As a result, cracking in the vicinity of the weld is less likely to occur due to the addition of Co.

(3)Bの添加は深絞り加工による結晶粒界の強度の低下を抑制するため、深絞り加工後の溶接部近傍に熱応力が発生しても割れが発生しにくくなる。   (3) Since the addition of B suppresses a decrease in the strength of the crystal grain boundaries due to the deep drawing, cracks are less likely to occur even if thermal stress occurs near the weld after deep drawing.

以上の結果に基づき、本発明は構成される。すなわち本発明は下記の構成を要旨とするものである。   The present invention is configured based on the above results. That is, the present invention has the following structure.

[1]質量%で、C:0.001〜0.020%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.04%以下、S:0.01%以下、Cr:18.0〜22.0%、Ni:0.01〜0.40%、Mo:0.30〜3.0%、Al:0.01〜0.15%、Ti:0.01〜0.50%、Nb:0.01〜0.50%、V:0.01〜0.50%、Co:0.01〜6.00%、B:0.0003〜0.0050%、N:0.001〜0.020%を含有し、下記(1)式を満足し、残部がFeおよび不可避的不純物である成分組成を有することを特徴とするフェライト系ステンレス鋼。
0.30≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
[2]前記成分組成は、さらに、質量%で、Zr:0.5%以下、W:1.0%以下、REM:0.1%以下のいずれか1種または2種以上を含有することを特徴とする[1]に記載のフェライト系ステンレス鋼。
[1] In mass%, C: 0.001 to 0.020%, Si: 0.01 to 0.30%, Mn: 0.01 to 0.50%, P: 0.04% or less, S: 0.01% or less, Cr: 18.0 to 22.0%, Ni: 0.01 to 0.40%, Mo: 0.30 to 3.0%, Al: 0.01 to 0.15%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Co: 0.01 to 6.00%, B: 0.0003 to A ferritic stainless steel containing 0.0050% and N: 0.001 to 0.020%, satisfying the following expression (1), and the balance being Fe and an inevitable impurity. .
0.30 ≦ Ti + Nb + V ≦ 0.60% (1)
The element symbol in the formula (1) means the content (% by mass) of each element.
[2] The component composition further contains, by mass%, one or more of Zr: 0.5% or less, W: 1.0% or less, and REM: 0.1% or less. The ferritic stainless steel according to [1], characterized in that:

本発明のフェライト系ステンレス鋼であれば、深絞り加工の後に溶接によって接合が行われる構造体の製造に用いても、溶接の熱影響による膨張収縮および変形による応力によって溶接部近傍での割れが発生しにくく、溶接部近傍の耐食性に優れる構造体が得られる。   If the ferritic stainless steel of the present invention is used for manufacturing a structure in which joining is performed by welding after deep drawing, cracks near the weld due to expansion and shrinkage due to the heat effect of welding and stress due to deformation are generated. A structure which does not easily occur and has excellent corrosion resistance near the weld is obtained.

なお、溶接部近傍での割れが発生しにくいことから、上記構造体は、溶接部の形状に優れるといえる。   In addition, since it is difficult for cracks to occur in the vicinity of the welded portion, it can be said that the above-described structure has excellent welded portion shape.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the following embodiments.

本発明のフェライト系ステンレス鋼の成分組成は、質量%でC:0.001〜0.020%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.04%以下、S:0.01%以下、Cr:18.0〜22.0%、Ni:0.01〜0.40%、Mo:0.30〜3.0%、Al:0.01〜0.15%、Ti:0.01〜0.50%、Nb:0.01〜0.50%、V:0.01〜0.50%、Co:0.01〜6.00%、B:0.0003〜0.0050%、N:0.001〜0.020%を含有し、下記(1)式を満足し、残部がFeおよび不可避的不純物である。
0.30%≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
The component composition of the ferritic stainless steel of the present invention is as follows: C: 0.001 to 0.020%, Si: 0.01 to 0.30%, Mn: 0.01 to 0.50%, P: 0.04% or less, S: 0.01% or less, Cr: 18.0 to 22.0%, Ni: 0.01 to 0.40%, Mo: 0.30 to 3.0%, Al: 0 0.01 to 0.15%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50%, Co: 0.01 to 6.00 %, B: 0.0003 to 0.0050%, and N: 0.001 to 0.020%, satisfying the following formula (1), with the balance being Fe and inevitable impurities.
0.30% ≦ Ti + Nb + V ≦ 0.60% (1)
The element symbol in the formula (1) means the content (% by mass) of each element.

また、本発明のフェライト系ステンレス鋼の成分組成は、さらに、質量%で、Zr:0.5%以下、W:1.0%以下、REM:0.1%以下のいずれか1種または2種以上を含有してもよい。   Further, the component composition of the ferritic stainless steel of the present invention further includes, by mass%, any one or more of Zr: 0.5% or less, W: 1.0% or less, and REM: 0.1% or less. It may contain more than one species.

以下に本発明のフェライト系ステンレス鋼の成分組成について詳細に説明する。なお、各元素の含有量を示す%は特に記載しない限り質量%とする。   Hereinafter, the component composition of the ferritic stainless steel of the present invention will be described in detail. In addition,% indicating the content of each element is represented by mass% unless otherwise specified.

C:0.001〜0.020%
Cの含有量が多いと強度が向上し、少ないと加工性が向上する。適度な強度を得るためには0.001%以上の含有が適当である。しかし、C含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、C含有量は0.001〜0.020%とした。より好ましくは、0.002〜0.018%である。なお、不可避的に含まれるCのみでC含有量が上記範囲になる場合には、Cを積極的に添加する必要はない。
C: 0.001 to 0.020%
When the content of C is large, the strength is improved, and when the content is small, the workability is improved. In order to obtain an appropriate strength, the content of 0.001% or more is appropriate. However, when the C content exceeds 0.020%, the workability is significantly reduced, and is not suitable for deep drawing. Therefore, the C content is set to 0.001 to 0.020%. More preferably, it is 0.002 to 0.018%. When the C content is in the above range with only C inevitably contained, there is no need to actively add C.

Si:0.01〜0.30%
Siは脱酸に有用な元素である。その効果は0.01%以上の含有で得られる。しかし、Si含有量が0.30%を超えると、加工性の低下が顕著となり、深絞り加工には適さない。よって、Siの含有量は0.01%〜0.30%とした。より好ましくは、0.05%〜0.20%である。
Si: 0.01 to 0.30%
Si is an element useful for deoxidation. The effect is obtained when the content is 0.01% or more. However, when the Si content exceeds 0.30%, the workability is significantly reduced, which is not suitable for deep drawing. Therefore, the content of Si is set to 0.01% to 0.30%. More preferably, it is 0.05% to 0.20%.

Mn:0.01〜0.50%
Mnには強度を高める効果がある。その効果は0.01%以上の含有で得られる。一方、Mnを過剰に含有すると加工性が顕著に低下し、深絞り加工には適さなくなる。したがって、Mn含有量は0.50%以下が適当である。よって、Mnの含有量は0.01〜0.50%とした。より好ましくは、0.03%〜0.40%である。なお、Mnは鋼に不可避的に含まれるため、不可避的に含まれるMn含有量が上記範囲にあれば、Mnを添加する必要はない。
Mn: 0.01 to 0.50%
Mn has the effect of increasing the strength. The effect is obtained when the content is 0.01% or more. On the other hand, when Mn is excessively contained, the workability is remarkably reduced, and is not suitable for deep drawing. Therefore, the Mn content is suitably 0.50% or less. Therefore, the content of Mn is set to 0.01 to 0.50%. More preferably, it is 0.03% to 0.40%. Since Mn is unavoidably contained in steel, it is not necessary to add Mn as long as the unavoidable Mn content is within the above range.

P:0.04%以下
Pは鋼に不可避的に含まれる元素であり、深絞り加工後の結晶粒界に偏析して、結晶粒界の強度を低下させ、粒界割れを発生しやすくする元素である。よって、P含有量は少ないほど好ましく、0.04%以下とした。より好ましくは0.03%以下である。
P: 0.04% or less P is an element inevitably contained in steel, segregates at the crystal grain boundary after deep drawing, reduces the strength of the crystal grain boundary, and easily causes grain boundary cracking. Element. Therefore, the P content is preferably as small as possible, and is set to 0.04% or less. It is more preferably at most 0.03%.

S:0.01%以下
Sは鋼に不可避的に含まれる元素である。S含有量が0.01%を超えるとCaSやMnSなどの水溶性硫化物の形成が促進され耐食性が低下する。よって、S含有量は0.01%以下とした。
S: 0.01% or less S is an element inevitably contained in steel. If the S content exceeds 0.01%, the formation of water-soluble sulfides such as CaS and MnS is promoted, and the corrosion resistance is reduced. Therefore, the S content is set to 0.01% or less.

Cr:18.0〜22.0%
Crはステンレス鋼の耐食性を決定付ける最も重要な元素である。Cr含有量が18.0%未満ではステンレス鋼として十分な耐食性が得られない。特に溶接部での耐食性が不十分となる。一方で、過剰にCrを含有すると、加工性が低下し、深絞り加工に適さない。そこで、Cr含有量は22.0%以下が適当である。よって、Cr含有量は18.0〜22.0%とした。より好ましくは、18.5〜21.5%である。
Cr: 18.0 to 22.0%
Cr is the most important element that determines the corrosion resistance of stainless steel. If the Cr content is less than 18.0%, sufficient corrosion resistance cannot be obtained as stainless steel. In particular, the corrosion resistance at the welded portion becomes insufficient. On the other hand, if Cr is contained excessively, the workability is reduced, and it is not suitable for deep drawing. Therefore, the Cr content is suitably 22.0% or less. Therefore, the Cr content is set to 18.0 to 22.0%. More preferably, it is 18.5 to 21.5%.

Ni:0.01〜0.40%
Niはステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成できず活性溶解が起こる腐食環境において腐食の進行を抑制する元素である。その効果はNi含有量を0.01%以上にすることで得られる。しかし、Ni含有量が0.40%以上になると、加工性が低下するため、深絞り加工には適さない。よって、Niの含有量は0.01〜0.40%とした。より好ましくは、0.03〜0.18%である。
Ni: 0.01 to 0.40%
Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment in which a passive film cannot be formed and active dissolution occurs. The effect can be obtained by setting the Ni content to 0.01% or more. However, when the Ni content is 0.40% or more, the workability is deteriorated, so that it is not suitable for deep drawing. Therefore, the content of Ni is set to 0.01 to 0.40%. More preferably, it is 0.03 to 0.18%.

Mo:0.30〜3.0%
Moは不動態皮膜の再不動態化を促進し、ステンレス鋼の耐食性を向上する元素である。Crとともに含有することによってその効果はより顕著となる。Moによる耐食性向上効果は0.30%以上の含有で得られる。しかし、Mo含有量が3.0%を超えると高温強度が増加し、圧延負荷が大きくなるため製造性が低下する。よって、Mo含有量は0.30〜3.0%とした。より好ましくは、0.40〜2.0%である。
Mo: 0.30 to 3.0%
Mo is an element that promotes the passivation of the passivation film and improves the corrosion resistance of stainless steel. The effect becomes more remarkable by containing together with Cr. The effect of improving the corrosion resistance by Mo is obtained when the content is 0.30% or more. However, if the Mo content exceeds 3.0%, the high-temperature strength increases, and the rolling load increases, thereby reducing the manufacturability. Therefore, the Mo content was set to 0.30 to 3.0%. More preferably, it is 0.40 to 2.0%.

Al:0.01〜0.15%
Alは脱酸に有用な元素であり、その効果は、Alの含有量が0.01%以上で得られる。しかし、Alの含有量が0.15%を超えるとフェライト結晶粒径が増大しやすくなり、溶接部近傍の割れが起こりやすくなる。よって、Al含有量は0.01〜0.15%とした。より好ましくは、0.02〜0.10%である。
Al: 0.01 to 0.15%
Al is an element useful for deoxidation, and the effect is obtained when the Al content is 0.01% or more. However, when the Al content exceeds 0.15%, the ferrite crystal grain size tends to increase, and cracks near the welded portion tend to occur. Therefore, the Al content is set to 0.01 to 0.15%. More preferably, it is 0.02 to 0.10%.

Ti:0.01〜0.50%
TiはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Ti含有量が0.01%以上で得られる。しかし、Ti含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Ti含有量は0.01〜0.50%とした。より好ましくは、0.15〜0.40%である。なお、本明細書において、炭窒化物には、炭化物、窒化物も含む。
Ti: 0.01 to 0.50%
Ti is an element that binds preferentially to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Ti content is 0.01% or more. However, if the Ti content exceeds 0.50%, C and N dissolved as solid solutions are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the welded portion. Therefore, the Ti content is set to 0.01 to 0.50%. More preferably, it is 0.15 to 0.40%. In the present specification, carbonitride includes carbide and nitride.

Nb:0.01〜0.50%
NbはC、Nと優先的に結合してCr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、Nb含有量が0.01%以上で得られる。しかし、Nb含有量が0.50%を超えると固溶したC、Nが過度に減少し、深絞り後の結晶粒界の強度が不十分となり、溶接部近傍で割れが発生しやすくなる。よって、Nbの含有量は0.01〜0.50%とした。より好ましくは、0.05〜0.40%である。
Nb: 0.01 to 0.50%
Nb is an element that preferentially bonds to C and N and suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the Nb content is 0.01% or more. However, if the Nb content exceeds 0.50%, C and N dissolved as solid solutions are excessively reduced, the strength of the crystal grain boundary after deep drawing becomes insufficient, and cracks are likely to occur near the welded portion. Therefore, the content of Nb is set to 0.01 to 0.50%. More preferably, it is 0.05 to 0.40%.

V:0.01〜0.50%
Vは、Cr炭窒化物の析出による耐食性の低下を抑制する元素である。その効果は、V含有量が0.01%以上で得られる。しかし、0.50%を超える過剰な含有は加工性を低下させ、深絞り加工には適さない。よって、V含有量は0.01〜0.50%とした。より好ましくは、0.02〜0.30%である。
V: 0.01 to 0.50%
V is an element that suppresses a decrease in corrosion resistance due to precipitation of Cr carbonitride. The effect is obtained when the V content is 0.01% or more. However, an excessive content exceeding 0.50% lowers workability and is not suitable for deep drawing. Therefore, the V content is set to 0.01 to 0.50%. More preferably, it is 0.02 to 0.30%.

0.30%≦Ti+Nb+V≦0.60%
上述のようにTi、Nb、VはいずれもCr炭窒化物の生成を抑制し、溶接部の耐食性を向上させる元素である。Cr炭窒化物析出による鋭敏化を抑制し、溶接部の耐食性を十分なものとするためにはTi含有量、Nb含有量、V含有量の合計が0.30%以上になることが必要である。より好ましくは0.35%以上である。加えて、溶接部の冷却速度は通常、非常に速いため、Ti、Nb、Vのいずれか単独あるいは2種のみの添加では、それぞれの元素の炭窒化物の析出しやすい温度域を急速に通過してしまい、C、Nを完全には無害化しきれない場合がある。そのため、Ti、Nb、Vのいずれの元素も0.01%以上の含有が必要である。
0.30% ≦ Ti + Nb + V ≦ 0.60%
As described above, Ti, Nb, and V are all elements that suppress the generation of Cr carbonitride and improve the corrosion resistance of the weld. In order to suppress the sensitization due to the precipitation of Cr carbonitride and to make the corrosion resistance of the weld sufficient, it is necessary that the total of the Ti content, the Nb content, and the V content be 0.30% or more. is there. It is more preferably at least 0.35%. In addition, since the cooling rate of the weld is usually very fast, the addition of any one or only two of Ti, Nb, and V rapidly passes through the temperature range in which the carbonitride of each element is likely to precipitate. In some cases, C and N cannot be completely rendered harmless. Therefore, it is necessary to contain 0.01% or more of any of the elements Ti, Nb and V.

一方で、Ti、Nb、Vの含有量の合計が0.60%を超えると加工性が低下するため、深絞り加工には適さない。よって、Ti含有量、Nb含有量、V含有量の合計が0.60%以下とした。より好ましくは、0.55%以下である。   On the other hand, if the total content of Ti, Nb, and V exceeds 0.60%, the workability is reduced, and thus the material is not suitable for deep drawing. Therefore, the total of the Ti content, the Nb content, and the V content is set to 0.60% or less. More preferably, it is 0.55% or less.

Co:0.01〜6.00%
Coは本発明にとって重要な元素である。Coの添加はフェライト系ステンレス鋼の電子状態を変化させ、熱膨張係数を低下させる。この熱膨張係数の低下は溶接の熱によって引き起こされる溶接部の膨張および変形を緩和する。深絞り加工後の溶接部近傍では、溶接による熱膨張および変形によって生じる応力によって割れが発生する場合がある。Coの添加による熱膨張係数の低下は、溶接の熱影響および変形によって溶接部近傍にかかる応力負荷を緩和し、割れの発生を抑制する。その効果はCo含有量が0.01%以上で得られる。一方で、Co含有量が6.00%を超えると加工性が低下するため、深絞り加工には適さない。よってCo含有量は0.01〜6.00%とした。より好ましくは、0.03〜3.00%である。
Co: 0.01 to 6.00%
Co is an important element for the present invention. The addition of Co changes the electronic state of the ferritic stainless steel and lowers the coefficient of thermal expansion. This reduction in the coefficient of thermal expansion mitigates the expansion and deformation of the weld caused by the heat of the weld. In the vicinity of the weld after deep drawing, cracking may occur due to stress generated by thermal expansion and deformation due to welding. The decrease in the coefficient of thermal expansion due to the addition of Co alleviates the stress load applied to the vicinity of the weld due to the thermal effects and deformation of welding, and suppresses the occurrence of cracks. The effect is obtained when the Co content is 0.01% or more. On the other hand, if the Co content exceeds 6.00%, the workability deteriorates, so that it is not suitable for deep drawing. Therefore, the Co content is set to 0.01 to 6.00%. More preferably, it is 0.03 to 3.00%.

B:0.0003〜0.0050%
Bは本発明にとって重要な元素である。高純度のフェライト系ステンレス鋼では深絞り加工によって、深絞り加工の壁面部分の結晶粒界にPが偏析し、結晶粒界が脆くなる。そのため、過度の深絞り加工を行った後に、深絞り方向に沿って割れが発生する場合がある。特にTiやNbによって固溶したC、Nを低減した成分でその傾向が顕著である。深絞り加工によって割れが発生しやすくなった結晶粒界では、溶接の熱影響による応力負荷が割れを発生させる場合がある。Bの添加は深絞り加工によるPの偏析を抑制し結晶粒界を強化して、こういった割れの発生を抑制する。この効果はBを0.0003%以上含有することで得られる。一方で、B含有量が0.0050%を超えると加工性が低下するため、深絞り加工には適さない。よって、B含有量は0.0003〜0.0050%とした。より好ましくは0.0004〜0.0020%である。
B: 0.0003-0.0050%
B is an important element for the present invention. In high-purity ferritic stainless steel, P segregates at the crystal grain boundary on the wall surface portion of the deep drawing by deep drawing, and the crystal grain boundary becomes brittle. Therefore, after excessive deep drawing is performed, cracks may occur along the deep drawing direction. In particular, the tendency is remarkable in a component in which C and N dissolved in Ti and Nb are reduced. In a crystal grain boundary where cracks are easily generated by deep drawing, a stress load due to the heat effect of welding may cause cracks. The addition of B suppresses segregation of P due to deep drawing, strengthens the crystal grain boundaries, and suppresses the occurrence of such cracks. This effect can be obtained by containing B in an amount of 0.0003% or more. On the other hand, if the B content exceeds 0.0050%, the workability is reduced, so that it is not suitable for deep drawing. Therefore, the B content is set to 0.0003 to 0.0050%. More preferably, it is 0.0004 to 0.0020%.

N:0.001〜0.020%
Nは、固溶強化により鋼の強度を上昇させる効果がある。その効果はN含有量が0.001%以上で得られる。しかし、N含有量が0.020%を超えると加工性の低下が顕著となり、深絞り加工に適さない。よって、N含有量は0.001〜0.020%とした。より好ましくは、0.002〜0.018%である。
N: 0.001 to 0.020%
N has the effect of increasing the strength of steel by solid solution strengthening. The effect is obtained when the N content is 0.001% or more. However, when the N content exceeds 0.020%, the workability significantly decreases, and is not suitable for deep drawing. Therefore, the N content is set to 0.001 to 0.020%. More preferably, it is 0.002 to 0.018%.

また、本発明のフェライト系ステンレス鋼は、以下の成分を含んでもよい。   Further, the ferritic stainless steel of the present invention may contain the following components.

Zr:0.5%以下
ZrはC、Nと結合して、鋭敏化を抑制する効果がある。その効果は、Zr含有量を0.01%以上にすることで得られる(Zr含有量が0.01%未満の場合、上記効果は大きくないが、本発明の効果を害さないため、Zr含有量が0.01%未満でも問題が無い)。しかし、過剰のZrの含有は加工性を低下させる。また、Zrは価格が非常に高い元素であるため、過剰のZr含有はコストの増大を招く。よって、Zrの含有量は0.5%以下とした。
Zr: 0.5% or less Zr has an effect of binding to C and N to suppress sensitization. The effect can be obtained by setting the Zr content to 0.01% or more. (When the Zr content is less than 0.01%, the effect is not great, but the effect of the present invention is not impaired. There is no problem if the amount is less than 0.01%). However, excessive Zr content lowers processability. In addition, since Zr is a very expensive element, excessive Zr content causes an increase in cost. Therefore, the content of Zr is set to 0.5% or less.

W:1.0%以下
WはMoと同様に耐食性を向上させる効果がある。その効果はW含有量を0.01%以上にすることで得られる(W含有量が0.01%未満の場合、上記効果は大きくないが、本発明の効果を害さないため、W含有量が0.01%未満でも問題が無い)。しかし、過剰のWの含有は強度を上昇させ、製造性を低下させる。よって、W含有量は1.0%以下とする。
W: 1.0% or less W has the effect of improving the corrosion resistance like Mo. The effect can be obtained by setting the W content to 0.01% or more. (When the W content is less than 0.01%, the effect is not great, but the effect of the present invention is not impaired. Is less than 0.01%.) However, an excessive W content increases the strength and decreases the manufacturability. Therefore, the W content is set to 1.0% or less.

REM:0.1%以下
REMは耐酸化性を向上して、酸化スケールの形成を抑制し、溶接部の耐食性を向上する。その効果はREM含有量を0.0001%以上にすることで得られる(REM含有量が0.0001%未満の場合、上記効果は大きくないが、本発明の効果を害さないため、REM含有量が0.0001%未満でも問題が無い)。しかし、過剰にREMを含有すると、酸洗性などの製造性を低下させるうえ、コストの増大を招く。よってREMの含有量は0.1%以下とした。
REM: 0.1% or less REM improves oxidation resistance, suppresses formation of oxide scale, and improves corrosion resistance of a welded portion. The effect is obtained by setting the REM content to 0.0001% or more. (When the REM content is less than 0.0001%, the above effect is not great, but the effect of the present invention is not impaired. Is less than 0.0001%). However, when REM is excessively contained, the productivity such as pickling properties is reduced, and the cost is increased. Therefore, the content of REM is set to 0.1% or less.

上記以外の残部はFeおよび不可避的不純物である。不可避的不純物としてはZn:0.03%以下、Sn:0.3%以下、Cu:0.1%未満等が挙げられる。なお、本発明のCr含有量、Mo含有量を有する耐食性に優れたフェライト系ステンレス鋼では、Cuは不動態維持電流を増加させて不動態皮膜を不安定とし、耐食性を低下させる作用がある。この観点からはCuを含まない方がよい。Cuを含有する場合、その含有量は0.1%未満が適当である。よって、不純物としてのCuの含有量は上記の通り0.1%未満とした。   The balance other than the above is Fe and inevitable impurities. Inevitable impurities include Zn: 0.03% or less, Sn: 0.3% or less, Cu: less than 0.1%, and the like. In addition, in the ferritic stainless steel having the Cr content and the Mo content of the present invention and having excellent corrosion resistance, Cu has the effect of increasing the passivation maintaining current, destabilizing the passivation film, and decreasing the corrosion resistance. From this viewpoint, it is better not to include Cu. When Cu is contained, its content is suitably less than 0.1%. Therefore, the content of Cu as an impurity is set to less than 0.1% as described above.

本発明のフェライト系ステンレス鋼の製造方法は特に限定されない。好適な製造方法の一例を以下に示す。   The method for producing the ferritic stainless steel of the present invention is not particularly limited. An example of a suitable manufacturing method is shown below.

上記成分組成のステンレス鋼を1100〜1300℃に加熱後、仕上温度を700〜1000℃、巻取温度を400〜800℃として板厚2.0〜5.0mmになるように熱間圧延を施す。こうして作製した熱間圧延鋼帯を800〜1100℃の温度で焼鈍し酸洗を行う。次に、板厚0.5〜2.0mmになるように冷間圧延を行い、700〜1050℃の温度で冷延板焼鈍を行う。冷延板焼鈍後には酸洗を行い、スケールを除去する。スケールを除去した冷間圧延鋼帯にはスキンパス圧延を行ってもよい。   After heating the stainless steel having the above component composition to 1100 to 1300 ° C, the finishing temperature is set to 700 to 1000 ° C, the winding temperature is set to 400 to 800 ° C, and hot rolling is performed so that the sheet thickness becomes 2.0 to 5.0 mm. . The hot-rolled steel strip thus produced is annealed at a temperature of 800 to 1100 ° C. and pickled. Next, cold rolling is performed to a sheet thickness of 0.5 to 2.0 mm, and cold-rolled sheet annealing is performed at a temperature of 700 to 1050 ° C. After the cold rolled sheet annealing, pickling is performed to remove scale. The cold-rolled steel strip from which the scale has been removed may be subjected to skin pass rolling.

以下、実施例に基づいて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1に示すステンレス鋼を真空溶製し、1200℃に加熱した後、板厚4mmまで熱間圧延し、800〜1000℃の範囲で焼鈍し、酸洗によりスケールを除去した。さらに、板厚0.8mmまで冷間圧延し、800〜950℃の範囲で焼鈍し、酸洗を行い、供試材とした。   The stainless steel shown in Table 1 was vacuum-melted, heated to 1200 ° C, hot-rolled to a thickness of 4 mm, annealed in the range of 800 to 1000 ° C, and scale was removed by pickling. Further, it was cold-rolled to a sheet thickness of 0.8 mm, annealed in the range of 800 to 950 ° C., and pickled to obtain a test material.

作製した供試材からφ72mmの円板を採取し、φ49mm、φ35mm、φ26mm、φ22mmのポンチを順に用いて4段の深絞り加工を行い、加工後の高さが50mmとなるように耳を切除し、深絞り底部の中心部にφ5mmの穴を開け、円筒深絞り形状の試験片を作製した。その後、試験片のφ22mmの開口部をふさぐようにφ23mmの円板をTIG溶接にて接合した。溶接条件は、溶接電流100A、溶接速度60cm/minとした。シールドガスはArを用い、流量は20L/minとした。溶接後、24h経過した後に試験片内部を水で満たし、10気圧の圧力をかけて割れの有無を確認した。その後、光学顕微鏡を用いて200倍の倍率で円筒深絞り壁面の溶接部近傍(フュージョンラインから2〜5mmの位置)を観察し、割れの長さを確認した。長さが0.5mm以上の割れのあったものを「×」、割れのなかったものを「○」として結果を表2に示す。   A disk of φ72 mm is sampled from the prepared test material, and deep-drawing is performed in four stages using punches of φ49 mm, φ35 mm, φ26 mm, and φ22 mm in order, and the ears are cut so that the height after processing is 50 mm. Then, a hole of φ5 mm was made in the center of the deep drawing bottom, and a cylindrical deep drawing test piece was prepared. Thereafter, a φ23 mm disk was joined by TIG welding so as to cover the φ22 mm opening of the test piece. The welding conditions were a welding current of 100 A and a welding speed of 60 cm / min. Ar was used as the shielding gas, and the flow rate was 20 L / min. After 24 hours from the welding, the inside of the test piece was filled with water, and a pressure of 10 atm was applied to check the presence or absence of cracks. Thereafter, the vicinity of the welded portion (position of 2 to 5 mm from the fusion line) on the cylindrical deep drawing wall surface was observed at a magnification of 200 times using an optical microscope, and the length of the crack was confirmed. The results are shown in Table 2 as "x" when there was a crack having a length of 0.5 mm or more and "と し て" when there was no crack.

表2のうち、本発明例ではいずれも溶接部近傍に割れは確認できなかった。一方で、比較例であるNo.12では、Coが無添加であるため割れが発生した。No.13ではBが無添加であるため割れが発生した。No.14ではAlが過剰に添加されたため割れが発生した。No.15ではCrが過剰に添加されたため割れが発生した。   In Table 2, no cracks could be confirmed in the vicinity of the weld in any of the examples of the present invention. On the other hand, in Comparative Example No. In No. 12, cracking occurred because Co was not added. No. In No. 13, cracking occurred because B was not added. No. In No. 14, cracks occurred because Al was excessively added. No. In No. 15, cracks occurred due to excessive addition of Cr.

続いて、割れの有無を確認した試験片を用いて、溶接ままの溶接部の耐食性を評価した。JIS H 8502に準拠した中性塩水噴霧サイクル試験を5サイクル行い、溶接部近傍(溶接ビード中心からフージョンラインより5mmの範囲)の腐食の有無を目視により確認した。5サイクルの試験によって溶接部近傍に長径が1mm以上の腐食が発生したものを「×」、腐食が発生しなかったものを「○」として表2に示した。   Subsequently, the corrosion resistance of the as-welded weld was evaluated using a test piece for which the presence or absence of cracks was confirmed. Five cycles of a neutral salt spray cycle test in accordance with JIS H8502 were performed, and the presence or absence of corrosion near the welded portion (range of 5 mm from the weld bead center to the fusion line) was visually confirmed. Table 2 shows that the sample having corrosion having a major axis of 1 mm or more in the vicinity of the welded portion in the five-cycle test was marked as “x”, and that no corrosion occurred as “「 ”in Table 2.

No.12、No.13、No.14はいずれも溶接近傍の割れから腐食が発生した。No.16は(1)式を満たさなかったため溶接ビードから腐食が発生した。No.17はCr量が少なく溶接ビードおよびテンパー部から腐食が発生した。No.18はNb量が少なかったため、溶接ビードから腐食が発生した。No.19はTi量が少なかったため、溶接ビードから腐食が発生した。No.20はVが無添加であったため、溶接ビードから腐食が発生した。   In all of No. 12, No. 13, and No. 14, corrosion occurred from cracks near the weld. No. 16 did not satisfy the expression (1), so corrosion occurred from the weld bead. In No. 17, the amount of Cr was small and corrosion occurred from the weld bead and the tempered portion. In No. 18, corrosion was generated from the weld bead because the Nb content was small. In No. 19, since the amount of Ti was small, corrosion occurred from the weld bead. In No. 20, corrosion was generated from the weld bead because V was not added.

Figure 0006645816
Figure 0006645816

Figure 0006645816
Figure 0006645816

本発明によれば、深絞り加工の後に溶接によって接合が行われる構造体に用いるのに好適な、溶接部の形状および耐食性に優れるフェライト系ステンレス鋼が得られる。本発明で得られるフェライト系ステンレス鋼は、深絞り後に溶接によって構造体の作製が行われる用途、たとえば、電池ケースなどの電子機器部品、コンバータなどの自動車部品などへの適用に好適である。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel excellent in the shape of a welding part and corrosion resistance suitable for using for the structure joined by welding after deep drawing is obtained. The ferritic stainless steel obtained by the present invention is suitable for applications in which a structure is produced by welding after deep drawing, for example, application to electronic device parts such as a battery case, and automotive parts such as a converter.

Claims (1)

質量%で、C:0.001〜0.020%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.04%以下、S:0.01%以下、Cr:18.3〜22.0%、Ni:0.01〜0.40%、Mo:0.30〜3.0%、Al:0.01〜0.15%、Ti:0.01〜0.50%、Nb:0.01〜0.50%、V:0.01〜0.50%、Co:0.010〜5.327%、B:0.0004〜0.0046%、N:0.001〜0.020%を含有し、下記(1)式を満足し、残部がFeおよび不可避的不純物である成分組成を有することを特徴とするフェライト系ステンレス鋼。
0.30%≦Ti+Nb+V≦0.60% (1)
(1)式における元素記号は各元素の含有量(質量%)を意味する。
In mass%, C: 0.001 to 0.020%, Si: 0.01 to 0.30%, Mn: 0.01 to 0.50%, P: 0.04% or less, S: 0.01 %: Cr: 18.3 to 22.0%, Ni: 0.01 to 0.40%, Mo: 0.30 to 3.0%, Al: 0.01 to 0.15%, Ti: 0 0.01 to 0.50%, Nb: 0.01 to 0.50%, V: 0.01 to 0.50 %, Co: 0.010 to 5.327 %, B: 0.0004 to 0.0046 %, N: 0.001 to 0.020%, satisfying the following formula (1), the balance being Fe and a component composition that is an inevitable impurity.
0.30% ≦ Ti + Nb + V ≦ 0.60% (1)
The element symbol in the formula (1) means the content (% by mass) of each element.
JP2015233032A 2015-11-30 2015-11-30 Ferritic stainless steel Active JP6645816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015233032A JP6645816B2 (en) 2015-11-30 2015-11-30 Ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233032A JP6645816B2 (en) 2015-11-30 2015-11-30 Ferritic stainless steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018157006A Division JP6575650B2 (en) 2018-08-24 2018-08-24 Ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2017101267A JP2017101267A (en) 2017-06-08
JP6645816B2 true JP6645816B2 (en) 2020-02-14

Family

ID=59017993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233032A Active JP6645816B2 (en) 2015-11-30 2015-11-30 Ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP6645816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527228A (en) * 2017-12-26 2020-08-11 Posco公司 Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179456A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Ferritic stainless steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239257B2 (en) * 1998-11-02 2009-03-18 Jfeスチール株式会社 Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
US20080279712A1 (en) * 2007-05-11 2008-11-13 Manabu Oku Ferritic stainless steel sheet with excellent thermal fatigue properties, and automotive exhaust-gas path member
JP5937861B2 (en) * 2012-03-27 2016-06-22 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent weldability
JP5949057B2 (en) * 2012-03-30 2016-07-06 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance and low temperature toughness of welds
JP5987821B2 (en) * 2013-12-27 2016-09-07 Jfeスチール株式会社 Ferritic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527228A (en) * 2017-12-26 2020-08-11 Posco公司 Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same
CN111527228B (en) * 2017-12-26 2021-12-21 Posco公司 Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same
US11578379B2 (en) 2017-12-26 2023-02-14 Posco Cold-rolled steel sheet having excellent high-temperature properties and room-temperature workability

Also Published As

Publication number Publication date
JP2017101267A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6206624B1 (en) Ferritic stainless steel sheet
KR101878245B1 (en) Ferritic stainless steel excellent in oxidation resistance
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
KR101705135B1 (en) Ferritic stainless steel sheet
WO2017135240A1 (en) HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
US20200002779A1 (en) Hot-rolled ferritic stainless steel sheet and method for manufacturing same
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
US20200385835A1 (en) Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
JP2015190025A (en) Ferritic stainless hot rolled steel sheet excellent in toughness and steel strip
JP5949057B2 (en) Ferritic stainless steel with excellent corrosion resistance and low temperature toughness of welds
KR102603113B1 (en) Ferritic stainless-steel sheet and method for manufacturing same
WO2020090936A1 (en) Austenitic stainless steel sheet
JP6645816B2 (en) Ferritic stainless steel
JP2012117084A (en) Highly oxidation-resistant ferrite stainless steel plate
JP6575650B2 (en) Ferritic stainless steel
JP2020111800A (en) Stainless steel, stainless hot rolled steel sheet and production method of stainless hot rolled steel sheet
JP6146401B2 (en) Ferritic stainless steel sheet
KR101940427B1 (en) Ferritic stainless steel sheet
JP6314806B2 (en) Ferritic stainless steel sheet
JP6274372B1 (en) Ferritic stainless steel
JP6678217B2 (en) Stainless steel
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP3477113B2 (en) High-purity ferritic stainless steel sheet with excellent secondary work brittleness after deep drawing
WO2018116792A1 (en) Ferritic stainless steel
JP2004083972A (en) Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250