JPH08141595A - Treatment of ammonia-containing water - Google Patents

Treatment of ammonia-containing water

Info

Publication number
JPH08141595A
JPH08141595A JP28486894A JP28486894A JPH08141595A JP H08141595 A JPH08141595 A JP H08141595A JP 28486894 A JP28486894 A JP 28486894A JP 28486894 A JP28486894 A JP 28486894A JP H08141595 A JPH08141595 A JP H08141595A
Authority
JP
Japan
Prior art keywords
bacteria
ammonia
nitrifying bacteria
nitrifying
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28486894A
Other languages
Japanese (ja)
Inventor
Masayuki Tabata
雅之 田畑
Takeshi Nakamura
中村  剛
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28486894A priority Critical patent/JPH08141595A/en
Publication of JPH08141595A publication Critical patent/JPH08141595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To treat ammonia-containing water by accelerating the nitration action of nitrifying bacteria contained in the circulating water of a closed system. CONSTITUTION: In a method for treating ammonia-containing water using nitrifying bacteria, bacterial cells of heterotrophic bacteria having activity to nitrifying bacteria are added to accelerate the nitration reaction of nitrifying bacteria. By this method, the acclimatizing period of an ammonia-containing water treatment apparatus using nitrifying bacteria can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水産動物の蓄養・輸送設
備、水族館などの閉鎖系循環水に含まれる硝化菌の硝化
反応を促進させてアンモニア含有水を処理する方法に関
し、廃水、下水及びし尿処理設備、土壌、海水及び河川
水など自然界に広く分布する硝酸菌の硝化反応促進方法
としても利用できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating ammonia-containing water by promoting the nitrification reaction of nitrifying bacteria contained in closed-system circulating water such as farming and transporting facilities for aquatic animals and aquariums, and treating wastewater, sewage and The present invention relates to a method that can be used as a method for promoting the nitrification reaction of nitric acid bacteria widely distributed in the natural world such as human waste treatment equipment, soil, seawater and river water.

【0002】[0002]

【従来の技術】硝化菌はアンモニア又は亜硝酸をそれぞ
れ亜硝酸又は硝酸に酸化し、二酸化炭素を唯一の炭素源
として菌体成分を合成する独立栄養細菌(細胞内のすべ
ての代謝物質を二酸化炭素を還元して合成し、一切栄養
素として有機化合物を要求しない細菌)であり、有機物
が共存すると硝化菌の硝化反応は阻害されるといわれて
きた。
2. Description of the Related Art Nitrifying bacteria are autotrophic bacteria that oxidize ammonia or nitrite into nitrite or nitric acid, respectively, and synthesize bacterial cell components with carbon dioxide as the sole carbon source (all metabolites in cells are converted to carbon dioxide. It has been said that the nitrification reaction of nitrifying bacteria is inhibited by the coexistence of organic substances.

【0003】硝化菌にはアンモニアを酸化して亜硝酸塩
にするアンモニア酸化細菌(以下「亜硝酸菌」という)
と、亜硝酸塩を酸化して硝酸塩にする亜硝酸酸化菌(以
下「硝酸菌」という)の2つの細菌群からなる。それぞ
れの化学反応式は次のとおりである。
For nitrifying bacteria, ammonia-oxidizing bacteria that oxidize ammonia to nitrite (hereinafter referred to as "nitrite")
And a nitrite-oxidizing bacterium that oxidizes nitrite into nitrate (hereinafter referred to as "nitrate bacterium"). The respective chemical reaction formulas are as follows.

【化1】(a)亜硝酸菌のアンモニア酸化反応 NH4 + +3/2O2 →NO2 - +H2 O+39.5k
cal (b)硝酸菌の亜硝酸酸化反応 NO2 - +1/2O2 →NO3 - +21.6kcal
Embedded image (a) Ammonia oxidation reaction of nitrite bacteria NH 4 + + 3 / 2O 2 → NO 2 + H 2 O + 39.5k
cal (b) Nitrite oxidation reaction of nitric acid bacteria NO 2 + 1 / 2O 2 → NO 3 +21.6 kcal

【0004】硝化菌を排水などの浄化に利用するために
は、まず、それらの硝化性能を発揮させるだけの菌量を
確保しなければならない。水産動物の蓄養・輸送設備、
水族館などの閉鎖系循環水、廃水、下水及びし尿処理な
どの場合は、それらの水中に硝化菌が微量ながらも存在
しており、アンモニア(NH4 + )とそれに見合ったリ
ン(PO4 3-)及び酸素(O2 )があって、適当な水温
に保てば硝化菌は自然に増殖し、硝化反応が発現してく
る。しかしこの方法によると、硝化性能が十分に発揮す
るまで(この期間を「馴致期間」という)に長時間を要
する。硝化装置(すなわち硝化菌)の馴致期間を短縮す
るために、硝化性能を十分に発揮した他の硝化装置から
硝化菌を種菌として移植する方法がある。この場合馴致
期間は若干短縮できるが、それでも通常数カ月を要す
る。
In order to utilize nitrifying bacteria for purification of waste water, etc., it is first necessary to secure a sufficient amount of bacteria to exert their nitrifying performance. Farming and transport equipment for aquatic animals,
In the case of closed system circulating water such as an aquarium, wastewater, sewage, and night soil treatment, nitrifying bacteria are present in the water even though they are present in a small amount, and ammonia (NH 4 + ) and phosphorus (PO 4 3- ) And oxygen (O 2 ), and if kept at an appropriate water temperature, the nitrifying bacteria naturally grow and the nitrification reaction appears. However, according to this method, it takes a long time until the nitrification performance is sufficiently exhibited (this period is referred to as "acclimation period"). In order to shorten the acclimatization period of the nitrification device (that is, the nitrification bacterium), there is a method of transplanting the nitrification bacterium as an inoculum from another nitrification device that exhibits sufficient nitrification performance. In this case, the acclimatization period can be shortened slightly, but it usually takes several months.

【0005】また、アンモニア含有水の硝化装置の性能
を向上させるためには、装置内の菌体を高濃度に保つ必
要があり、そのためには従来の活性汚泥法のように浮遊
状態の硝化菌を用いる方法に代って、硝化菌を担体に付
着させる方法がある。付着担体としては、砂、活性炭、
多孔質セラミックス、板状または粒状のプラスチック成
形物などが使用されている。その比表面積(単体の表面
積をその容積で割った値)が大きいほど付着する菌量が
多く、装置内の菌体濃度を高く保持できる。
Further, in order to improve the performance of the nitrification apparatus for ammonia-containing water, it is necessary to keep the bacterial cells in the apparatus at a high concentration. For that purpose, the nitrifying bacteria in a floating state as in the conventional activated sludge method are used. There is a method of attaching nitrifying bacteria to a carrier instead of the method of using. As the adhesion carrier, sand, activated carbon,
Porous ceramics, plate-shaped or granular plastic moldings, etc. are used. The larger the specific surface area (the value obtained by dividing the surface area of a simple substance by its volume), the larger the amount of adhered bacteria, and the higher the bacterial cell concentration in the device can be maintained.

【0006】[0006]

【発明が解決しようとする課題】このような硝化菌を利
用したアンモニア含有水の処理方法においては次のよう
な問題点がある。 (1)アンモニア含有水硝化装置の馴致期間は有機物廃
水の浄化装置に比べて極めて長い。その原因はアンモニ
ア含有水硝化装置などで利用されている硝化菌の増殖が
有機物含有廃水浄化装置などで利用されている従属栄養
細菌(炭素源を体外から取り入れる有機化合物に依存す
る細菌)に比べて遅いからである。
The method of treating ammonia-containing water using such nitrifying bacteria has the following problems. (1) The acclimatization period of the ammonia-containing water nitrification device is extremely longer than that of the organic wastewater purification device. The cause is that the growth of nitrifying bacteria used in ammonia-containing water nitrification equipment is higher than that of heterotrophic bacteria used in organic matter-containing wastewater purification equipment (bacteria that depend on organic compounds that take in carbon sources from outside the body). Because it is late.

【0007】(2)硝化装置の馴致期間を短縮するため
には、硝化性能を十分に発揮するだけの硝化菌量を予め
準備しておき、起動時の装置に投入すればよい。因みに
従来の廃水などの硝化装置の場合は、すでに硝化性能が
十分に発現している別途設備の活性汚泥を起動時の装置
に投入し馴致期間の短縮を図っていた。しかし浮遊状態
または付着状態の如何を問わず、硝化性能が発現するま
でになお相当の期間を要した。
(2) In order to shorten the acclimatization period of the nitrification apparatus, an amount of nitrifying bacteria sufficient to sufficiently exert the nitrification performance may be prepared in advance and put into the apparatus at startup. By the way, in the case of conventional nitrification equipment such as wastewater, we tried to shorten the acclimatization period by putting activated sludge in a separate facility, which already has sufficient nitrification performance, into the equipment at startup. However, it took a considerable period of time before the nitrification performance was exhibited regardless of the floating state or the adhered state.

【0008】(3)硝化装置の馴致が完了し定常運転に
入った後も、系内の何らかの原因により硝化菌がダメー
ジを受け硝化性能が低下することがある。特に浮遊状態
の硝化菌は処理水とともに流出して装置内の濃度が大幅
に低下することがある。付着状態の硝化菌にはそのよう
な減少はなく、装置内に硝化菌が高濃度に保たれる長所
がある。しかしその場合においても性能回復に要する時
間は有機物廃水浄化装置などに比べて長時間を要し、性
能回復に要する時間を短縮する必要があった。
(3) Even after the acclimatization of the nitrification apparatus is completed and the normal operation is started, nitrifying bacteria may be damaged by some cause in the system and the nitrification performance may be deteriorated. Especially, nitrifying bacteria in a floating state may flow out together with the treated water and the concentration in the apparatus may be significantly reduced. There is no such decrease in the adherent nitrifying bacteria, and there is an advantage that nitrifying bacteria can be kept at a high concentration in the device. However, even in that case, the time required for performance recovery is longer than that for an organic wastewater purification device, and it is necessary to shorten the time required for performance recovery.

【0009】本発明の課題は前記従来技術における問題
点を解決し、硝化菌を使用したアンモニア含有水の処理
装置における馴致期間を短縮できるアンモニア含有水の
処理方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a method for treating ammonia-containing water capable of shortening the acclimatization period in a treatment apparatus for ammonia-containing water using nitrifying bacteria.

【0010】[0010]

【課題を解決するための手段】本発明者らは前記問題点
を解決するために鋭意研究の結果、従来では硝化菌の増
殖を阻害すると考えられていた従属栄養細菌の菌体であ
っても、硝化菌、特に亜硝酸菌の硝化反応を促進するも
のがあることを発見し、本発明を完成するに至った。す
なわち本発明は、(1)硝酸菌を用いてアンモニア含有
水を処理する方法において、硝化菌に活性を有する従属
栄養細菌の菌体を添加して、硝化菌の硝化反応を促進さ
せることを特徴とするアンモニア含有水の処理方法、
(2)硝化菌として担体に付着、担持させた形の硝化菌
を使用することを特徴とする前記(1)のアンモニア含
有水の処理方法、である。
Means for Solving the Problems As a result of intensive research to solve the above-mentioned problems, the present inventors have found that even in the case of heterotrophic bacterial cells which were conventionally considered to inhibit the growth of nitrifying bacteria. The inventors have discovered that there are some that promote the nitrification reaction of nitrifying bacteria, especially nitrite bacteria, and have completed the present invention. That is, the present invention is characterized in that (1) in a method of treating ammonia-containing water with nitric acid bacteria, the cells of a heterotrophic bacterium having activity in nitrifying bacteria are added to promote the nitrifying reaction of nitrifying bacteria. Ammonia-containing water treatment method,
(2) The method for treating ammonia-containing water according to the above (1), characterized in that nitrifying bacteria in the form of being attached to and carried by a carrier are used as the nitrifying bacteria.

【0011】[0011]

【作用】本発明の方法によれば従属栄養細菌の活性菌体
によって硝化菌、特に亜硝酸菌の硝化能力が促進され、
比較的短時間のうちにアンモニウムイオン(NH4 +
が硝酸イオンにまで酸化される。本発明の方法で使用す
る従属栄養細菌は、従属栄養細菌の中で特に硝化菌に活
性を有する(硝化菌の増殖を促進し、硝化反応を促進す
る)ものである。このような硝化菌に活性を有する従属
栄養細菌の例としてはバチルス、ストレプトコッカスな
どのグラム陽性菌類、大腸菌、ビブリオ、シュードモナ
スなどのグラム陰性菌類が挙げられる。前記従属栄養細
菌の生菌体を硝化菌を利用したアンモニア含有水硝化装
置に添加する方法としては、別途培養した従属栄養細菌
の培養液をそのまま添加してもよいが、遠心分離などの
方法により濃縮分離した菌体を使用するのが運搬等の取
扱性がよく、添加量の制御も容易で好ましい。
According to the method of the present invention, the nitrifying ability of nitrifying bacteria, particularly nitrite bacteria, is promoted by the active cells of heterotrophic bacteria,
Ammonium ion (NH 4 + ) within a relatively short time
Are oxidized to nitrate ions. The heterotrophic bacterium used in the method of the present invention is particularly active among nitrifying bacteria (promotes the growth of nitrifying bacteria and promotes nitrification reaction) among the heterotrophic bacteria. Examples of such heterotrophic bacteria having activity on nitrifying bacteria include Gram-positive fungi such as Bacillus and Streptococcus, and Gram-negative fungi such as Escherichia coli, Vibrio, and Pseudomonas. As a method of adding the viable cells of the heterotrophic bacterium to the ammonia-containing hydronitrification device using nitrifying bacteria, a culture solution of separately cultivated heterotrophic bacteria may be added as it is, but by a method such as centrifugation. It is preferable to use the concentrated and separated bacterial cells because they are easy to handle, such as in transportation, and the addition amount can be easily controlled.

【0012】硝化菌を砂、活性炭、多孔質セラミック
ス、板状又は粒状のプラスチック成形物などの担体に付
着、担持させて使用すれば、取扱が容易で硝化菌の濃度
の維持、調整も容易となる。この場合、担体に付着させ
るのは硝化菌のみではなく、硝化菌とこれらの硝化菌に
活性を有する従属栄養細菌の菌体の両方であってもよ
い。また、硝化菌のみを付着、担持させておき、従属栄
養細菌の菌体を添加した処理水を循環接触させる間に、
条件によっては従属栄養細菌の菌体も付着、担持された
形となり、この状態のものを他の装置で使用することも
できる。ここで使用する担体としては比表面積の大きい
多孔質セラミックスが特に好ましい。なお、従属栄養細
菌の活性菌体による硝化菌の硝化能力促進のメカニズム
はまだ不明である。
When the nitrifying bacterium is used by adhering it to a carrier such as sand, activated carbon, porous ceramics, a plate-shaped or granular plastic molded product, and supporting it, the concentration of the nitrifying bacterium can be easily maintained and adjusted. Become. In this case, not only nitrifying bacteria but also both nitrifying bacteria and heterotrophic bacterial cells having activity on these nitrifying bacteria may be attached to the carrier. In addition, while only nitrifying bacteria are attached and carried, while circulating contact with the treated water containing the heterotrophic bacterial cells,
Depending on the conditions, the cells of the heterotrophic bacteria also become adhered and carried, and this state can be used in other devices. Porous ceramics having a large specific surface area are particularly preferable as the carrier used here. The mechanism by which the active cells of the heterotrophic bacteria promote nitrifying ability of nitrifying bacteria is still unknown.

【0013】[0013]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を立証する。本実施例においては硝化菌の代表
菌株として、亜硝酸菌はニトロソモナス ユーロパエ
(Nitrosomonas europaea ATCC25978 )、硝酸菌はニト
ロバクター アジリス( Nitrobacter agilis ATCC1412
3 )を用いた。なおここでは硝酸菌の培養は、表1に示
す高圧減菌した培地(Lewis,R.F. and D. Pramer, 1958.
"Isolation of Nitrosomonas in pure culture",76,52
4-528 )を用いて無菌的に操作した。また、本実施例に
おいて亜硝酸濃度はグリース・ロミイン試薬により、ア
ンモニア濃度はフェノールブルー法により測定した。
[Examples] The effects of the present invention will be demonstrated with reference to specific examples of the present invention. In this example, as representative strains of nitrifying bacteria, nitrite was Nitrosomonas europaea ATCC25978, and nitrobacter was Nitrobacter agilis ATCC1412.
3) was used. In addition, here, the culture of nitric acid bacteria was carried out under high pressure sterilized medium (Lewis, RF and D. Pramer, 1958.
"Isolation of Nitrosomonas in pure culture", 76,52
4-528) and aseptically operated. In this example, the nitrous acid concentration was measured by the Grease-Lomiin reagent, and the ammonia concentration was measured by the phenol blue method.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例1)試験管に入れたLB(Lur
ia−Bertani)培地(組成を表2に示す)10
ミリリットルに、グラム陽性従属栄養細菌(以下「グラ
ム陽性菌」という)のうちの代表菌種である枯草菌(バ
チルス ズブチリス: Bacillus subtilisIFO 3513 )
を植種し、30℃で24時間振とうして前培養した液
を、坂口フラスコに入れたLB培地800ミリリットル
に8ミリリットル植種し、30℃で24時間振とう培養
し増菌させた。この培養液を遠心分離機(9000×
G、10分間、4℃)で集菌し、無菌純水で菌体を洗浄
して培地成分を取り除き活性菌体とした。
(Example 1) LB (Lur placed in a test tube
ia-Bertani) medium (composition is shown in Table 2) 10
Bacillus subtilis IFO 3513, which is a representative species of Gram-positive heterotrophic bacteria (hereinafter referred to as "Gram-positive bacteria")
8 ml of the LB medium placed in a Sakaguchi flask was inoculated with 8 ml of the liquid that had been inoculated and pre-cultured by shaking at 30 ° C. for 24 hours, and shake-cultured at 30 ° C. for 24 hours to enrich the cells. This culture solution is centrifuged (9000 x
G, 10 minutes, 4 ° C.) to collect the cells, and the cells were washed with sterile pure water to remove the medium components to obtain active cells.

【0016】[0016]

【表2】 [Table 2]

【0017】次に予め別途培養した亜硝酸菌の濃縮液を
加えて亜硝酸菌濃度が6.8×10 6 cells/ミリ
リットルとなるように調整した新鮮培地(前記表1のも
の)20ミリリットルを三角フラスコ(200ミリリッ
トル容)に入れ、これに上記の活性菌体が0.5mg−
乾物/ミリリットルとなるように加えて、温度30℃で
120時間回転培養した。この培養液について培養開始
時と終了時における亜硝酸濃度を測定した。なお、この
例における亜硝酸は、使用した培地に含まれるアンモニ
ア成分が亜硝化菌により酸化されて生じたものである。
また、比較のため、これと並行して上記活性菌体を添加
しない亜硝酸菌のみの培養液(コントロール)及び亜硝
酸菌を含まない枯草菌のみを添加した培養液についても
硝化試験を行った。以上の結果を表3に示す。
Next, a concentrated solution of nitrite bacteria, which has been separately cultured in advance,
In addition, the nitrite concentration is 6.8 x 10 6cells / mm
Fresh medium adjusted to liter (see Table 1 above)
Erlenmeyer flask (200 ml)
Tol) and 0.5 mg- of the above-mentioned active cells
Add to dry matter / ml and add at 30 ℃
Rotation culture was carried out for 120 hours. Start culture for this culture
The nitrite concentration at the time and at the end was measured. In addition, this
Nitrite in the example is the ammonia in the medium used.
(A) The component is generated by being oxidized by the nitrite.
For comparison, the above-mentioned active cells were added in parallel with this.
Nitrite-only culture (control) and Nitrite
For the culture solution containing only Bacillus subtilis that does not contain acid bacteria
A nitrification test was conducted. The above results are shown in Table 3.

【0018】[0018]

【表3】 [Table 3]

【0019】また、前記枯草菌の活性菌体の代りに同量
の代表的なグラム陽性菌であるストレプトコッカス フ
ェカリス(Streptococcus faecalis IFO 12580)の活性
菌体を加えて前記と同様な硝化試験を行った結果では培
養終了時の亜硝酸濃度(NO 2 −N)が395μg/ミ
リリットルであった。これより枯草菌のみでは亜硝酸生
成能力はないが、グラム陽性菌活性菌体の添加により亜
硝酸菌の硝化反応が促進されることがわかる。
Further, the same amount of the above-mentioned active cells of Bacillus subtilis
Streptococcus, a typical Gram-positive bacterium of
Activity of Echalis (Streptococcus faecalis IFO 12580)
The results of conducting the same nitrification test as above with the addition of bacterial cells were
Nitrite concentration (NO 2-N) is 395 μg / mi
It was a lilt. From this, only Bacillus subtilis produces nitrite
It does not have the ability to grow, but by adding active Gram-positive bacteria,
It can be seen that the nitrification reaction of nitric acid bacteria is promoted.

【0020】(実施例2)グラム陰性従属栄養細菌(以
下「グラム陰性菌」という)の代表菌種である大腸菌
(エッシェリシア コリ: Eshericha coli IFO 3301)
を用いて、実施例1と同様に活性菌体を調整し、0.5
mg−乾物/ミリリットルとなるように加えた培養液に
ついて実施例1と同じ条件で硝化試験を行った。また並
行してグラム陰性菌のみを加えた試験を行った。その結
果を表4に示す。
(Example 2) Escherichia coli (Eshericha coli IFO 3301) which is a representative strain of Gram-negative heterotrophic bacteria (hereinafter referred to as "Gram-negative bacteria")
Active cells were prepared in the same manner as in Example 1, and 0.5
A nitrification test was performed under the same conditions as in Example 1 with respect to the culture solution added so as to have mg-dry matter / milliliter. Further, in parallel, a test was conducted in which only Gram-negative bacteria were added. The results are shown in Table 4.

【0021】[0021]

【表4】 [Table 4]

【0022】また、前記大腸菌の活性菌体に代えて代表
的グラム陰性菌体であるビブリオアングイラルム(Vibr
io anguillarum IFO 12710)又はシュードモナス フル
オレセンス(Pseudomonas fluorescens IAM 12001 )の
活性菌体を同量使用した試験では培養終了時の亜硝酸濃
度(NO2 −N)がそれぞれ397及び345μg/ミ
リリットルであった。これより大腸菌のみでは亜硝酸生
成能力はないが、グラム陰性菌活性菌体の添加により亜
硝酸菌の硝化反応が促進されることがわかる。
Further, in place of the active bacterial cells of Escherichia coli, a representative gram-negative bacterial cell, Vibrio anguiralum (Vibr.
io anguillarum IFO 12710) or Pseudomonas fluorescens IAM 12001 were used in the same amount, but the nitrite concentration (NO 2 -N) at the end of the culture was 397 and 345 μg / ml, respectively. . From this, it can be seen that although E. coli alone has no ability to produce nitrite, the addition of active Gram-negative bacterial cells promotes the nitrification reaction of nitrite.

【0023】(実施例3)各種微生物を含む小規模下水
処理場の活性汚泥混合液200ミリリットルを遠心分離
(900rpm、10min)で集菌し、前記表1の培
地200ミリリットルに懸濁させた。用いた活性汚泥混
合液の揮発性固形物濃度(MLVSS)は1,790p
pmであった。なお、上記活性汚泥の上清に亜硝酸およ
び硝酸イオンが認められなかったことから、当該活性汚
泥中の亜硝酸菌及び硝酸菌の硝化活性は極めて微弱であ
った。
(Example 3) 200 ml of a mixture of activated sludge in a small-scale sewage treatment plant containing various microorganisms was collected by centrifugation (900 rpm, 10 min) and suspended in 200 ml of the medium shown in Table 1 above. Volatile solids concentration (MLVSS) of the activated sludge mixture used is 1,790 p
pm. Since nitrite and nitrate ions were not detected in the supernatant of the activated sludge, the nitrifying activity of nitrite bacteria and nitrate bacteria in the activated sludge was extremely weak.

【0024】次に上記懸濁液に実施例1の枯草菌菌体又
は実施例2の大腸菌菌体をそれぞれ0.5mg/ミリリ
ットル加え、さらに亜硝酸菌(ニトロソモナス ユーロ
パエ: Nitrosomonas europaea ATCC25978)及び硝酸菌
(ニトロバクター アジリス: Nitrobacter agilis AT
CC14123 )をそれぞれ3.0×108 ,5.0×10 7
cclls/ミリリットルの濃度となるように加え温度
30℃、通気量1VVMの条件で、72時間の曝気回分
試験を行った。この曝気混合液をメンブランフィルタ
(孔径0.45μm)でろ過した液中のアンモニア濃度
(NH4 + −N)を測定した。その結果を表5に示す。
なおそれぞれの曝気混合液の培養72時間後の亜硝酸濃
度(NO2 −N)は硝化反応が進み、いずれも1μg/
ミリリットル以下であった。これよりグラム陽性または
陰性菌の菌体を添加することによって、活性汚泥が混在
していても亜硝酸菌および硝酸菌の硝化反応が促進さ
れ、残存アンモニア濃度が減少し、亜硝酸濃度も増加し
ていないことがわかる。
Next, the above suspension was treated with the Bacillus subtilis cells of Example 1.
Is 0.5 mg / milliliter of the E. coli cells of Example 2.
And nitrite (Nitrosomonas euro)
Pae: Nitrosomonas europaea ATCC25978) and nitric acid bacteria
(Nitrobacter agilis AT
CC14123) 3.0 × 10 each8, 5.0 × 10 7
Add temperature so that the concentration is cclls / ml
Aeration batch for 72 hours under the conditions of 30 ° C and aeration of 1VVM
The test was conducted. This aeration mixture is a membrane filter.
Ammonia concentration in liquid filtered with (pore size 0.45 μm)
(NHFour +-N) was measured. The results are shown in Table 5.
The nitrite concentration after 72 hours of culture of each aeration mixture
Degree (NO2-N) progressed nitrification reaction, and both were 1 μg /
It was less than a milliliter. More gram positive or
Activated sludge is mixed by adding negative bacterial cells
However, the nitrification reaction of nitrites and nitrates is promoted
The residual ammonia concentration decreases and the nitrite concentration also increases.
You can see that not.

【0025】[0025]

【表5】 [Table 5]

【0026】(実施例4)粒径5mm、比表面積100
0m2 /m3 の多孔質セラミックス200ミリリットル
を充填したカラムに、亜硝酸菌が2.5×107 cel
ls/ミリリットル、硝酸菌濃度が9.7×107 ce
lls/ミリリットルの硝化菌液200ミリリットルを
入れてセラミックスに硝化菌を付着、担持させた。この
充填材に、実施例1と同様にして得た0.5mg−乾物
/ミリリットルの枯草菌活性菌体を含む表1の新鮮培地
1リットルを、酸素を溶解させながら液温度30℃、線
流速3m/hで120時間循環接触させた。この培養液
について培養開始時と終了時におけるアンモニア濃度を
測定した。また比較のため、これと並行して上記活性菌
体を含まない新鮮培地(コントロール)についても硝化
試験を行った。その結果を表6に示す。
(Example 4) Particle size 5 mm, specific surface area 100
A column filled with 200 ml of 0 m 2 / m 3 of porous ceramics was filled with 2.5 × 10 7 cells of nitrite.
ls / ml, nitric acid bacterium concentration is 9.7 × 10 7 ce
The nitrifying bacteria were adhered to and supported on the ceramics by adding 200 ml of the lls / ml nitrifying bacteria solution. 1 liter of a fresh medium of Table 1 containing 0.5 mg-dry matter / milliliter of Bacillus subtilis active cells obtained in the same manner as in Example 1 was dissolved in oxygen at a liquid temperature of 30 ° C. and a linear flow rate. Circulation contact was performed at 3 m / h for 120 hours. The ammonia concentration of this culture solution was measured at the start and end of the culture. For comparison, a nitrification test was also conducted on a fresh medium (control) containing no active cells in parallel with this. Table 6 shows the results.

【0027】[0027]

【表6】 [Table 6]

【0028】また、前記枯草菌の活性菌体の代りに同量
の代表的なグラム陽性菌であるストレプトコッカス フ
ェカリス(Streptococcus faecalis IFO 12580)の活性
菌体を加えて前記と同様な硝化試験を行った結果では培
養終了のアンモニア濃度(NH4 + −N)は115μg
/ミリリットルであった。これらの結果からグラム陽性
菌活性菌体の添加により硝化菌の硝化反応が促進され、
アンモニア濃度の減少が早いことがわかる。
Further, the same nitrification test as described above was carried out by adding the same amount of the active bacterium of Streptococcus faecalis IFO 12580, which is a typical Gram-positive bacterium, in place of the active bacterium of Bacillus subtilis. As a result, the ammonia concentration (NH 4 + -N) at the end of the culture was 115 μg.
/ Ml. From these results, the nitrification reaction of nitrifying bacteria was promoted by the addition of active Gram-positive bacteria,
It can be seen that the ammonia concentration decreases quickly.

【0029】(実施例5)グラム陰性従属栄養細菌(以
下「グラム陰性菌」という)の代表菌種である大腸菌
(エッシェリシア コリ: Eshericha coli IFO 3301)
を用いて、実施例2と同様に活性菌体を調整したものを
0.5mg−乾物/ミリリットルとなるように加えた表
1の培地に添加した液を使用し、実施例4と同じ充填材
に付着、担持させた硝化菌を用い、実施例4と同条件で
硝化試験を行った。その結果を表7に示す。また、前記
大腸菌の活性菌体に代えて代表的なグラム陰性菌である
ビブリオ アングイラルム(Vibrio anguillarum IFO 1
2710)又はシュードモナス フルオレセンス(Pseudomo
nas fluorescens IAM 12001 )の活性菌体を同量使用し
た試験では培養終了時アンモニア濃度(NH4 + −N)
がそれぞれ113、165μg/ミリリットルであっ
た。これよりグラム陰性菌活性菌体の添加により硝化菌
の硝化反応が促進されアンモニア濃度の減少が早いこと
がわかる。
(Example 5) Escherichia coli (Eshericha coli IFO 3301), which is a representative bacterial species of Gram-negative heterotrophic bacteria (hereinafter referred to as "Gram-negative bacteria")
The same filling material as in Example 4 was used using the liquid prepared by adjusting the active cells in the same manner as in Example 2 to the medium of Table 1 to which 0.5 mg-dry matter / ml was added. A nitrification test was carried out under the same conditions as in Example 4, using the nitrifying bacteria adhered and supported on The results are shown in Table 7. In addition, instead of the active cells of Escherichia coli, a typical Gram-negative bacterium, Vibrio anguillarum IFO 1
2710) or Pseudomonas fluorescens (Pseudomo
nas fluorescens IAM 12001) using the same amount of active cells, ammonia concentration (NH 4 + -N) at the end of culture was tested.
Were 113 and 165 μg / ml, respectively. From this, it can be seen that the addition of active Gram-negative bacterial cells promotes the nitrification reaction of nitrifying bacteria and the ammonia concentration decreases rapidly.

【0030】[0030]

【表7】 [Table 7]

【0031】(実施例6)各種微生物を含む小規模下水
処理場の活性汚泥混合液200ミリリットルを遠心分離
(900rpm、10min)で集菌し、揮発性固形物
濃度(MLVSS)が500ppmとなるように前記表
1の新鮮培地1リットルに加え、実施例4で用いたのと
同じ充填材に付着、担持させた硝化菌を用いて実施例4
と同一条件で硝化試験を行った。なお上記活性汚泥の上
清に亜硝酸及び硝酸イオンが認められなかったことか
ら、当該活性汚泥の亜硝酸菌及び硝酸菌の硝化活性は極
めて微弱であった。なお新鮮培地には予め0.5mg−
乾物/ミリリットルの枯草菌活性菌体(実施例1で得た
もの)又は大腸菌活性菌体(実施例2で得たもの)を添
加しておいた。また、活性汚泥のみを添加した培地につ
いても同様に硝化試験を行った。それらの結果を表8に
示す。これより活性汚泥のみを加えた場合でもアンモニ
ア濃度が減少し、亜硝酸菌及び硝酸菌の硝化反応が促進
されることがわかった。さらに、活性汚泥に加えて枯草
菌又は大腸菌などのような単一細菌種と混在させること
により硝化反応がより促進されることがわかった。
(Example 6) 200 ml of the activated sludge mixed solution of a small-scale sewage treatment plant containing various microorganisms was collected by centrifugation (900 rpm, 10 min) so that the concentration of volatile solids (MLVSS) was 500 ppm. In addition to 1 liter of the fresh medium shown in Table 1 above, the same nitrifying bacteria as those used in Example 4 were adhered to and carried by the same filler as in Example 4 to obtain Example 4.
A nitrification test was conducted under the same conditions as above. Since nitrite and nitrate ions were not detected in the supernatant of the activated sludge, the nitrifying activity of the nitrite and nitrate of the activated sludge was extremely weak. In addition, 0.5 mg-
Dry matter / ml of Bacillus subtilis active cells (obtained in Example 1) or E. coli active cells (obtained in Example 2) were added. Further, a nitrification test was similarly conducted on a medium to which only activated sludge was added. The results are shown in Table 8. From this, it was found that the ammonia concentration was decreased and the nitrification reaction of nitrite bacteria and nitric acid bacteria was promoted even when only activated sludge was added. Further, it was found that the nitrification reaction was further promoted by mixing with activated sludge and a single bacterial species such as Bacillus subtilis or Escherichia coli.

【0032】[0032]

【表8】 [Table 8]

【0033】[0033]

【発明の効果】【The invention's effect】

(1)本発明のように、硝化菌に活性を有する従属栄養
細菌の菌体を添加した場合は、硝化菌のみを含む液の場
合に比べて硝化能力(硝酸生成能力)が2倍以上向上す
る。したがって本発明によればアンモニア含有水処理装
置容量を従来に比べて1/2にすることが可能となる。
この効果は担体に付着させた硝化菌を使用した場合でも
同様である。 (2)本発明によれば活性汚泥のような各種微生物が混
在した場合でも、硝化菌を利用したアンモニア含有水処
理装置に枯草菌又は大腸菌などのような硝化菌に活性を
有する単一細菌種を加えることにより、硝化反応を促進
し、アンモニア含有水処理能力を向上させることができ
る。 (3)起動時又はトラブル発生時の硝化装置は硝化能力
(アンモニア処理能力)が低い。このような場合でも上
記(1)項の効果によって従来とは比較にならないほど
硝化能力(アンモニア処理能力)を迅速に向上又は回復
させることができる。 (4)亜硝酸菌や硝酸菌などの硝化菌を担体に付着させ
ておくことにより、取扱いが容易となり、これらの菌類
が硝化装置(アンモニア含有水処理装置)から流失し、
濃度が変動する恐れもない。 (5)枯草菌又は大腸菌などのグラム陽性またはグラム
陰性菌の菌体は、通常発酵廃液などから経済的かつ容易
に得られる。これによって、本来廃棄するしかなかった
発酵廃液を有効に利用することができる。
(1) When the cells of heterotrophic bacteria having activity on nitrifying bacteria are added as in the present invention, the nitrifying capacity (nitric acid forming capacity) is more than doubled as compared with the case of the liquid containing only nitrifying bacteria. To do. Therefore, according to the present invention, it is possible to reduce the capacity of the ammonia-containing water treatment device to half that of the conventional one.
This effect is the same even when nitrifying bacteria attached to the carrier are used. (2) According to the present invention, a single bacterial species having activity against nitrifying bacteria such as Bacillus subtilis or Escherichia coli in an ammonia-containing water treatment device utilizing nitrifying bacteria even when various microorganisms such as activated sludge are mixed. The addition of N.sub.2 promotes the nitrification reaction and improves the ammonia-containing water treatment capacity. (3) The nitrification device has a low nitrification capacity (ammonia treatment capacity) at the time of startup or when trouble occurs. Even in such a case, the nitrification capacity (ammonia treatment capacity) can be rapidly improved or recovered by the effect of the above item (1) as compared with the conventional one. (4) By adhering nitrifying bacteria such as nitrite bacteria and nitric acid bacteria to the carrier, handling becomes easy, and these fungi are washed away from the nitrification device (ammonia-containing water treatment device),
There is no fear that the concentration will change. (5) Bacteria of Gram-positive or Gram-negative bacteria such as Bacillus subtilis or Escherichia coli are usually economically and easily obtained from fermentation effluent. This makes it possible to effectively use the fermentation effluent that was originally discarded.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝化菌を用いてアンモニア含有水を処理
する方法において、硝化菌に活性を有する従属栄養細菌
の菌体を添加して、硝化菌の硝化反応を促進させること
を特徴とするアンモニア含有水の処理方法。
1. A method for treating ammonia-containing water using nitrifying bacteria, wherein the cells of a heterotrophic bacterium having activity in nitrifying bacteria are added to promote the nitrifying reaction of nitrifying bacteria. Method for treating contained water.
【請求項2】 硝化菌として担体に付着、担持させた形
の硝化菌を使用することを特徴とする請求項1に記載の
アンモニア含有水の処理方法。
2. The method for treating ammonia-containing water according to claim 1, wherein nitrifying bacteria in the form of being attached to and supported by a carrier are used as the nitrifying bacteria.
JP28486894A 1994-11-18 1994-11-18 Treatment of ammonia-containing water Withdrawn JPH08141595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28486894A JPH08141595A (en) 1994-11-18 1994-11-18 Treatment of ammonia-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28486894A JPH08141595A (en) 1994-11-18 1994-11-18 Treatment of ammonia-containing water

Publications (1)

Publication Number Publication Date
JPH08141595A true JPH08141595A (en) 1996-06-04

Family

ID=17684078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28486894A Withdrawn JPH08141595A (en) 1994-11-18 1994-11-18 Treatment of ammonia-containing water

Country Status (1)

Country Link
JP (1) JPH08141595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028693A (en) * 2000-07-14 2002-01-29 Kurabo Ind Ltd Method for treating alkaline wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028693A (en) * 2000-07-14 2002-01-29 Kurabo Ind Ltd Method for treating alkaline wastewater

Similar Documents

Publication Publication Date Title
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
WO2010150691A1 (en) Method for treating wastewater containing ammonia nitrogen
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4784873B2 (en) Anaerobic ammonia oxidation treatment method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2003053385A (en) Biological denitrification equipment
KR100733823B1 (en) Compact apparatus and method for wastewater treatment using genus bacillus
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP5736413B2 (en) Wastewater treatment facility and wastewater treatment method
JP2008155085A (en) Waste water treatment method and apparatus
JP2003001292A (en) Biological denitrification method
JP2003033784A (en) Method and device for denitrification
JPS6336898A (en) Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same
JPH06296991A (en) Treatment of organic waste water containing nitrogen and phosphorus
JPH0259000B2 (en)
JPH08141595A (en) Treatment of ammonia-containing water
JP2001246397A (en) Method for removing nitrogen in waste water
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JP2004033874A (en) Culture tank for marine nitrifying sludge and culture system
KR100753993B1 (en) Advanced swage and waste water treatment method and apparatus use of selected and cultured bacillus species bacteria etc
JP2002011497A (en) Biological nitration device
JPH08141593A (en) Acceleration of nitration reaction of nitrifying bacteria
JPH11197686A (en) Method for storing activated sludge
KR102225883B1 (en) Partial Nitritation Methods of Sewage Using Autotrophic microorganism immobilized in Bead

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205