JPH06296991A - Treatment of organic waste water containing nitrogen and phosphorus - Google Patents
Treatment of organic waste water containing nitrogen and phosphorusInfo
- Publication number
- JPH06296991A JPH06296991A JP5108772A JP10877293A JPH06296991A JP H06296991 A JPH06296991 A JP H06296991A JP 5108772 A JP5108772 A JP 5108772A JP 10877293 A JP10877293 A JP 10877293A JP H06296991 A JPH06296991 A JP H06296991A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- aerobic
- phosphorus
- anaerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims description 53
- 229910052757 nitrogen Inorganic materials 0.000 title claims description 27
- 229910052698 phosphorus Inorganic materials 0.000 title claims description 26
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 25
- 239000011574 phosphorus Substances 0.000 title claims description 25
- 239000010815 organic waste Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 56
- 239000010802 sludge Substances 0.000 claims abstract description 20
- 239000002351 wastewater Substances 0.000 claims abstract description 12
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 9
- 239000002699 waste material Substances 0.000 abstract 1
- 241000894006 Bacteria Species 0.000 description 21
- 239000005416 organic matter Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 230000001546 nitrifying effect Effects 0.000 description 7
- 239000010865 sewage Substances 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 239000000852 hydrogen donor Substances 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- 244000005700 microbiome Species 0.000 description 5
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000031852 maintenance of location in cell Effects 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- VTEIFHQUZWABDE-UHFFFAOYSA-N 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethanamine Chemical compound COC(CN)C1=CC(OC)=C(C)C=C1OC VTEIFHQUZWABDE-UHFFFAOYSA-N 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒素・リン含有有機性
排水の処理方法に係り、特に、下水・し尿・産業排水な
どの窒素、リン含有有機性排水の生物学的処理におい
て、脱窒素及び脱リン能力を増強、安定化することので
きる処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating nitrogen- and phosphorus-containing organic wastewater, and more particularly to denitrification in biological treatment of nitrogen- and phosphorus-containing organic wastewater such as sewage, human waste and industrial wastewater. And a treatment method capable of enhancing and stabilizing the dephosphorization ability.
【0002】[0002]
【従来の技術】近年、硝化液循環型脱窒素活性汚泥法と
嫌気好気活性汚泥法を基礎とする嫌気・無酸素・好気活
性汚泥法の発展により、生物処理プロセスで窒素・リン
を同時除去することが可能になった。さらに、硝化反応
を担う硝化細菌のウォッシュアウトを防ぎ、硝化反応を
高速化するために、好気槽に硝化細菌の固定化担体を投
入する方法も実用化段階にある。このような技術進歩に
より、近年では下水の脱窒素・脱リン処理は、生物反応
槽滞留時間10時間程度で可能になりつつある。2. Description of the Related Art In recent years, with the development of anaerobic / anoxic / aerobic activated sludge method based on the nitrifying solution circulation type denitrification activated sludge method and the anaerobic / aerobic activated sludge method, nitrogen / phosphorus can be simultaneously treated in a biological treatment process. It has become possible to remove it. Furthermore, in order to prevent washout of nitrifying bacteria responsible for the nitrifying reaction and accelerate the nitrifying reaction, a method of adding a carrier for immobilizing nitrifying bacteria to an aerobic tank is also in the practical stage. Due to such technological progress, denitrification / dephosphorization treatment of sewage has recently become possible with a biological reaction tank residence time of about 10 hours.
【0003】図3に、従来の嫌気・無酸素・好気活性汚
泥法のフローを示す。また、図4には従来の好気槽に硝
化細菌固定化担体を投入した嫌気・無酸素・好気活性汚
泥法のフローを示す。これらの方法によれば、下水中の
窒素、リン、及び有機物の除去が概ね可能であるが、下
記に示すような問題を有していることも明らかになって
いる。 (a)低水温期の処理水中に、酸化態窒素(亜硝酸、硝
酸性窒素)が残留するケースが度々認められる。 (b)固液分離工程である最終沈殿池流出水中に活性汚
泥フロックが浮上する。 (c)担体を入れない方法では生物反応槽滞留時間が1
5〜17時間必要であり、処理施設が大きくなる。担体
を入れた場合でも、滞留時間として10時間が必要であ
る。FIG. 3 shows a flow of the conventional anaerobic / anoxic / aerobic activated sludge method. Further, FIG. 4 shows a flow of an anaerobic / anoxic / aerobic activated sludge method in which a nitrifying bacteria-immobilized carrier is put into a conventional aerobic tank. According to these methods, nitrogen, phosphorus, and organic substances in sewage can be removed in general, but it is also clear that they have the following problems. (A) In some cases, oxidized nitrogen (nitrous acid, nitrate nitrogen) remains in the treated water in the low water temperature period. (B) Activated sludge flocs float in the outflow water of the final settling tank, which is a solid-liquid separation step. (C) In the method without the carrier, the residence time of the biological reaction tank is 1
It takes 5 to 17 hours and the processing facility becomes large. Even when the carrier is added, a residence time of 10 hours is required.
【0004】[0004]
【発明が解決しようとする課題】上記の問題点の発生原
因を追求したところ、次のような原因が明らかになっ
た。 (1)酸化態窒素の残留原因について、無酸素槽の水質
収支を詳細に調査したところ、低水温期の脱窒速度が低
下しており、脱窒不良に陥っている。 (2)フロックの処理水浮上原因について、最終沈殿池
の水質収支を測定した結果、最終沈殿池内で脱窒素が起
こり、発生した窒素ガスがフロックに付着したために、
処理水中に活性汚泥フロックが浮上していた。In pursuit of the causes of the above problems, the following causes have become clear. (1) As for the cause of residual oxidized nitrogen, a detailed investigation of the water balance of the anoxic tank revealed that the denitrification rate in the low water temperature period was low, resulting in poor denitrification. (2) Regarding the cause of flotation of treated water, the water balance of the final settling basin was measured. As a result, denitrification occurred in the final settling basin, and the generated nitrogen gas adhered to the flock.
Activated sludge flocs were floating in the treated water.
【0005】すなわち、前記問題点の原因は、いずれも
水温低下に伴う無酸素槽の脱窒能力低下と考えられた。
本発明は、上記問題点を解消し、嫌気・無酸素・好気法
において、水温低下にともなう脱窒速度の低下を防止
し、従来法よりも短い生物反応槽滞留時間で安定した脱
窒素・脱リン能力をもつ処理方法を提供することを課題
とする。In other words, the causes of the above problems were all considered to be a decrease in denitrification capacity of the anoxic tank due to a decrease in water temperature.
The present invention solves the above-mentioned problems, and in the anaerobic / anoxic / aerobic method, prevents a decrease in denitrification rate due to a decrease in water temperature, and enables stable denitrification with a shorter biological reaction tank residence time than the conventional method. It is an object to provide a treatment method having a dephosphorization ability.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、被処理水を嫌気工程、無酸素工程、好
気工程、固液分離工程に順次導入し、前記固液分離工程
で分離した汚泥を嫌気工程に返送すると共に、前記好気
工程処理液を無酸素工程へ循環する有機性排水の脱窒素
・脱リン方法において、被処理水の一部を無酸素工程に
分注することを特徴とする窒素・リン含有有機性排水の
処理方法としたものである。In order to solve the above problems, in the present invention, water to be treated is sequentially introduced into an anaerobic process, an anoxic process, an aerobic process and a solid-liquid separation process, and the solid-liquid separation process is performed. In the denitrification / dephosphorization method of organic wastewater, in which the sludge separated in step 2 is returned to the anaerobic process and the aerobic process liquid is circulated to the anoxic process, a portion of the water to be treated is dispensed to the anoxic process. This is a method for treating nitrogen- and phosphorus-containing organic wastewater.
【0007】上記、本発明の処理方法のフローを図1に
示す。また、本発明においては、硝化速度及び/又は脱
窒速度の増強・安定化のために、好気槽及び/又は無酸
素槽に微生物固定化担体を投入することも可能である。
この場合のフローを図2に示す。上記方法において、微
生物固定化担体としては、砂、活性炭、プラスチック、
スポンジ、親水性ゲルなどの粒状担体が適当であるが、
これらに限定されるものではない。その他に、ハニコ
ム、紐状ろ材などの固定床、回転円板などを利用するこ
とも可能である。なお、担体を流動床として利用する場
合には、投入した反応槽の入出口に、スクリーン等の固
定化担体の槽外流出防止手段を講じれば良い。また、回
収返送手段を設けても良い。The flow of the processing method of the present invention is shown in FIG. Further, in the present invention, in order to enhance / stabilize the nitrification rate and / or the denitrification rate, it is possible to add the microorganism-immobilized carrier to the aerobic tank and / or the anoxic tank.
The flow in this case is shown in FIG. In the above method, as the microorganism-immobilized carrier, sand, activated carbon, plastic,
Granular carriers such as sponges and hydrophilic gels are suitable,
It is not limited to these. In addition, it is also possible to use a fixed bed such as Hanicom or a string-shaped filter medium, a rotating disk, or the like. When the carrier is used as a fluidized bed, a means for preventing the immobilized carrier from flowing out of the tank, such as a screen, may be provided at the inlet / outlet of the charged reaction tank. In addition, a collection and return means may be provided.
【0008】微生物を固定化担体へ固定化する方法とし
ては、担体表面に自然付着させる付着固定化法(担体結
合法)を採用することが多いが、ゲル包括固定化法の適
用も可能である。本発明において、被処理水の嫌気槽と
無酸素槽への分注比率は同率であることが多いが、被処
理水の水質(BOD、窒素、りん)、あるいは処理水の
目標水質等により、適宜調整する。As a method for immobilizing microorganisms on an immobilization carrier, an adhesion immobilization method (carrier binding method) for spontaneously adhering to the surface of the carrier is often adopted, but a gel entrapping immobilization method is also applicable. . In the present invention, the anaerobic tank and the anoxic tank of the water to be treated often have the same dispensing ratio, but depending on the water quality of the water to be treated (BOD, nitrogen, phosphorus) or the target water quality of the treated water, Adjust accordingly.
【0009】[0009]
【作用】本発明の作用をより理解するために、まず従来
の嫌気好気法、嫌気・無酸素・好気活性汚泥法における
りん・窒素除去機構について説明する。りん除去のみを
目的とする嫌気好気活性汚泥法では、りん除去は脱りん
菌と総称される微生物により行われる。まず、嫌気槽に
おいて脱りん菌が菌体内に過剰蓄積していたりんを体外
へ放出すると共に、被処理水中の有機物を体内に吸収す
る。吸収された有機物は、嫌気槽ではPHBやグリコー
ゲンのような菌体内貯蔵物質として蓄えられる。その後
に好気槽において、貯蔵有機物や被処理水中の残留有機
物が脱りん菌と他の好気性微生物により炭酸ガスまで酸
化分解され、りんは脱りん菌の体内にポリリン酸として
過剰蓄積される。In order to better understand the function of the present invention, the phosphorus / nitrogen removing mechanism in the conventional anaerobic / aerobic method and anaerobic / anoxic / aerobic activated sludge method will be described. In the anaerobic and aerobic activated sludge method for the purpose of removing phosphorus only, phosphorus is removed by microorganisms collectively called dephosphorization bacteria. First, in the anaerobic tank, the dephosphorizing bacteria release the phosphorus excessively accumulated in the cells outside the body and absorb the organic matter in the water to be treated into the body. The absorbed organic substances are stored in the anaerobic tank as intracellular storage substances such as PHB and glycogen. After that, in the aerobic tank, the stored organic matter and the residual organic matter in the water to be treated are oxidatively decomposed to carbon dioxide gas by the dephosphorization bacterium and other aerobic microorganisms, and phosphorus is excessively accumulated as polyphosphoric acid in the body of the dephosphorization bacterium.
【0010】嫌気・無酸素・好気法においては、りんは
脱りん菌により除去され、窒素は脱窒菌と硝化菌の相互
作用により除去される。まず、嫌気槽における反応は嫌
気好気法と同様であり、脱りん菌がりんを放出しつつ被
処理水中の有機物を吸収し、有機物を菌体内に貯蔵す
る。次に無酸素槽においては、脱窒菌が酸化態窒素を電
子受容体として硝酸呼吸(脱窒)を行う。この場合に水
素供与体として有機物が必要であるが、その時の有機物
は大部分が嫌気槽で脱りん菌に吸収された貯蔵物質とい
われる。このような知見から、脱りん菌と脱窒菌は同一
菌であると推定されるが、現段階ではその確証は得られ
ていない。また無酸素槽ではりんの一部が脱りん菌(あ
るいは脱窒菌)に吸収される。次に、好気工程では残留
有機物とアンモニア性窒素の酸化、及び脱りん菌による
りんの過剰蓄積が行われる。In the anaerobic / anoxic / aerobic method, phosphorus is removed by dephosphorizing bacteria and nitrogen is removed by the interaction between denitrifying bacteria and nitrifying bacteria. First, the reaction in the anaerobic tank is similar to that in the anaerobic aerobic method, in that the dephosphorizing bacteria release phosphorus and absorb the organic matter in the water to be treated and store the organic matter in the microbial cells. Next, in the anoxic tank, the denitrifying bacterium performs nitric acid respiration (denitrification) using the oxidized nitrogen as an electron acceptor. In this case, an organic substance is required as a hydrogen donor, and most of the organic substance at that time is said to be a storage substance absorbed by the dephosphorizing bacteria in the anaerobic tank. From these findings, it is presumed that the dephosphorizing bacterium and the denitrifying bacterium are the same bacterium, but no confirmation has been obtained at this stage. In the anoxic tank, part of phosphorus is absorbed by dephosphorizing bacteria (or denitrifying bacteria). Next, in the aerobic process, residual organic matters and ammonia nitrogen are oxidized, and phosphorus is excessively accumulated by dephosphorizing bacteria.
【0011】発明者らは、この嫌気・無酸素・好気法に
おいて、無酸素槽の活性汚泥の脱窒素能力、特に水素供
与体として菌体内貯蔵物質を使った場合と、被処理水中
の有機物を使った場合の脱窒素能力の違いについて検討
を行った。その結果、水素供与体として菌体内貯蔵物質
を利用する場合は、被処理水中の有機物を利用する場合
に比べて脱窒素能力が30〜50%低下することが明ら
かになった。この発見が、本発明に至る重要な知見とな
った。In the anaerobic / anoxic / aerobic method, the inventors of the present invention used the denitrification ability of activated sludge in an anoxic tank, particularly when using intracellular storage substances as hydrogen donors and organic matter in water to be treated. We examined the difference in denitrification ability when using. As a result, it has been clarified that the denitrification capacity is reduced by 30 to 50% when the intracellular storage substance is used as the hydrogen donor as compared with the case where the organic matter in the water to be treated is used. This discovery became an important finding leading to the present invention.
【0012】本発明では、嫌気槽において脱りん菌はり
んを放出しつつ、被処理水中の有機物を菌体内に吸収・
貯蔵する。次に無酸素槽においては、酸化態窒素を電子
受容体として、菌体内貯蔵物質又は分注された被処理水
中の有機物を、水素供与体とする2通りの硝酸呼吸(脱
窒)が行われる。このように、無酸素槽の脱窒反応にお
いて、水素供与体として被処理水中の有機物の一部を使
うことが、本発明のポイントである。無酸素槽では、一
部のりんが菌体に蓄積される。次に好気槽では、残留有
機物とアンモニア性窒素の酸化、及び残留りんの過剰蓄
積が行われる。In the present invention, the dephosphorization bacteria release phosphorus in the anaerobic tank while absorbing organic substances in the water to be treated into the cells.
Store. Next, in the anoxic tank, two types of nitric acid respiration (denitrification) is performed using oxidized nitrogen as an electron acceptor and intracellular storage substances or organic substances in the dispensed treated water as hydrogen donors. . Thus, the point of the present invention is to use a part of the organic matter in the water to be treated as the hydrogen donor in the denitrification reaction in the oxygen-free tank. In the anoxic tank, some phosphorus is accumulated in the bacterial cells. Next, in the aerobic tank, residual organic matter and ammoniacal nitrogen are oxidized, and residual phosphorus is excessively accumulated.
【0013】本発明において、被処理水の無酸素槽への
分注率は20〜50%にすることが多いが、被処理水の
性状(BOD、N、P)や処理水の浄化目標値によって
調節すると良い。すなわち、嫌気槽ではりんの放出が制
限されない量の有機物を添加する必要があり、無酸素槽
では30〜50%低下した脱窒素能力を回復できる量の
有機物を添加する必要がある。ここで、脱窒素に必要な
有機物は、理論量としては酸化態窒素1gあたり2.8
6g(通常3g程度)と計算される。しかし、嫌気槽に
おけるりんの放出量に共役する有機物の吸収量は、りん
1gあたり1〜6gとばらつきが多い。これは、主に被
処理水の有機物組成の違いに起因するものと考えられて
いる。In the present invention, the dispensing rate of the treated water to the oxygen-free tank is often set to 20 to 50%, but the properties of the treated water (BOD, N, P) and the purification target value of the treated water are set. It is good to adjust by. That is, in the anaerobic tank, it is necessary to add an amount of organic matter that does not limit the release of phosphorus, and in the anoxic tank, it is necessary to add an amount of organic matter that can recover the denitrification ability that is reduced by 30 to 50%. Here, the theoretical amount of organic matter required for denitrification is 2.8 per 1 g of oxidized nitrogen.
It is calculated to be 6 g (usually about 3 g). However, the absorption amount of the organic substance conjugated to the release amount of phosphorus in the anaerobic tank varies widely from 1 to 6 g per 1 g of phosphorus. It is considered that this is mainly due to the difference in the organic matter composition of the water to be treated.
【0014】従って、被処理水の分注率は、まず脱窒素
能力の復元に必要な量に基いて式1から決定し、その後
に被処理水の性状に合わせて適宜調節していく方法が有
効である。 (無酸素槽分注率)= {(被処理水ケルダール性窒素−処理水酸化態窒素)×3* ×0.4**} /被処理水溶解性BOD) ・・・(式1) 注 (*) BOD/酸化態窒素の比率 (**) 0.3〜0.5の平均値として採用Therefore, there is a method in which the dispensing rate of the water to be treated is first determined from the formula 1 based on the amount required to restore the denitrification ability, and then appropriately adjusted according to the properties of the water to be treated. It is valid. (Dispensing rate of anoxic tank) = {(Keldahl nitrogen to be treated water-treated hydroxylated nitrogen) x 3 * × 0.4 ** } / BOD to be treated water soluble (Equation 1) Note (*) BOD / oxidized nitrogen ratio (**) Adopted as an average value of 0.3 to 0.5
【0015】本発明で無酸素槽に微生物固定化担体を投
入する場合は、脱りん反応とは無関係な脱窒菌、すなわ
ち水素供与体として被処理水中の有機物を専門に利用す
る脱窒菌の存在量を増加できるので、脱窒速度を飛躍的
に向上することができる。好気槽に微生物固定化担体を
投入する場合は、硝化速度を飛躍的に向上できる。本発
明によれば、担体を使用しない場合の生物反応槽滞留時
間は、従来法よりも15〜30%削減でき、担体を使用
する場合には40〜60%程度削減できる。その結果、
下水を本発明で処理する場合、生物反応槽滞留時間8時
間で窒素・りん除去が安定して行われる。When the microorganism-immobilized carrier is put into the anoxic tank in the present invention, the amount of denitrifying bacteria unrelated to the dephosphorization reaction, that is, the amount of denitrifying bacteria specialized for utilizing organic matter in the treated water as a hydrogen donor is present. As a result, the denitrification speed can be dramatically improved. When the microorganism-immobilized carrier is added to the aerobic tank, the nitrification rate can be dramatically improved. According to the present invention, the residence time of the biological reaction tank when the carrier is not used can be reduced by 15 to 30% as compared with the conventional method, and when the carrier is used, it can be reduced by about 40 to 60%. as a result,
When sewage is treated according to the present invention, nitrogen / phosphorus removal is stably performed with a biological reaction tank residence time of 8 hours.
【0016】[0016]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 (a)被処理有機性排水(下水)の水質 ・流入水質:BOD=160mg/リットル、溶解性B
OD=80mg/リットル、ケルダール窒素=30mg
/リットル、酸化態窒素=tr、全りん=3mg/リッ
トル、SS=100mg/リットル ・処理目標:BOD<10mg/リットル、ケルダール
窒素<3mg/リットル、酸化態窒素<7mg/リット
ル、T−P<1mg/リットル、SS<10mg/リッ
トル ・水温 :13〜15℃EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 (a) Water quality of treated organic wastewater (sewage) -Inflow water quality: BOD = 160 mg / liter, solubility B
OD = 80 mg / liter, Kjeldahl nitrogen = 30 mg
/ Liter, oxidized nitrogen = tr, total phosphorus = 3 mg / liter, SS = 100 mg / liter-Processing target: BOD <10 mg / liter, Kjeldahl nitrogen <3 mg / liter, oxidized nitrogen <7 mg / liter, TP < 1 mg / liter, SS <10 mg / liter-Water temperature: 13 to 15 ° C
【0017】(b)処理方法:図1のフローによる。 ・工程 :嫌気槽 ・・・1.5m3 (HRT=1.5時間) 無酸素槽・・・4.5m3 (HRT=4.5時間) 好気槽 ・・・7.0m3 (HRT=7.0時間) ────────────────────────── 計 13 m3 (HRT=13時間) ・処理水量 : 1.0m3 /時 ・返送汚泥量 : 0.3m3 /時 ・硝化液循環量: 2.0m3 /時 ・通気量 : 30Nm3 /時 ・MLSS : 2500mg/リットル ・被処理水分注率は、式1に基づき、嫌気:無酸素=6
5%:35%(B) Processing method: According to the flow of FIG.・ Process: Anaerobic tank ・ ・ ・ 1.5m 3 (HRT = 1.5 hours) Oxygen-free tank ・ ・ ・ 4.5m 3 (HRT = 4.5 hours) Aerobic tank ・ ・ ・ 7.0m 3 (HRT == 7.0 hours) ────────────────────────── Total 13 m 3 (HRT = 13 hours) ・ Treatment volume: 1.0 m 3 / Hour ・ Returned sludge amount: 0.3 m 3 / hour ・ Nitrification solution circulation amount: 2.0 m 3 / hour ・ Aeration amount: 30 Nm 3 / hour ・ MLSS: 2500 mg / liter ・ The treated water pouring rate is shown in formula 1. Based on Anaerobic: Anoxic = 6
5%: 35%
【0018】(c)処理結果 処理水の水質は、T−N:9〜11mg/リットル(ア
ンモニア:0〜1.5mg/リットル、酸化態窒素:6
〜8mg/リットル)、T−P:0.5〜1.0mg/
リットルであった。(C) Treatment result The water quality of the treated water is TN: 9 to 11 mg / liter (ammonia: 0 to 1.5 mg / liter, oxidized nitrogen: 6).
~ 8 mg / liter), TP: 0.5-1.0 mg /
It was liter.
【0019】実施例2 (a)被処理有機性排水(下水)の水質 実施例1の(a)と同じ (b)処理方法:図2のフローによる。 ・工程 :嫌気槽 ・・・1.5m3 (HRT=1.5時間) 無酸素槽・・・3.5m3 (HRT=3.5時間) 好気槽 ・・・3.0m3 (HRT=3.0時間) ────────────────────────── 計 8.0m3 (HRT=8.0時間)Example 2 (a) Water quality of treated organic wastewater (sewage) Same as (a) of Example 1 (b) Treatment method: According to the flow of FIG.・ Process: Anaerobic tank ・ ・ ・ 1.5m 3 (HRT = 1.5 hours) Oxygen-free tank ・ ・ ・ 3.5m 3 (HRT = 3.5 hours) Aerobic tank ・ ・ ・ 3.0m 3 (HRT = 3.0 hours) ────────────────────────── Total 8.0m 3 (HRT = 8.0 hours)
【0020】・処理水量 : 1.0m3 /時 ・返送汚泥量 : 0.3m3 /時 ・硝化液循環量: 2.0m3 /時 ・通気量 : 30Nm3 /時 ・MLSS : 2500mg/リットル ・固定化担体 無酸素槽・・・φ30mm×L2000mmの紐状担体
を固定床として10vol%投入 好気槽 ・・・粒径5mmの親水性ゲル(主成分ポリエ
チレングリコール)を15vol%投入し、流動床とし
て使用。 ・被処理水分注率は、式1より、嫌気:無酸素=65
%:35%とした。Amount of treated water: 1.0 m 3 / hr ・ Amount of returned sludge: 0.3 m 3 / hr ・ Circulation amount of nitrification liquid: 2.0 m 3 / hr ・ Aeration amount: 30 Nm 3 / hr ・ MLSS: 2500 mg / liter・ Immobilized carrier Anoxic tank ・ ・ ・ Introducing 10 vol% of a string-shaped carrier of φ30 mm × L2000 mm as a fixed bed Aerobic tank ・ ・ ・ Introducing 15 vol% of hydrophilic gel (main component polyethylene glycol) with a particle size of 5 mm and flowing Used as a floor. -The treated water pouring rate is calculated from the formula 1 as follows: Anaerobic: Anoxic = 65
%: 35%
【0021】(c)処理結果 処理水の水質は、処理水T−N:9〜10mg/リット
ル(アンモニア:常に0.5mg/リットル以下、酸化
態窒素:6〜7mg/リットル)、T−P:0.5〜
1.0mg/リットルであった。(C) Result of treatment The quality of treated water is as follows: treated water TN: 9 to 10 mg / liter (ammonia: always 0.5 mg / liter or less, oxidized nitrogen: 6 to 7 mg / liter), TP : 0.5 ~
It was 1.0 mg / liter.
【0022】比較例1 (a)被処理有機性排水(下水)の水質 実施例1の(a)と同じ (b)処理方法:図3のフローによる。 ・工程 :嫌気槽 ・・・1.5m3 (HRT=1.5時間) 無酸素槽・・・7.5m3 (HRT=7.5時間) 好気槽 ・・・7.5m3 (HRT=7.5時間) ────────────────────────── 計 16.5m3 (HRT=16.5時間)Comparative Example 1 (a) Water quality of treated organic wastewater (sewage) Same as (a) of Example 1 (b) Treatment method: According to the flow of FIG.・ Process: Anaerobic tank ・ ・ ・ 1.5m 3 (HRT = 1.5 hours) Oxygen-free tank ・ ・ ・ 7.5m 3 (HRT = 7.5 hours) Aerobic tank ・ ・ ・ 7.5m 3 (HRT = 7.5 hours) ────────────────────────── Total 16.5m 3 (HRT = 16.5 hours)
【0023】・処理水量 : 1 m3 /時 ・返送汚泥量 : 0.3m3 /時 ・硝化液循環量: 2.0m3 /時 ・通気量 : 30Nm3 /時 ・MLSS : 2500mg/リットル ・被処理水は100%を嫌気槽へ流入した。-Amount of treated water: 1 m 3 / hour-Returned sludge amount: 0.3 m 3 / hour-Nitrification solution circulation rate: 2.0 m 3 / hour-Aeration rate: 30 Nm 3 / hour-MLSS: 2500 mg / liter- 100% of the water to be treated flowed into the anaerobic tank.
【0024】(c)処理結果 処理水の水質は、T−N:10〜20mg/リットル
(アンモニア:2〜5mg/リットル、酸化態窒素:8
〜13mg/リットル残留)、T−P:0.5〜1.2
mg/リットルであった。さらに、従来法の処理水量を
増加して滞留時間を13時間として処理したところ、処
理水T−Nは18〜25mg/リットル(アンモニアは
9〜17mg/リットル、酸化態窒素は6〜12mg/
リットル)、T−P:0.5〜1.5mg/リットルで
あった。(C) Treatment result The quality of the treated water is TN: 10 to 20 mg / liter (ammonia: 2 to 5 mg / liter, oxidized nitrogen: 8)
~ 13 mg / liter remaining), T-P: 0.5-1.2
It was mg / liter. Furthermore, when the amount of treated water of the conventional method was increased and the treatment time was set to 13 hours, treated water T-N was 18 to 25 mg / liter (ammonia was 9 to 17 mg / liter, oxidized nitrogen was 6 to 12 mg / liter).
Liter), TP: 0.5 to 1.5 mg / liter.
【0025】このように、本発明により従来法の50〜
80%の滞留時間で、窒素・りんを安定して処理するこ
とができた。また、無酸素槽汚泥の脱窒速度を従来法と
本発明の実施例1で比較したところ、従来法0.8〜
1.0mg/(g・hr)に対して、本発明では1.2
〜1.6mg/(g・hr)であり、本発明によって活
性汚泥の脱窒能力が向上したことが確認された。なお、
本発明のりん除去能力は、従来法よりも安定していた。Thus, according to the present invention, the conventional method of 50-
With 80% residence time, nitrogen and phosphorus could be stably treated. In addition, the denitrification rate of the oxygen-free tank sludge was compared between the conventional method and Example 1 of the present invention.
In contrast to 1.0 mg / (g · hr), 1.2 in the present invention.
It was confirmed that the present invention improved the denitrification capacity of activated sludge by the present invention. In addition,
The phosphorus removing ability of the present invention was more stable than the conventional method.
【0026】[0026]
【発明の効果】以上述べたように、本発明によれば窒
素、リン含有有機性排水の処理において、安定した脱窒
素、脱リンが可能である。また、脱窒素・脱りんに要す
る反応槽滞留時間は、担体を用いない場合で15〜30
%削減、担体を用いる場合では40〜60%削減でき、
高速の処理が行える。As described above, according to the present invention, stable denitrification and dephosphorization are possible in the treatment of nitrogen- and phosphorus-containing organic wastewater. In addition, the reaction tank residence time required for denitrification / dephosphorization is 15 to 30 when a carrier is not used.
%, 40-60% when using a carrier,
High-speed processing is possible.
【図1】本発明の処理方法を示すフロー図。FIG. 1 is a flowchart showing a processing method of the present invention.
【図2】本発明の他の処理方法を示すフロー図。FIG. 2 is a flowchart showing another processing method of the present invention.
【図3】従来の処理方法を示すフロー図。FIG. 3 is a flowchart showing a conventional processing method.
【図4】従来の他の処理方法を示すフロー図。FIG. 4 is a flowchart showing another conventional processing method.
1:嫌気工程、2:無酸素工程、3:好気工程、4:固
液分離工程、5:被処理水流入管、6:返送汚泥管、
7:循環ライン、8:処理水管、9:空気配管、10:
被処理水分注管、11:無酸素槽微生物担体、12:好
気槽微生物担体、13:余剰汚泥管1: Anaerobic process, 2: Oxygen-free process, 3: Aerobic process, 4: Solid-liquid separation process, 5: Treated water inflow pipe, 6: Return sludge pipe,
7: circulation line, 8: treated water pipe, 9: air pipe, 10:
Treated water injection pipe, 11: Oxygen tank microorganism carrier, 12: Aerobic tank microorganism carrier, 13: Excess sludge pipe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝倉 昇 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Katsukura 1-6-27 Konan, Minato-ku, Tokyo Ebara Inn Filco Co., Ltd.
Claims (2)
工程、固液分離工程に順次導入し、前記固液分離工程で
分離した汚泥を嫌気工程に返送すると共に、前記好気工
程処理液を無酸素工程へ循環する有機性排水の脱窒素・
脱リン方法において、被処理水の一部を無酸素工程に分
注することを特徴とする窒素・リン含有有機性排水の処
理方法。1. The treated water is sequentially introduced into an anaerobic process, an anoxic process, an aerobic process and a solid-liquid separation process, the sludge separated in the solid-liquid separation process is returned to the anaerobic process, and the aerobic process is performed. Denitrification of organic wastewater that circulates the treatment liquid to the anoxic process
In the dephosphorization method, a part of the water to be treated is dispensed in an anoxic process, which is a method for treating organic wastewater containing nitrogen and phosphorus.
微生物固定化担体を用いることを特徴とする請求項1記
載の窒素・リン含有有機性排水の処理方法。2. The aerobic process and / or the anoxic process,
The method for treating nitrogen / phosphorus-containing organic wastewater according to claim 1, wherein a microorganism-immobilized carrier is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10877293A JP3385063B2 (en) | 1993-04-13 | 1993-04-13 | Method and apparatus for treating organic wastewater containing nitrogen and phosphorus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10877293A JP3385063B2 (en) | 1993-04-13 | 1993-04-13 | Method and apparatus for treating organic wastewater containing nitrogen and phosphorus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06296991A true JPH06296991A (en) | 1994-10-25 |
JP3385063B2 JP3385063B2 (en) | 2003-03-10 |
Family
ID=14493100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10877293A Expired - Fee Related JP3385063B2 (en) | 1993-04-13 | 1993-04-13 | Method and apparatus for treating organic wastewater containing nitrogen and phosphorus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385063B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100235251B1 (en) * | 1996-11-30 | 1999-12-15 | 양인모 | Method for removing nitrogen and phosphorous biologically in wastewater |
KR100293529B1 (en) * | 1998-06-03 | 2001-10-26 | 임은태 | Wastewater Treatment System for Nitrogen Removal |
KR100325005B1 (en) * | 1999-03-25 | 2002-02-25 | 채문식 | Method of denitrification and denitrification for the purification of wastewater |
KR100321346B1 (en) * | 1999-02-05 | 2002-03-18 | 유철진 | Nutrient removal system by using fixed biofilm |
KR100346303B1 (en) * | 1999-06-02 | 2002-07-26 | 삼림종합건설 주식회사 | Nutrient removal process for fixed biofilm |
JP2004082107A (en) * | 2002-06-24 | 2004-03-18 | Kuraray Co Ltd | Equipment and method for treating waste water containing nitrogen-containing dyestuff |
KR100460851B1 (en) * | 2001-07-30 | 2004-12-09 | 뉴엔텍(주) | Sewage and wastewater treatment apparatus which is no need internal recycle |
JP2007083193A (en) * | 2005-09-26 | 2007-04-05 | Kazuo Murakami | Water purification method using microorganism immobilized carrier, and its water purification apparatus |
JP2014046301A (en) * | 2012-09-04 | 2014-03-17 | Toshiba Corp | Method for recovering phosphorus from a phosphorus-containing effluent and apparatus for the same |
JP2016501123A (en) * | 2012-11-16 | 2016-01-18 | アンジェイ ゴルチ | Mechanical equipment and methods for wastewater treatment |
-
1993
- 1993-04-13 JP JP10877293A patent/JP3385063B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100235251B1 (en) * | 1996-11-30 | 1999-12-15 | 양인모 | Method for removing nitrogen and phosphorous biologically in wastewater |
KR100293529B1 (en) * | 1998-06-03 | 2001-10-26 | 임은태 | Wastewater Treatment System for Nitrogen Removal |
KR100321346B1 (en) * | 1999-02-05 | 2002-03-18 | 유철진 | Nutrient removal system by using fixed biofilm |
KR100325005B1 (en) * | 1999-03-25 | 2002-02-25 | 채문식 | Method of denitrification and denitrification for the purification of wastewater |
KR100346303B1 (en) * | 1999-06-02 | 2002-07-26 | 삼림종합건설 주식회사 | Nutrient removal process for fixed biofilm |
KR100460851B1 (en) * | 2001-07-30 | 2004-12-09 | 뉴엔텍(주) | Sewage and wastewater treatment apparatus which is no need internal recycle |
JP2004082107A (en) * | 2002-06-24 | 2004-03-18 | Kuraray Co Ltd | Equipment and method for treating waste water containing nitrogen-containing dyestuff |
JP4663218B2 (en) * | 2002-06-24 | 2011-04-06 | 株式会社クラレ | Waste water treatment apparatus and treatment method containing nitrogen-containing dye |
JP2007083193A (en) * | 2005-09-26 | 2007-04-05 | Kazuo Murakami | Water purification method using microorganism immobilized carrier, and its water purification apparatus |
JP2014046301A (en) * | 2012-09-04 | 2014-03-17 | Toshiba Corp | Method for recovering phosphorus from a phosphorus-containing effluent and apparatus for the same |
JP2016501123A (en) * | 2012-11-16 | 2016-01-18 | アンジェイ ゴルチ | Mechanical equipment and methods for wastewater treatment |
Also Published As
Publication number | Publication date |
---|---|
JP3385063B2 (en) | 2003-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU659527B2 (en) | Biological process for removing bod and nitrogen from wastewater | |
US6139743A (en) | Wastewater treatment apparatus for removing nitrogen and phosphorus and method therefor | |
JP4224951B2 (en) | Denitrification method | |
JP3385063B2 (en) | Method and apparatus for treating organic wastewater containing nitrogen and phosphorus | |
JP4915036B2 (en) | Denitrification method and denitrification apparatus | |
JP2003285096A (en) | Simultaneous denitrification and dephosphorization type treatment method for wastewater | |
JPH10128389A (en) | Method and apparatus for waste water treatment | |
JPH0259000B2 (en) | ||
JPH08141597A (en) | Apparatus for treating waste water containing nitrogen and fluorine | |
JP3449862B2 (en) | Advanced purification method for organic wastewater | |
JPS6117558B2 (en) | ||
JPH08309366A (en) | Removal of nitrogen and phosphorus from waste water | |
JP2002018479A (en) | Method for removing nitrogen from water | |
JPS6052880B2 (en) | Biological denitrification and dephosphorization equipment for wastewater | |
JP3345873B2 (en) | Ammonia-containing wastewater treatment equipment | |
KR100632487B1 (en) | Gradually operated sequencing batch reactor and method thereof | |
JP2000325986A (en) | Waste water treatment apparatus having phosphorus removing process | |
JP3270652B2 (en) | Wastewater nitrogen removal method | |
JP3125628B2 (en) | Wastewater treatment method | |
JP2002192185A (en) | Biological dephosphorization apparatus | |
JP3271315B2 (en) | Wastewater treatment method | |
JPH1157778A (en) | Waste water treating device and treatment | |
JP2556409B2 (en) | Treatment of organic wastewater containing nitrogen and phosphorus | |
KR100318367B1 (en) | Waste water treatment apparatus | |
JP3222014B2 (en) | Biological water treatment method for wastewater containing ammonia nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |