JPH08141581A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH08141581A
JPH08141581A JP28481494A JP28481494A JPH08141581A JP H08141581 A JPH08141581 A JP H08141581A JP 28481494 A JP28481494 A JP 28481494A JP 28481494 A JP28481494 A JP 28481494A JP H08141581 A JPH08141581 A JP H08141581A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
treatment
waste water
wastewater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28481494A
Other languages
Japanese (ja)
Inventor
Kenichi Shishida
健一 宍田
Tamotsu Kodera
保 小寺
Harumi Yamada
春美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP28481494A priority Critical patent/JPH08141581A/en
Publication of JPH08141581A publication Critical patent/JPH08141581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To economically remove a hardly oxidizable substance in waste water. CONSTITUTION: Hydrogen peroxide is mixed with waste water and this waste water is irradiated with light having a spectrum within a wavelength region of below 185nm. Hydrogen peroxide is pref. added within a range of 0.5-50 times the concn. of CPDMn of waste water. A substantial decomposition required average time is usually 30min or less. This method is suitable for reducing COD or BOD of sewage, excretion, industrial waste water or secondary treated water of them, bleading water of a waste landfilling site and secondary treated water thereof or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水、し尿、産業廃水
やその二次処理水、廃棄物埋立地浸出水およびその二次
処理水を浄化する方法、とくにCODやBODを低減す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying sewage, night soil, industrial wastewater and its secondary treated water, waste landfill leachate and its secondary treated water, and more particularly to a method for reducing COD and BOD. .

【0002】[0002]

【従来の技術】従来、廃水の高度処理には、オゾン処
理、生物処理、膜処理、紫外線照射処理、活性炭処理、
塩素注入処理、過酸化水素処理などや、これらを組合せ
た各種の処理方法が、処理水の状態や浄化の目的に応じ
て選択、実施されている。
2. Description of the Related Art Conventionally, for advanced treatment of wastewater, ozone treatment, biological treatment, membrane treatment, ultraviolet irradiation treatment, activated carbon treatment,
Chlorine injection treatment, hydrogen peroxide treatment, and various treatment methods combining these treatments are selected and implemented according to the state of treated water and the purpose of purification.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の各種の
廃水処理方法は、いずれもCODを低減する作用が十分
でなかったり、大量の廃水処理には不向きであったり、
頻繁な部品交換や洗浄・再生が必要であったり、有機塩
素化合物が発生するおそれがあったり、設備費用やラン
ニングコストが高いなどの問題を抱えていた。これらの
中では、紫外線照射と過酸化水素処理との組合わせ、紫
外線照射とオゾン処理との組合せ、およびオゾン処理と
過酸化水素処理との組合せが、廃水中に酸化力の強いヒ
ドロキシラジカルを発生し、殆どの有機物を分解除去で
きる優れた酸化処理方法であるとして有望視されてい
る。本発明者は、さらにすぐれた方法を研究し、本発明
を完成した。
However, none of the above-mentioned various wastewater treatment methods has a sufficient effect of reducing COD, and is not suitable for treating a large amount of wastewater.
There were problems such as frequent parts replacement, cleaning and regeneration, the possibility of organic chlorine compounds being generated, and high equipment costs and running costs. Among these, the combination of ultraviolet irradiation and hydrogen peroxide treatment, the combination of ultraviolet irradiation and ozone treatment, and the combination of ozone treatment and hydrogen peroxide treatment generate hydroxy radicals with strong oxidizing power in wastewater. However, it is considered promising as an excellent oxidation treatment method capable of decomposing and removing most organic substances. The present inventor has researched further excellent methods and completed the present invention.

【0004】[0004]

【課題を解決するための手段】本発明は、廃水に過酸化
水素を混入し、かつ、185nm未満の波長領域にスペ
クトルを有する光を廃水に照射することを特徴とする廃
水処理方法を提供する。本発明の処理方法を採用する際
の過酸化水素は、通常、処理対象となる廃水のCODMn
濃度の0.5〜50倍の範囲内で添加するとよい。
The present invention provides a method for treating wastewater, which comprises mixing hydrogen peroxide into the wastewater and irradiating the wastewater with light having a spectrum in a wavelength region of less than 185 nm. . Hydrogen peroxide used in the treatment method of the present invention is usually COD Mn of the wastewater to be treated.
It may be added within the range of 0.5 to 50 times the concentration.

【0005】[0005]

【作用と実施態様例】本発明を図面を参照して詳細に説
明する。図1は、本発明の実施態様例を示す概略フロー
シートである。本発明において、処理対象の廃水は、た
とえば、廃水配管から直接、あるいは、一旦、廃水タン
ク1に貯えた後、本発明の処理前に、廃水中の懸濁固体
粒子などを除去するため、必要に応じ固液分離装置2に
送られる。廃水中の懸濁固体粒子などを除去する目的
は、これらを汚染物質として除去する目的に加え、液中
に照射した紫外線が懸濁固体粒子などによって吸収さ
れ、照射効率が低下し所期の結果が得られなくなるのを
防止するためでもある。固液分離装置2は、分離する物
質の性状によって適宜に選択すればよく、シックナーな
どの沈降分離、遠心分離機、ろ過、限外ろ過などの膜ろ
過などを単独または組合わせて利用することができる。
分離を容易にするために凝集剤を使用してもよい。懸濁
物質などが含まれていない廃水を処理する場合には、通
常、固液分離などの予備処理を施すことなく、本発明を
実施してよい。
The present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic flow sheet showing an embodiment of the present invention. In the present invention, the wastewater to be treated is necessary, for example, directly from the wastewater pipe or after being temporarily stored in the wastewater tank 1 to remove suspended solid particles and the like in the wastewater before the treatment of the present invention. Is sent to the solid-liquid separator 2. In addition to the purpose of removing suspended solid particles in wastewater as pollutants, the ultraviolet rays irradiated in the liquid are absorbed by the suspended solid particles and the irradiation efficiency decreases and the desired result is obtained. This is also to prevent the loss of The solid-liquid separation device 2 may be appropriately selected according to the properties of the substance to be separated, and sedimentation separation such as thickener, centrifugal separation, membrane filtration such as filtration and ultrafiltration may be used alone or in combination. it can.
Flocculants may be used to facilitate separation. When treating wastewater that does not contain suspended solids, the present invention may be carried out without any pretreatment such as solid-liquid separation.

【0006】本発明では、処理する廃水に過酸化水素を
添加し、紫外線を照射する。本発明に使用する過酸化水
素は、市販の過酸化水素水を用い、または、過酸化水素
の製造装置3で製造し供給してもよい。過酸化水素は、
紫外線照射前に、または、紫外線を照射すると同時に添
加する。たとえば、紫外線を照射する反応槽などに攪拌
機を取り付け、攪拌しながら過酸化水素を添加してもよ
い。しかし、紫外線の照射効率を高めるには、紫外線照
射前に過酸化水素を添加し、過酸化水素単独でも分解で
きる不純物をあらかじめ除去しておくことが望ましい。
過酸化水素と廃水とは、反応を速やかに進行させるため
に、たとえば、スタティックミキサー、ラインミキサ
ー、エジェクター、攪拌槽などの混合器4を利用し、十
分に攪拌し、混合する。さらに、混合液に所定の波長領
域にスペクトルを有する紫外線を照射する。過酸化水素
は、排水の性状によって最適な添加量が異なるので一概
に規定することはできないが、通常、排水のCODMn
度の0.5〜50倍の範囲内で添加する。過酸化水素の
添加量が0.5倍以下では処理が十分に進行しにくく、
また、50倍以上添加しても過酸化水素が自己分解して
消費される割合が多くなり、処理コストが高くなり好ま
しくない。
In the present invention, hydrogen peroxide is added to the wastewater to be treated and irradiated with ultraviolet rays. The hydrogen peroxide used in the present invention may be a commercially available hydrogen peroxide solution, or may be produced and supplied by the hydrogen peroxide producing apparatus 3. Hydrogen peroxide
Add before UV irradiation or at the same time as UV irradiation. For example, a stirrer may be attached to a reaction tank that radiates ultraviolet rays, and hydrogen peroxide may be added while stirring. However, in order to increase the irradiation efficiency of ultraviolet rays, it is desirable to add hydrogen peroxide before the irradiation of ultraviolet rays to remove impurities that can be decomposed by hydrogen peroxide alone.
The hydrogen peroxide and the waste water are sufficiently stirred and mixed with each other by using a mixer 4 such as a static mixer, a line mixer, an ejector, and a stirring tank in order to rapidly proceed the reaction. Further, the mixed liquid is irradiated with ultraviolet rays having a spectrum in a predetermined wavelength region. The optimum addition amount of hydrogen peroxide varies depending on the properties of the wastewater, so it cannot be specified unconditionally, but it is usually added within the range of 0.5 to 50 times the COD Mn concentration of the wastewater. If the amount of hydrogen peroxide added is 0.5 times or less, it is difficult for the treatment to proceed sufficiently,
Further, even if it is added 50 times or more, the ratio of hydrogen peroxide to be self-decomposed and consumed increases, and the processing cost becomes high, which is not preferable.

【0007】本発明においては、100〜185nmの
波長領域にスペクトルを有する紫外線を利用する。した
がって、光源6には、100〜185nmの波長領域に
スペクトルを有する紫外線を発生する紫外線ランプを利
用する。なお、100nm以下の波長領域にスペクトル
をもつ紫外線を利用しても、これを透過させる適当な窓
材がないため、実用上、100nm以下の波長の光は水
処理用に役立たない。したがって、100nm以下の波
長を発光する光源は、その分、エネルギーの利用効率が
低下し、好ましくない。光源6は、同時に185nmよ
りも長波長の光を発生してもよいが、その割合が多くな
ると、水処理に費されるエネルギー比が低くなり、同じ
エネルギーを消費しても廃水中の不純物の分解効率が低
下する。光源6として、低圧水銀ランプ、重水素放電
管、キセノンランプ、真空紫外線光源などを用いること
ができる。これらの中では、紫外線の発生効率や耐久性
の点から低圧水銀ランプが好ましい。好ましい照射量
は、廃水の組成によって大きく異なるため、一概に規定
できないが、通常は千〜一千万μW・s/cm2 の範囲
内である。
In the present invention, ultraviolet rays having a spectrum in the wavelength region of 100 to 185 nm are used. Therefore, as the light source 6, an ultraviolet lamp that emits ultraviolet light having a spectrum in the wavelength region of 100 to 185 nm is used. Even if ultraviolet rays having a spectrum in the wavelength region of 100 nm or less are used, light having a wavelength of 100 nm or less is not practically useful for water treatment because there is no suitable window material for transmitting the ultraviolet rays. Therefore, a light source that emits a wavelength of 100 nm or less is not preferable because the efficiency of energy use is reduced accordingly. The light source 6 may generate light with a wavelength longer than 185 nm at the same time, but if the ratio is large, the energy ratio consumed for water treatment will be low, and even if the same energy is consumed, impurities in the wastewater will be lost. Decomposition efficiency decreases. As the light source 6, a low pressure mercury lamp, a deuterium discharge tube, a xenon lamp, a vacuum ultraviolet light source or the like can be used. Among these, the low-pressure mercury lamp is preferable from the viewpoint of efficiency of generating ultraviolet rays and durability. The preferable irradiation amount varies greatly depending on the composition of the waste water and cannot be specified unconditionally, but it is usually in the range of 10 to 10 million μW · s / cm 2 .

【0008】紫外線照射装置5には、たとえば、紫外線
ランプを挿入した反応槽や管状反応器、紫外線の透過材
料で製作した管を紫外線ランプ巻き付けた外部照射形の
管状反応器を用いることができる。本発明に利用する紫
外線照射装置5の光源6側は、波長185nm以下の紫
外線の透過率を50%以上は確保できるように、装置材
料を選定し設計することが好ましい。さらに装置材料と
しては、廃水や過酸化水素に耐久性が要求される。具体
的には、たとえば、溶融石英、フッ化リチウム、フッ化
マグネシウムを使用することができる。処理を終えた廃
水は処理水配管7から系外に取り出される。
As the ultraviolet irradiation device 5, for example, a reaction tank or a tubular reactor in which an ultraviolet lamp is inserted, or an external irradiation type tubular reactor in which a tube made of an ultraviolet transmitting material is wrapped with an ultraviolet lamp can be used. On the light source 6 side of the ultraviolet irradiation device 5 used in the present invention, it is preferable to select and design the device material so that the transmittance of ultraviolet light having a wavelength of 185 nm or less can be secured at 50% or more. Further, as a device material, durability is required for waste water and hydrogen peroxide. Specifically, for example, fused quartz, lithium fluoride, or magnesium fluoride can be used. The treated wastewater is taken out of the system through the treated water pipe 7.

【0009】廃水に過酸化水素を添加してから放流する
までの分解反応時間、すなわち、過酸化水素による廃水
中の不純物の実質的分解所要平均時間は、廃水の性状に
よって大きく異なるが、通常、30分以下である。しか
し、分解反応時間をあまり短くすると、所定の処理レベ
ルに到達させるために、過酸化水素単独で分解可能な物
質までも、紫外線照射によって発生したヒドロキシラジ
カルによって酸化することになり、ランニングコストを
上昇させる場合がある。また、必要以上に分解反応時間
を長くすると、過酸化水素が自己分解する割合が大きく
なり、過酸化水素の使用量が増加してコスト高の原因に
なる。分解反応時間は、過酸化水素を添加する際や分解
反応時の廃水を乱流状態に保つことによって、短縮する
ことができる。
The decomposition reaction time from the addition of hydrogen peroxide to wastewater to the discharge thereof, that is, the average time required for the substantial decomposition of impurities in the wastewater by hydrogen peroxide, varies greatly depending on the properties of the wastewater. 30 minutes or less. However, if the decomposition reaction time is too short, even the substances that can be decomposed with hydrogen peroxide alone will be oxidized by the hydroxy radicals generated by UV irradiation in order to reach the prescribed processing level, which will increase the running cost. There is a case to let. Further, if the decomposition reaction time is made longer than necessary, the rate of self-decomposition of hydrogen peroxide increases, and the amount of hydrogen peroxide used increases, which causes a high cost. The decomposition reaction time can be shortened by adding hydrogen peroxide or by keeping the wastewater in the decomposition reaction in a turbulent state.

【0010】本発明を実施する際の廃水温度は、廃水が
液槽を保つ状態であればとくに限定する理由はない。し
かし、廃水温度が高いほど反応速度が速くなるものの、
過酸化水素が自己分解する割合も増加し、また、紫外線
ランプにも照射最適温度があるので、これらの条件を勘
案し適当な処理温度を選定する。
There is no particular reason to limit the temperature of waste water when the present invention is carried out, as long as the waste water keeps the liquid tank. However, although the reaction speed increases as the wastewater temperature increases,
Since the rate of hydrogen peroxide self-decomposition also increases, and the ultraviolet lamp also has the optimum irradiation temperature, an appropriate treatment temperature is selected in consideration of these conditions.

【0011】[0011]

【実施例】本発明を、実施例をあげて具体的に説明す
る。なお、COD処理効率(%)は、JIS K010
2に規定する方法に準拠して測定した被処理水および処
理水のCODMn濃度を用い、次式によって算出した値で
ある。
EXAMPLES The present invention will be specifically described with reference to examples. The COD treatment efficiency (%) is based on JIS K010
It is a value calculated by the following equation using the COD Mn concentrations of the water to be treated and the treated water measured according to the method specified in 2.

【0012】COD処理効率(%)={1−処理水CO
Mn濃度(mg/l)/被処理水CODMn濃度(mg/l)}×10
0 実施例1 本発明を利用してCODMn濃度120mg/lのし尿二
次処理水の処理試験を実施した。し尿二次処理水1リッ
トル当り、過酸化水素を100mgの割合で添加し、過
酸化水素添加から、紫外線照射槽までの平均滞留時間を
10分、紫外線照射槽内の平均滞留時間を10分とし
た。なお、過酸化水素混合器は直立円筒形であって、被
処理水は過酸化水素を添加した後、筒内を下降流で通過
させた。紫外線照射装置にも、紫外線ランプを軸方向に
挿入して取り付けた円筒形の反応槽を用い、被処理水に
まんべんなく紫外線を吸収させながら、紫外線ランプの
周囲を上向流で通過させた。紫外線の光源には253.
7nmおよび184.9nmを主波長とする30Wの低
圧水銀ランプを用いた。処理後のCODMn濃度を測定し
た。得られたCOD処理効率を表1に示す。
COD treatment efficiency (%) = {1-treated water CO
D Mn concentration (mg / l) / treated water COD Mn concentration (mg / l)} × 10
0 Example 1 A treatment test of secondary treated human waste water having a COD Mn concentration of 120 mg / l was carried out using the present invention. Hydrogen peroxide was added at a ratio of 100 mg per 1 liter of human waste secondary treated water, and the average residence time from the addition of hydrogen peroxide to the ultraviolet irradiation tank was 10 minutes, and the average residence time in the ultraviolet irradiation tank was 10 minutes. did. The hydrogen peroxide mixer had an upright cylindrical shape, and the water to be treated was passed through the inside of the cylinder in a descending flow after adding hydrogen peroxide. A cylindrical reaction tank in which an ultraviolet lamp was inserted by inserting it in the axial direction was also used for the ultraviolet irradiation device, and the treated water was allowed to pass through the periphery of the ultraviolet lamp in an upward flow while uniformly absorbing the ultraviolet light. The light source of ultraviolet rays is 253.
A 30 W low-pressure mercury lamp having main wavelengths of 7 nm and 184.9 nm was used. The COD Mn concentration after the treatment was measured. The obtained COD treatment efficiency is shown in Table 1.

【0013】比較例1 過酸化水素を添加しなかった以外は、実施例1と同様の
方法で同じ廃水を処理し、処理後のCODMn濃度を測定
した。得られたCOD処理効率を表1に示す。
Comparative Example 1 The same wastewater was treated in the same manner as in Example 1 except that hydrogen peroxide was not added, and the COD Mn concentration after the treatment was measured. The obtained COD treatment efficiency is shown in Table 1.

【0014】比較例2 光源の低圧水銀ランプを点灯しなかった以外は、実施例
1と同様の方法で同じ廃水を処理し、処理後のCODMn
濃度を測定した。得られた処理COD効率を表1に示
す。
Comparative Example 2 The same wastewater was treated in the same manner as in Example 1 except that the low-pressure mercury lamp of the light source was not turned on, and the treated COD Mn was treated.
The concentration was measured. The obtained treated COD efficiency is shown in Table 1.

【0015】比較例3 光源に、253.7nmを主波長とし、184.9nm
の波長の光を発しない30Wの低圧水銀ランプを用いた
以外は、実施例1と同様の方法を用い、同じ廃水を処理
し、処理後の廃水のCODMn濃度を測定した。得られた
COD処理効率を表1に示す。
Comparative Example 3 A light source having a main wavelength of 253.7 nm and a wavelength of 184.9 nm
The same wastewater was treated in the same manner as in Example 1 except that a 30 W low-pressure mercury lamp that did not emit light of the above wavelength was used, and the COD Mn concentration of the treated wastewater was measured. The obtained COD treatment efficiency is shown in Table 1.

【0016】[0016]

【表1】 実施例1 比較例1 比較例2 比較例3 COD処理効率(%) 76 52 2 23Table 1 Example 1 Comparative example 1 Comparative example 2 Comparative example 3 COD treatment efficiency (%) 76 52 2 23

【0017】[0017]

【発明の効果】本発明を利用すれば、従来の紫外線照
射、オゾン酸化や過酸化水素による酸化処理などの処理
方法単独では処理できなかった難酸化性物質を分解でき
る。とくに、波長が185nm以上の波長の光を利用す
ることによって、従来の過酸化水素と185nm以上の
波長の光を利用する処理方法よりも効率が飛躍的に上昇
するという極めてすぐれた効果を奏する。また、オゾン
処理のように排ガス処理装置を必要とせず、経済的で安
全な処理手段である。下水、し尿、産業廃水やその二次
処理水、廃棄物埋立地浸出水およびその二次処理水など
のCODやBODを低減するのに好適である。
EFFECTS OF THE INVENTION By utilizing the present invention, it is possible to decompose hardly oxidizable substances which cannot be treated by conventional treatment methods such as ultraviolet irradiation, ozone oxidation and oxidation treatment with hydrogen peroxide alone. In particular, the use of light having a wavelength of 185 nm or more has an extremely excellent effect that the efficiency is dramatically increased as compared with the conventional treatment method using hydrogen peroxide and light having a wavelength of 185 nm or more. Further, unlike the ozone treatment, it does not require an exhaust gas treatment device and is an economical and safe treatment means. It is suitable for reducing COD and BOD of sewage, night soil, industrial wastewater and its secondary treated water, waste landfill leachate and its secondary treated water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の実施態様例を示す概略
フローシート。
FIG. 1 is a schematic flow sheet showing an exemplary embodiment of an apparatus for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1:廃水タンク 2:固液分離装置 3:過酸化水素製造装置 4:混合器 5:紫外線
照射装置 6:光源(紫外線ランプ) 7:処理済水配管
1: Waste water tank 2: Solid-liquid separation device 3: Hydrogen peroxide production device 4: Mixer 5: Ultraviolet irradiation device 6: Light source (ultraviolet lamp) 7: Treated water pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃水に過酸化水素を混入し、かつ、185
nm未満の波長領域にスペクトルを有する光を廃水に照
射することを特徴とする廃水処理方法。
1. A method in which hydrogen peroxide is mixed with waste water, and 185
A wastewater treatment method, which comprises irradiating the wastewater with light having a spectrum in a wavelength region of less than nm.
JP28481494A 1994-11-18 1994-11-18 Treatment of waste water Pending JPH08141581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28481494A JPH08141581A (en) 1994-11-18 1994-11-18 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28481494A JPH08141581A (en) 1994-11-18 1994-11-18 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH08141581A true JPH08141581A (en) 1996-06-04

Family

ID=17683362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28481494A Pending JPH08141581A (en) 1994-11-18 1994-11-18 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH08141581A (en)

Similar Documents

Publication Publication Date Title
Sharma et al. Studies on degradation of reactive red 135 dye in wastewater using ozone
JP2005058854A (en) Method and apparatus for waste water treatment
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
JP3867326B2 (en) Ozone treatment method for activated sludge process water
CN107585970A (en) The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JPH06277660A (en) Water treatment apparatus
JPH10305287A (en) Ozone catalytic reactor
NL2026394B1 (en) Wastewater ozone treatment
JP2006272080A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JPH08141581A (en) Treatment of waste water
JP2000157972A (en) Device for advanced sewage treatment
JP2003080274A (en) Treatment method and equipment for sewage
JP3704761B2 (en) Water treatment equipment
JP3547573B2 (en) Water treatment method
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JP2001170672A (en) Waste water treatment method
JP4522302B2 (en) Detoxification method of organic arsenic
JP3963533B2 (en) Water treatment method
JP3859866B2 (en) Water treatment method
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2000354892A (en) Treatment apparatus of hardly decomposable organic matter-containing water
CN103833168B (en) Chemical microwave treatment method of industrial methyldiethanolamine wastewater
JP3566143B2 (en) How to remove dioxins from sewage
JP3624625B2 (en) Water purification method using excimer ultraviolet lamp