JPH08138686A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH08138686A
JPH08138686A JP27638994A JP27638994A JPH08138686A JP H08138686 A JPH08138686 A JP H08138686A JP 27638994 A JP27638994 A JP 27638994A JP 27638994 A JP27638994 A JP 27638994A JP H08138686 A JPH08138686 A JP H08138686A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrolyte battery
aqueous electrolyte
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27638994A
Other languages
Japanese (ja)
Other versions
JP3058031B2 (en
Inventor
Akihiro Sano
晃寛 佐野
Shuichi Nishino
秀一 西野
Fumio Oo
文夫 大尾
Hidesuke Oguro
秀祐 小黒
Masatsugu Kondo
正嗣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27638994A priority Critical patent/JP3058031B2/en
Publication of JPH08138686A publication Critical patent/JPH08138686A/en
Application granted granted Critical
Publication of JP3058031B2 publication Critical patent/JP3058031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE: To provide a battery which can be stored or used in a high- temperature environment, a high-temperature and high-humidity environment or the like by enhancing the heat resistant performance of a gasket material, an electrolyte and a separator material in a nonaqueous electrolyte battery in which lithium is adopted as a negative electrode active material and graphite fluoride is adopted as a positive electrode active material. CONSTITUTION: A perfluoroalkoxyresin(PFA) resin is used for a gasket material and lithium salt is dissolved into an organic solvent having the boiling point of not less than 170 deg.C for an electrolyte and a glass fiber nonwoven fabric is used for the material of a separator 4. Thereby, a battery is obtained which can be stored or used in a high-temperature environment, a high-temperature and high-humidity environment or the like. Particularly, the average diameter of the fiber of the glass nonwoven fabric used for the material of the separator 4 is made not more than 2μm and a metsuke weight is made 5.0 to 9.0g/m<2> and an average hole diameter is made 3.0 to 7.5μm. Thereby, a liquid leakage at the time of sealing a battery can be prevented, so that a battery having stable discharge characteristic may be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽金属あるいはこの合金
を負極活物質とし、金属酸化物あるいはハロゲン化物を
正極活物質とする非水電解液電池に関し、特に高温環
境、高温多湿環境、温度差による熱衝撃等に耐えうるガ
スケット材料、非水電解液、セパレータ材料の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery using a light metal or an alloy thereof as a negative electrode active material and a metal oxide or a halide as a positive electrode active material, particularly in a high temperature environment, a high temperature and high humidity environment, and a temperature difference. The present invention relates to improvements in gasket materials, non-aqueous electrolyte solutions, and separator materials that can withstand thermal shock and the like.

【0002】[0002]

【従来の技術】非水電解液電池、特にフッ化黒鉛リチウ
ム電池は、常温で10年以上という長期保存特性に優れ
ていることによりメモリーバックアップ用の電源として
広く用いられている。最近では、自動車、産業機器等の
高温環境下での使用用途が要望されている。また、他の
電子部品同様、回路基盤上へハンダリフローできるよ
う、これらの電池が高温環境下にさらされた後も、電池
特性を維持できるよう求められている。
2. Description of the Related Art Non-aqueous electrolyte batteries, especially lithium graphite fluoride batteries, are widely used as a power source for memory backup because they have excellent long-term storage characteristics of 10 years or longer at room temperature. Recently, there has been a demand for use in high temperature environments such as automobiles and industrial equipment. In addition, like other electronic components, it is required that these batteries can maintain their battery characteristics even after being exposed to a high temperature environment so that they can be reflowed onto a circuit board.

【0003】このような要求を満たすため、例えばUS
P5,246,795、特公平5−58232号公報に
記載されているような改良、つまり電池構成材料の改良
が試みられているが十分なものではなかった。
To meet such requirements, for example, US
P5,246,795 and Japanese Patent Publication No. 5-58232 have been attempted to improve, that is, the battery constituent material, but it has not been sufficient.

【0004】ここで、従来のフッ化黒鉛リチウム電池の
構成について説明する。図1は従来のフッ化黒鉛リチウ
ム電池の一例として直径12.5mm、厚さ2.5mm
のコイン形フッ化黒鉛リチウム電池(BR1225)の
構成断面図を示すものである。図1において、1はステ
ンレス鋼よりなる封口板、2はリチウム金属からなる負
極、3はフッ化黒鉛を主成分とする正極、4はポリプロ
ピレン(以下、PPと略記する)不織布よりなるセパレ
ータ、5はステンレス鋼よりなる電池ケース、6はPP
樹脂からなるガスケット、7はチタン金属の集電体であ
る。電解液は、高沸点溶媒のγ−ブチロラクトン(以
下、GBLと略記する)、もしくはプロピレンカーボネ
イト(以下、PCと略記する)と、低沸点溶媒のジメト
キシエタン(以下、DMEと略記する)を混合した溶媒
中に、溶質濃度1.00mol/lとなるようにホウフ
ッ化リチウム(LiBF4)を溶解させたものである。
The structure of a conventional graphite fluoride lithium battery will be described below. Figure 1 shows an example of a conventional lithium graphite fluoride battery with a diameter of 12.5 mm and a thickness of 2.5 mm.
FIG. 3 is a sectional view showing the configuration of a coin type lithium graphite fluoride battery (BR1225). In FIG. 1, 1 is a sealing plate made of stainless steel, 2 is a negative electrode made of lithium metal, 3 is a positive electrode whose main component is fluorinated graphite, 4 is a separator made of polypropylene (hereinafter abbreviated as PP) nonwoven fabric, 5 Is a battery case made of stainless steel, 6 is PP
A gasket made of resin, 7 is a titanium metal current collector. The electrolytic solution was a mixture of γ-butyrolactone (hereinafter abbreviated as GBL) or propylene carbonate (hereinafter abbreviated as PC) that is a high boiling point solvent, and dimethoxyethane (hereinafter abbreviated as DME) that was a low boiling point solvent. Lithium borofluoride (LiBF 4 ) was dissolved in a solvent to a solute concentration of 1.00 mol / l.

【0005】上記の構成のフッ化黒鉛リチウム電池にお
いて、正極は450℃〜650℃まで熱には安定なフッ
化黒鉛を活物質に用い、負極は181℃の融点まで熱に
は安定なリチウム金属を活物質としている。また、放電
生成物であるリチウムフロライド(LiF)は850℃
まで熱には安定である。
In the lithium graphite fluoride battery having the above structure, the positive electrode uses graphite fluoride which is stable to heat from 450 ° C. to 650 ° C. as an active material, and the negative electrode is lithium metal which is stable to heat up to the melting point of 181 ° C. Is used as the active material. In addition, the discharge product lithium fluoride (LiF) was 850 ° C.
It is stable to heat.

【0006】一般にコイン形、ボタン形、円筒形等のリ
チウム電池において、その電池形状に関わらず、正極端
子を兼ねる金属容器、負極端子を兼ねる金属容器の間
に、絶縁機能を持つガスケットを配置しなければならな
い。ガスケットは、正負極端子を兼ねる金属容器の絶縁
機能と、発電要素が電池外部に出ることや、また外部空
気の電池内部への侵入することを防ぐように密閉保持さ
れる機能を持つ。しかし、高温環境下、熱衝撃等により
ガスケット材料、正負金属容器材料の熱膨脹差から微細
な間隙が生じ、電解液の蒸発、漏液、また電池内部への
外部空気、水分等の侵入により、電池性能は劣化する。
Generally, in a coin-shaped, button-shaped, cylindrical, etc. lithium battery, regardless of the battery shape, a gasket having an insulating function is arranged between a metal container also serving as a positive electrode terminal and a metal container also serving as a negative electrode terminal. There must be. The gasket has an insulating function of the metal container that also serves as the positive and negative electrode terminals, and a function of hermetically holding the power generation element so as to prevent the power generation element from coming out of the battery and the outside air from entering the inside of the battery. However, in a high temperature environment, due to thermal shock or the like, a minute gap is generated due to the difference in thermal expansion between the gasket material and the positive and negative metal container materials, and the electrolyte may evaporate and leak, and external air or water may enter the battery, causing Performance deteriorates.

【0007】[0007]

【発明が解決しようとする課題】上記に示す従来のコイ
ン形フッ化黒鉛リチウム電池の構成では、−40℃〜6
0℃の温度範囲で使用あるいは保存が可能である。しか
しながら、60℃以上の高温保存や熱衝撃負荷による電
池性能劣化の原因として、図1におけるA部の電池の封
口かしめ部(ガスケットと封口板、ガスケットと電池ケ
ースとの接触部)に生ずる間隙から、電池内部からの電
解液の蒸発、漏液、あるいは電池内部への外部空気、水
分等の侵入がある。特に、電解液の溶媒としてDMEの
ような沸点が83℃と比較的低い溶媒を使用した場合、
83℃以上の温度で極めて容易にガス化し、前述した封
口かしめ部の微細な間隙から容易に電池外部へ溶媒が飛
散し、電池性能を著しく劣化させる。あるいは、外部空
気、水分等が侵入した場合、電池内部の発電要素の中で
も特に水と化学反応を起こしやすいリチウム表面に、発
電反応を阻害する酸化物、水酸化物等の被膜が形成さ
れ、特に内部抵抗値の急激な増加により電池性能を低下
させる。
In the structure of the conventional coin type lithium graphite fluoride battery as described above, -40 ° C. to 6 ° C.
It can be used or stored in the temperature range of 0 ° C. However, as a cause of deterioration of battery performance due to high temperature storage of 60 ° C. or more and thermal shock load, there is a gap generated in the part A in FIG. 1 at the battery caulking part (contact part between gasket and sealing plate, gasket and battery case). The electrolyte may evaporate or leak from the inside of the battery, or external air or moisture may enter the inside of the battery. In particular, when a solvent having a relatively low boiling point of 83 ° C. such as DME is used as the solvent of the electrolytic solution,
It is extremely easily gasified at a temperature of 83 ° C. or higher, and the solvent easily scatters to the outside of the battery through the above-mentioned minute gaps in the sealing and caulking portion, which significantly deteriorates the battery performance. Alternatively, when external air, moisture or the like enters, the lithium surface, which is particularly susceptible to a chemical reaction with water among the power generation elements inside the battery, forms a film such as an oxide or a hydroxide that inhibits the power generation reaction, particularly Battery performance deteriorates due to a rapid increase in internal resistance.

【0008】また、ガスケット、セパレータの材料とし
て用いているPPは、その連続最高使用温度が約65℃
であり、したがって、65℃以上での使用時、あるいは
高温保存時、熱により樹脂の酸化や、電解液の樹脂内部
への浸透、拡散等により複合的な劣化をはじめ、ガスケ
ットの場合、本来の絶縁・密閉機能が、セパレータの場
合、絶縁・電解液の保持機能が損なわれ電池性能は著し
く低下する。この現象は、その環境温度が高くなるほど
劣化の度合いは大きくなり、170℃の環境下ではPP
樹脂が溶融し、ガスケット、セパレータ共、前記の機能
は失われ、電池特性は示さなくなる。
PP used as a material for gaskets and separators has a continuous maximum operating temperature of about 65 ° C.
Therefore, when used at 65 ° C. or higher, or when stored at high temperature, the resin deteriorates due to heat and the composite deterioration begins due to permeation and diffusion of the electrolyte into the resin. If the insulating / sealing function is a separator, the insulating / electrolyte holding function is impaired and the battery performance is significantly reduced. This phenomenon shows that the degree of deterioration increases as the ambient temperature increases, and PP increases in the environment of 170 ° C.
The resin melts, the above functions of both the gasket and the separator are lost, and the battery characteristics are not exhibited.

【0009】本発明はこれらの問題点を解決するもの
で、高温環境下や熱衝撃等で使用、あるいは保存が可能
である非水電解液電池を提供することを目的とする。
The present invention solves these problems, and an object of the present invention is to provide a non-aqueous electrolyte battery which can be used or stored in a high temperature environment or under thermal shock.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明は、リチウム、ナトリウム、マグネシウム等の
軽金属、あるいはこれらの合金からなる負極活物質、酸
化銅、三酸化モリブデン、二酸化マンガン等の金属酸化
物、フッ化黒鉛等のハロゲン化物等を正極活物質とする
非水電解液電池において、正極端子と負極端子の間に介
在するガスケットとしてパーフルオロアルコキシ(PF
A)樹脂を用い、非水電解液として沸点が170℃以上
の有機溶媒を単体、もしくは混合物に、溶質として無機
塩を溶解させ、セパレータとして平均繊維径2μm以
下、目付重量5.0〜9.0g/m 2、平均孔径3.0
〜7.5μmのガラス繊維材を用いる構成である。
[Means for Solving the Problems] To achieve this object
In the present invention, lithium, sodium, magnesium, etc.
Negative electrode active material composed of light metals or their alloys, acid
Oxidation of metals such as copper oxide, molybdenum trioxide and manganese dioxide
Substances, halides such as fluorinated graphite, etc. as positive electrode active materials
In non-aqueous electrolyte batteries, insert between the positive and negative terminals.
Perfluoroalkoxy (PF)
A) Resin is used and the boiling point of the non-aqueous electrolyte is 170 ° C or higher.
Inorganic solvent as a solute, or as a solute
Dissolve salt and use as separator a mean fiber diameter of 2 μm or less
Below, basis weight 5.0 to 9.0 g / m 2, Average pore diameter 3.0
It is a configuration using a glass fiber material of ˜7.5 μm.

【0011】[0011]

【作用】以上のような構成とすることで、電池を高温下
において使用、あるいは保存する場合に封口かしめ部分
における微細な間隙の発生を防止し、また電解液中にリ
チウム塩からなる溶質を高沸点溶媒に適量溶解させたも
のを使用し、セパレータ材料とて平均繊維径2μm以
下、好ましくは0.3〜1.5μm、目付重量5.0〜
9.0g/m2、平均孔径3.0〜7.5μmのガラス
繊維材を用いることにより、電解液の熱安定性ならびに
封口時における直後漏液の防止が図れるので、耐漏液性
の一層の向上を確保することができ、電池特性の優れた
電池を提供することができる。
With the above structure, when the battery is used or stored at a high temperature, a fine gap is prevented from being generated in the caulking portion of the seal, and the solute containing the lithium salt is contained in the electrolytic solution at a high level. An appropriate amount dissolved in a boiling point solvent is used, and as a separator material, an average fiber diameter of 2 μm or less, preferably 0.3 to 1.5 μm, and a basis weight of 5.0 to
By using a glass fiber material having 9.0 g / m 2 and an average pore diameter of 3.0 to 7.5 μm, the thermal stability of the electrolytic solution and the leakage immediately after sealing can be prevented, so that the leakage resistance is further improved. The improvement can be ensured, and a battery having excellent battery characteristics can be provided.

【0012】[0012]

【実施例】本発明の実施例を図を参照しながら説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

【0013】(実施例1)正極はフッ化黒鉛を、負極は
リチウム金属を、ガスケットはPFA樹脂を、電解液は
GBLにLiBF4を1.00mol/l溶解したもの
を、セパレータはガラス繊維不織布を用いて、図1のよ
うな電池を組立てた。
(Example 1) A positive electrode is made of fluorinated graphite, a negative electrode is made of lithium metal, a gasket is made of PFA resin, an electrolytic solution is made by dissolving LiBF 4 in 1.00 mol / l in GBL, and a separator is made of glass fiber non-woven fabric. Was used to assemble a battery as shown in FIG.

【0014】(比較例1)ガスケットをPEK樹脂にし
た以外は、実施例1と同じ構成である。
(Comparative Example 1) The structure is the same as that of Example 1 except that the gasket is made of PEK resin.

【0015】(比較例2)ガスケットをPEEK樹脂に
した以外は、実施例1と同じ構成である。
(Comparative Example 2) The structure is the same as that of Example 1 except that the gasket is made of PEEK resin.

【0016】(比較例3)ガスケットをPES樹脂にし
た以外は、実施例1と同じ構成である。
(Comparative Example 3) The structure is the same as that of Example 1 except that the gasket is made of PES resin.

【0017】(比較例4)ガスケットをPSu樹脂にし
た以外は、実施例1と同じ構成である。
(Comparative Example 4) The structure is the same as that of Example 1 except that the gasket is made of PSu resin.

【0018】(比較例5)ガスケットをPAI樹脂にし
た以外は、実施例1と同じ構成である。
(Comparative Example 5) The structure is the same as that of Example 1 except that the gasket is made of PAI resin.

【0019】(比較例6)ガスケットをPEI樹脂にし
た以外は、実施例1と同じ構成である。
(Comparative Example 6) The structure is the same as that of Example 1 except that the gasket is made of PEI resin.

【0020】これらの電池を150℃で40日間浸漬す
る耐電解液性のテストを行った。その結果を(表1)に
示す。
The electrolyte resistance test was carried out by immersing these batteries at 150 ° C. for 40 days. The results are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)よりガスケットとして用いたポリ
エーテルサルホン(PES)樹脂、ポリサルホン(PS
u)樹脂、ポリアミドイミド(PAI)樹脂、ポリエー
テルイミド(PEI)樹脂は溶解し、PFA樹脂、ポリ
エーテルケトン(以下、PEKと略記)樹脂、ポリエー
テルエーテルケトン(以下、PEEKと略記)樹脂が優
れた耐電解液性を示した。
From Table 1, polyethersulfone (PES) resin and polysulfone (PS) used as gaskets
u) resin, polyamide imide (PAI) resin, polyether imide (PEI) resin is dissolved, PFA resin, polyether ketone (hereinafter abbreviated as PEK) resin, polyether ether ketone (hereinafter abbreviated as PEEK) resin It showed excellent electrolytic solution resistance.

【0023】つぎに、耐電解液性テストで良好な結果を
得た実施例1、比較例1、比較例2について150℃保
存の高温保存性テスト、60℃90%RHの高温多湿保
存テストをそれぞれ行った。(表2)に150℃保存後
の開路電圧と内部抵抗の関係を示し、(表3)に60℃
90%RH保存後の開路電圧と内部抵抗の関係を示す。
Next, a high temperature storage test of 150 ° C. storage and a high temperature and high humidity storage test of 60 ° C. 90% RH were carried out for Example 1, Comparative Example 1 and Comparative Example 2 which gave good results in the electrolyte resistance test. I went each. Table 2 shows the relationship between open circuit voltage and internal resistance after storage at 150 ° C, and Table 3 shows 60 ° C.
The relationship between the open circuit voltage after 90% RH storage and the internal resistance is shown.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】このように、(表2)から150℃の保存
期間が経過するに従い、開路電圧が低下し、内部抵抗が
上昇することからPFA樹脂が優れていることがわか
る。同様に(表3)から60℃90%RH保存後の開路
電圧と内部抵抗の推移より明らかにPPS樹脂が優れて
いることがわかる。
As shown in Table 2, the PFA resin is superior because the open circuit voltage decreases and the internal resistance increases as the storage period of 150 ° C. elapses. Similarly, (Table 3) shows that the PPS resin is clearly superior from the changes in the open circuit voltage and the internal resistance after storage at 60 ° C. and 90% RH.

【0027】つぎに、PFA樹脂をガスケットとして使
用した場合の最適な圧縮率、つまり正極端子と負極端子
の両者間で、両端子により圧縮されるPFA樹脂の厚さ
が両端子で圧縮される前の厚さとの比率を比較検討し
た。
Next, when the PFA resin is used as a gasket, the optimum compression rate, that is, between the positive electrode terminal and the negative electrode terminal, the thickness of the PFA resin compressed by both terminals is compressed before being compressed by both terminals. The thickness and the ratio were compared and examined.

【0028】(比較例3)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を30%とした。
(Comparative Example 3) With the same structure as in Example 1, the average value of the compressibility of the gasket was set to 30%.

【0029】(比較例4)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を40%とした。
(Comparative Example 4) With the same structure as in Example 1, the average value of the compressibility of the gasket was set to 40%.

【0030】(実施例2)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を50%とした。
(Embodiment 2) With the same construction as in Embodiment 1, the average value of the compressibility of the gasket was set to 50%.

【0031】(実施例3)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を70%とした。
(Embodiment 3) With the same construction as in Embodiment 1, the average value of the compressibility of the gasket was set to 70%.

【0032】(実施例4)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を90%とした。
(Embodiment 4) With the same construction as in Embodiment 1, the average value of the compressibility of the gasket was set to 90%.

【0033】(比較例5)実施例1と同じ構成であっ
て、ガスケットの圧縮率の平均値を95%とした。
(Comparative Example 5) With the same construction as in Example 1, the average value of the compressibility of the gasket was set to 95%.

【0034】[0034]

【表4】 [Table 4]

【0035】(表4)より、圧縮率の平均が50〜90
%の範囲であれば、漏液は発生せず耐漏液性を満足する
ことがわかる。このことより、PFA樹脂をガスケット
として用いる場合、圧縮前の厚さに対して平均値として
50〜90%の厚さに圧縮した封口かしめ部の形状を保
つことにより、耐漏液性が確保される。この現象はPF
A樹脂に前述の添加剤を加えた樹脂材料の場合でも同様
の結果であった。
From Table 4, the average compression ratio is 50 to 90.
It can be seen that in the range of%, no liquid leakage occurs and the liquid leakage resistance is satisfied. Therefore, when the PFA resin is used as a gasket, liquid leakage resistance is ensured by maintaining the shape of the sealing caulking portion compressed to an average value of 50 to 90% of the thickness before compression. . This phenomenon is PF
Similar results were obtained in the case of a resin material obtained by adding the above-mentioned additives to resin A.

【0036】つぎに、電解液について着目すると、従来
の技術では高沸点溶媒と低沸点溶媒の混合溶媒であった
ため、低沸点溶媒が高温保存時に蒸発し、電池特性の劣
化が顕著に現れる。そこで、高温保存時の電解液の蒸発
を抑制するため低沸点溶媒を除いた高沸点溶媒単独で種
々検討を行った。
Next, paying attention to the electrolytic solution, in the prior art, since it was a mixed solvent of a high boiling point solvent and a low boiling point solvent, the low boiling point solvent evaporates during high temperature storage, and the deterioration of the battery characteristics becomes remarkable. Therefore, in order to suppress the evaporation of the electrolytic solution during storage at high temperature, various studies were conducted using only the high boiling point solvent excluding the low boiling point solvent.

【0037】(表5)に検討を行った一般的な高沸点溶
媒と、それらの凝固点、沸点を示す。
Table 5 shows the general high boiling point solvents investigated, their freezing points and boiling points.

【0038】[0038]

【表5】 [Table 5]

【0039】その結果、−20℃以下での低温放電を考
慮した場合、(表5)にある溶媒の中でPCとGBL以
外は−20℃では凝固し、電解液中のイオン伝導を妨げ
る。また、比較的導電率の高い低沸点溶媒を除くことで
電解液の導電率が低下し、作動電圧の低下がある。
As a result, when the low temperature discharge at -20 ° C or lower is taken into consideration, the components other than PC and GBL in the solvents shown in (Table 5) are solidified at -20 ° C and hinder the ionic conduction in the electrolytic solution. Further, by removing the low boiling point solvent having a relatively high electric conductivity, the electric conductivity of the electrolytic solution is lowered and the operating voltage is lowered.

【0040】そこで、本実施例の非水電解液電池の高沸
点溶媒として、−40〜0℃の低温でも溶媒が凝固せ
ず、換言すればこの温度範囲内でも電池が起電反応を行
える状態にあることができる。また、保存特性の優れる
従来からのGBLと、PCの各々単体、混合溶媒につい
て、従来の高沸点溶媒GBLと低沸点溶媒DMEの混合
溶媒とで、−40〜85℃の作動電圧の比較を同様に前
述の電池を作成して行った。
Therefore, as the high boiling point solvent of the non-aqueous electrolyte battery of the present example, the solvent does not solidify even at a low temperature of -40 to 0 ° C. In other words, the battery can carry out an electromotive reaction even within this temperature range. Can be in Further, regarding the conventional GBL having excellent storage characteristics, the simple substance of PC, and the mixed solvent of PC alone, the comparison of the operating voltage of −40 to 85 ° C. is similar between the conventional high boiling solvent GBL and the mixed solvent of the low boiling solvent DME. The above-mentioned battery was prepared for the test.

【0041】図2はLiBF4濃度1.00mol/l
時の各溶媒配合におけるフッ化黒鉛リチウム電池(図
1)の30kΩ放電、放電深度40%時点での作動電圧
を示す。
FIG. 2 shows the LiBF 4 concentration of 1.00 mol / l.
The operating voltage at the time of 30 kΩ discharge and a discharge depth of 40% of the lithium graphite fluoride battery (FIG. 1) in each solvent formulation at the time is shown.

【0042】この結果より、高沸点溶媒GBLとPCの
混合溶媒系においては、GBLの混合比率が高い程、作
動電圧は高く、特に−20℃、−40℃で顕著である。
また、GBLの混合比率が高い程、従来の高沸点溶媒G
BLと低沸点(低粘度)溶媒DMEの混合溶媒の作動電
圧により近いことがわかった。よって、高沸点溶媒には
GBLがもっとも有効であることがわかる。
From these results, in the mixed solvent system of the high boiling point solvent GBL and PC, the higher the mixing ratio of GBL, the higher the operating voltage, particularly at -20 ° C and -40 ° C.
Also, the higher the GBL mixing ratio, the higher the conventional high boiling point solvent G
It was found that it was closer to the operating voltage of the mixed solvent of BL and the low boiling point (low viscosity) solvent DME. Therefore, it is found that GBL is most effective for the high boiling point solvent.

【0043】つぎに、電解液の溶質について検討を行っ
た。従来より、フッ化黒鉛リチウム電池の電解液の溶質
はLiBF4であり、濃度を1.00mol/lで使用
している。そこで、高沸点溶媒GBL中でのLiBF4
溶質濃度が高温保存特性にどのような影響を与えるか実
験を行った。
Next, the solute of the electrolytic solution was examined. Conventionally, the solute of the electrolytic solution of a graphite fluoride lithium battery is LiBF 4 , and the concentration is 1.00 mol / l. Therefore, LiBF 4 in the high boiling point solvent GBL
Experiments were carried out to see how the solute concentration affects the high temperature storage characteristics.

【0044】(比較例6)溶質の濃度が0.8mol/
lである以外は、実施例6と同じ構成である。
Comparative Example 6 The solute concentration was 0.8 mol /
The configuration is the same as that of the sixth embodiment except that it is 1.

【0045】(実施例5)溶質の濃度が0.9mol/
lである以外は、実施例6と同じ構成である。
Example 5 The solute concentration was 0.9 mol /
The configuration is the same as that of the sixth embodiment except that it is 1.

【0046】(実施例6)実施例1と同じ構成である。(Embodiment 6) The construction is the same as that of Embodiment 1.

【0047】(実施例7)溶質の濃度が1.3mol/
lである以外は、実施例6と同じ構成である。
Example 7 The solute concentration was 1.3 mol /
The configuration is the same as that of the sixth embodiment except that it is 1.

【0048】(実施例8)溶質の濃度が1.5mol/
lである以外は、実施例6と同じ構成である。
Example 8 The solute concentration was 1.5 mol /
The configuration is the same as that of the sixth embodiment except that it is 1.

【0049】(比較例7)溶質の濃度が1.6mol/
lである以外は、実施例6と同じ構成である。
Comparative Example 7 The solute concentration is 1.6 mol /
The configuration is the same as that of the sixth embodiment except that it is 1.

【0050】(表6)は各溶質濃度における150℃保
存後の電池特性を示す。
Table 6 shows the battery characteristics after storage at 150 ° C. at each solute concentration.

【0051】[0051]

【表6】 [Table 6]

【0052】この結果により、LiBF4溶質濃度が
0.80mol/l以下、1.60mol/l以上にな
ると電池開路電圧の低下、電池内部抵抗の上昇が顕著で
ある。また、LiBF4溶質濃度が1.60mol/l
以上になると−40〜0℃で溶質の溶解度は低下し、溶
質が析出し、低温での放電反応を阻害する。ゆえに、L
iBF4溶質濃度は0.90〜1.50mol/lとす
るのが好ましいことが判明した。
From these results, when the LiBF 4 solute concentration is 0.80 mol / l or less and 1.60 mol / l or more, the battery open circuit voltage is lowered and the battery internal resistance is significantly increased. Also, the LiBF 4 solute concentration was 1.60 mol / l.
When it becomes above, the solubility of the solute decreases at −40 to 0 ° C., the solute precipitates, and the discharge reaction at low temperature is hindered. Therefore, L
It was found that the iBF 4 solute concentration is preferably 0.90 to 1.50 mol / l.

【0053】セパレータ材料として、一般に非水電解液
電池においてはPE,PP等の樹脂材料を、フィルム、
不織布等に加工したものを用いる。しかし、高温環境下
で用いた場合、PE樹脂,PP樹脂ともそれ自体の融点
以上の温度では溶解を起こし、セパレータとしての機能
を失い使用することはできない。そこで、ガラス繊維不
織布を用いた。実施例1電池のセパレータとして従来の
PP不織布を用いた比較例8と実施例1と同じ実施例9
とを構成し、これらの電池を150℃に保存したときの
データを(表7)に示す。
As a separator material, generally, in a non-aqueous electrolyte battery, a resin material such as PE or PP is used as a film,
Use processed non-woven fabric. However, when used in a high temperature environment, both the PE resin and the PP resin dissolve at a temperature above the melting point of themselves and lose their function as a separator and cannot be used. Therefore, a glass fiber non-woven fabric was used. Example 1 Comparative Example 8 using a conventional PP non-woven fabric as a battery separator and Example 9 which is the same as Example 1.
And the data when these batteries were stored at 150 ° C. are shown in (Table 7).

【0054】[0054]

【表7】 [Table 7]

【0055】PP不織布を用いた電池は保存時間が経過
するに従い、内部抵抗が上昇し、電圧低下が発生するこ
とが分かる。
It can be seen that the battery using the PP non-woven fabric has an increase in internal resistance and a decrease in voltage as the storage time elapses.

【0056】つぎに、ガラス繊維の平均繊維径を、電池
組立時の電解液保持量と、電池封口時の電解液の漏液、
いわゆる直後漏液とにより評価した。
Next, the average fiber diameter of the glass fibers is determined by determining the amount of electrolyte retained during battery assembly, the leakage of electrolyte during sealing of the battery,
The so-called immediate leakage was evaluated.

【0057】(実施例10)実施例1のガラス繊維の平
均繊維径を0.3μmとした電池。
Example 10 A battery in which the glass fiber of Example 1 has an average fiber diameter of 0.3 μm.

【0058】(実施例11)実施例1のガラス繊維の平
均繊維径を0.5μmとした電池。
Example 11 A battery in which the glass fiber of Example 1 has an average fiber diameter of 0.5 μm.

【0059】(実施例12)実施例1のガラス繊維の平
均繊維径を1.0μmとした電池。
Example 12 A battery in which the glass fiber of Example 1 has an average fiber diameter of 1.0 μm.

【0060】(実施例13)実施例1のガラス繊維の平
均繊維径を1.5μmとした電池。
Example 13 A battery in which the glass fiber of Example 1 has an average fiber diameter of 1.5 μm.

【0061】(実施例14)実施例1のガラス繊維の平
均繊維径を2.0μmとした電池。
Example 14 A battery in which the glass fiber of Example 1 has an average fiber diameter of 2.0 μm.

【0062】(比較例9)実施例1のガラス繊維の平均
繊維径を2.5μmとした電池。
Comparative Example 9 A battery in which the glass fiber of Example 1 has an average fiber diameter of 2.5 μm.

【0063】(比較例10)実施例1のガラス繊維の平
均繊維径を3.0μmとした電池。
Comparative Example 10 A battery in which the glass fiber of Example 1 has an average fiber diameter of 3.0 μm.

【0064】(表8)にその結果を示す。The results are shown in (Table 8).

【0065】[0065]

【表8】 [Table 8]

【0066】(表8)より明らかなように、平均繊維径
が2μm以上である場合に漏液量が顕著に多くなり、結
果的に放電持続時間の減少が発生している。好ましく
は、平均繊維径が0.3〜1.5μmのとき、漏液量が
もっとも少なく、放電持続時間も長い。なお、平均繊維
径が0.3μm以下の場合はその機械的強度が脆弱で、
電池のセパレータとして加工しにくく、また加工できた
場合でも均一な目付に加工しにくく、加工コストもあが
る。
As is clear from (Table 8), when the average fiber diameter is 2 μm or more, the amount of liquid leakage increases remarkably, resulting in a decrease in discharge duration. Preferably, when the average fiber diameter is 0.3 to 1.5 μm, the leakage amount is the smallest and the discharge duration is long. If the average fiber diameter is 0.3 μm or less, the mechanical strength is weak,
It is difficult to process as a battery separator, and even if it can be processed, it is difficult to process it into a uniform basis weight, and the processing cost increases.

【0067】また、ガラス繊維の目付重量、平均孔径に
ついて鋭意検討を行った。この種の平均繊維径の範囲の
ものであれば、目付重量が5.0〜9.0g/m2、平
均孔径が3.0〜7.5μmのものであれば十分使用可
能である。
Further, the weight per unit area of the glass fiber and the average pore diameter were carefully studied. If the average fiber diameter is in this range, a weight per unit area of 5.0 to 9.0 g / m 2 and an average pore diameter of 3.0 to 7.5 μm can be sufficiently used.

【0068】目付重量が5.0g/m2以下の場合、セ
パレータ材料としての機械的強度が小さすぎるため、加
工時に破断、あるいは変形が生じ、電池構成時、内部短
絡を生ずるためである。目付重量が9.0g/m2以上
の場合、電解液の保液量、ならびに吸水速度が小さくな
り実用上問題がある。
This is because when the weight per unit area is 5.0 g / m 2 or less, the mechanical strength as a separator material is too small, so that breakage or deformation occurs during processing and an internal short circuit occurs during battery construction. If the weight per unit area is 9.0 g / m 2 or more, the amount of electrolyte retained and the water absorption rate become small, which is a practical problem.

【0069】平均孔径が3.0μm以下では起電反応に
必要な電解液量を十分保持できない。また、7.5μm
以上では電解液の保持性は良好であるが起電反応時にセ
パレータの空孔内に電解液を取り込んでしまい、その結
果、起電反応の関与する電解液量が減少し、結果として
反応効率の減少をきたすためである。
If the average pore diameter is 3.0 μm or less, the amount of the electrolytic solution required for the electromotive reaction cannot be sufficiently maintained. Also, 7.5 μm
In the above, the retention of the electrolytic solution is good, but the electrolytic solution is taken into the pores of the separator during the electromotive reaction, and as a result, the amount of the electrolytic solution involved in the electromotive reaction decreases, and as a result, the reaction efficiency This is because it causes a decrease.

【0070】また、このような構成の電池における正極
端子を兼ねる金属容器において、正極と電気的に接続さ
れ、かつ電解液と接する部分、つまり図1における電池
ケース5の形成材料の選択が電池の信頼性の確保に対し
て問題となる。(表9)に電池ケース材料としてニッケ
ル8重量%、クロム18重量%含んだ、いわゆるオース
テナイト系ステンレス鋼と、ニッケルをほとんど含まな
い、いわゆるフェライト系ステンレス鋼においてクロム
の含有量を10〜20重量%と変化させた材料と、その
うちモリブデンの含有量を1.0〜3.0重量%と変化
させた材料を使用した場合の非水電解液電池の85℃保
存試験の結果を示す。
In addition, in the metal container which also functions as the positive electrode terminal in the battery having such a structure, the part which is electrically connected to the positive electrode and is in contact with the electrolytic solution, that is, the material for forming the battery case 5 in FIG. It becomes a problem for ensuring reliability. In Table 9, the so-called austenitic stainless steel containing 8% by weight of nickel and 18% by weight of chromium as a battery case material, and the so-called ferritic stainless steel containing almost no nickel, the chromium content is 10 to 20% by weight. The results of the 85 ° C. storage test of the non-aqueous electrolyte battery in the case of using the changed material and the material in which the molybdenum content is changed to 1.0 to 3.0% by weight are shown.

【0071】(比較例11)実施例1の正極ケース材料
としてクロム18重量%、ニッケル8重量%含んだステ
ンレス鋼を用いた電池。
(Comparative Example 11) A battery using stainless steel containing 18% by weight of chromium and 8% by weight of nickel as the positive electrode case material of Example 1.

【0072】(比較例12)実施例1の正極ケース材料
としてクロム10重量%含んだステンレス鋼を用いた電
池。
(Comparative Example 12) A battery using stainless steel containing 10% by weight of chromium as the positive electrode case material of Example 1.

【0073】(実施例15)実施例1の正極ケース材料
としてクロム15重量%含んだステンレス鋼を用いた電
池。
(Example 15) A battery using stainless steel containing 15% by weight of chromium as the positive electrode case material of Example 1.

【0074】(実施例16)実施例1の正極ケース材料
としてクロム16重量%含んだステンレス鋼を用いた電
池。
(Example 16) A battery using stainless steel containing 16% by weight of chromium as the positive electrode case material of Example 1.

【0075】(実施例17)実施例1の正極ケース材料
としてクロム18重量%含んだステンレス鋼を用いた電
池。
Example 17 A battery using stainless steel containing 18% by weight of chromium as the positive electrode case material of Example 1.

【0076】(実施例18)実施例1の正極ケース材料
としてクロム20重量%含んだステンレス鋼を用いた電
池。
Example 18 A battery using stainless steel containing 20% by weight of chromium as the positive electrode case material of Example 1.

【0077】(比較例13)実施例1の正極ケース材料
としてクロム18重量%、モリブデン1.0重量%含ん
だステンレス鋼を用いた電池。
(Comparative Example 13) A battery using stainless steel containing 18% by weight of chromium and 1.0% by weight of molybdenum as the material for the positive electrode case of Example 1.

【0078】(実施例19)実施例1の正極ケース材料
としてクロム18重量%、モリブデン1.5重量%含ん
だステンレス鋼を用いた電池。
(Example 19) A battery using stainless steel containing 18% by weight of chromium and 1.5% by weight of molybdenum as the positive electrode case material of Example 1.

【0079】(実施例20)実施例1の正極ケース材料
としてクロム18重量%、モリブデン2.0重量%含ん
だステンレス鋼を用いた電池。
(Example 20) A battery using stainless steel containing 18% by weight of chromium and 2.0% by weight of molybdenum as the material for the positive electrode case of Example 1.

【0080】(実施例21)実施例1の正極ケース材料
としてクロム18重量%、モリブデン2.5重量%含ん
だステンレス鋼を用いた電池。
(Example 21) A battery using stainless steel containing 18% by weight of chromium and 2.5% by weight of molybdenum as the material for the positive electrode case of Example 1.

【0081】(比較例14)実施例1の正極ケース材料
としてクロム18重量%、モリブデン3.0重量%含ん
だステンレス鋼を用いた電池。
(Comparative Example 14) A battery using stainless steel containing 18% by weight of chromium and 3.0% by weight of molybdenum as the positive electrode case material of Example 1.

【0082】[0082]

【表9】 [Table 9]

【0083】(表9)より電池ケースとしてニッケルを
含んだオーステナイト系ステンレス鋼を用いた場合、保
存中に電圧の大きな低下が確認された。電池分解を行っ
たところ電池ケース材料が一部溶解し、それが負極のリ
チウム表面に析出したため電池電圧が低下したものと判
明した。また、フェライト系ステンレス鋼を使用すると
保存中の電池電圧の低下量は小さくなるが、特にクロム
量が15重量%以上で電池電圧の低下が発生しないこと
がわかる。また、フェライト系ステンレス鋼においてク
ロム量15重量%以上の領域においてモリブデンを0.
5重量%以上添加することにより、保存後の電池電圧が
より一層安定化することがわかる。このことより、本発
明の構成による電池において正極合剤と電気的に接続さ
れ、かつ電解液と接する部分、つまり電池ケースに使用
するステンレス鋼は、ニッケルをほとんど含まず、クロ
ムを15重量%以上、モリブデンを0.5重量%以上含
む鋼を用いることにより、高温保存特性を向上させるこ
とができる。
From Table 9, it was confirmed that when the austenitic stainless steel containing nickel was used as the battery case, the voltage greatly decreased during storage. When the battery was disassembled, it was found that the battery voltage was lowered because part of the battery case material was dissolved and deposited on the lithium surface of the negative electrode. Further, it can be seen that when the ferritic stainless steel is used, the decrease in battery voltage during storage is small, but the decrease in battery voltage does not occur especially when the chromium content is 15% by weight or more. Further, in ferritic stainless steel, molybdenum was added in an amount of 0.1% in the region where the amount of chromium was 15% by weight or more.
It can be seen that the battery voltage after storage is further stabilized by adding 5 wt% or more. Therefore, in the battery according to the present invention, the stainless steel used for the portion electrically connected to the positive electrode mixture and in contact with the electrolytic solution, that is, the battery case contains almost no nickel and contains 15% by weight or more of chromium. By using steel containing 0.5% by weight or more of molybdenum, high temperature storage characteristics can be improved.

【0084】ここで、今までの検討内容を整理し以下に
示す。 (実施例22)図1において、封口板1はステンレス鋼
よりなり、負極2はリチウム金属からなり、正極合剤3
はフッ化黒鉛を主成分とし、セパレータ4は平均繊維径
0.5μmのガラス繊維不織布からなり、電池ケース5
はニッケルをほとんど含まず、クロムを15重量%以
上、モリブデンを0.5重量%以上含むステンレス鋼よ
りなり、ガスケット6はPFA樹脂100%成分であ
り、電解液は高沸点溶媒GBL中に、溶質LiBF4
溶質濃度1.00mol/lとなるように溶解させた電
解液を用いる構成により電池を構成する。
Here, the contents of the examination so far are arranged and shown below. (Embodiment 22) In FIG. 1, the sealing plate 1 is made of stainless steel, the negative electrode 2 is made of lithium metal, and the positive electrode mixture 3 is used.
Is mainly made of fluorinated graphite, and the separator 4 is made of glass fiber nonwoven fabric having an average fiber diameter of 0.5 μm.
Is made of stainless steel containing almost no nickel, containing 15% by weight or more of chromium and 0.5% by weight or more of molybdenum, the gasket 6 is a 100% PFA resin component, and the electrolyte is a solute in the high boiling point solvent GBL. A battery is configured by using an electrolyte solution in which LiBF 4 is dissolved to have a solute concentration of 1.00 mol / l.

【0085】図3は従来例と実施例22との150℃保
存後の電池特性比較である。実施例22は従来例に比べ
開路電圧の低下もなく、従来品に比べ優れていることが
わかる。
FIG. 3 is a comparison of battery characteristics between the conventional example and Example 22 after storage at 150 ° C. It can be seen that Example 22 is superior to the conventional product in that there is no decrease in the open circuit voltage as compared with the conventional example.

【0086】図4は従来例と実施例22との150℃保
存後の電解液残存率比較である。従来例は低沸点溶媒D
MEの蒸発のため電解液残存率の減少も著しい、一方、
実施例22は電解液残存率の減少も極端に少なく、従来
例と比較し高温保存時の密閉状態が向上したことがわか
る。
FIG. 4 is a comparison of the electrolytic solution residual ratios of the conventional example and Example 22 after storage at 150 ° C. Conventional example is low boiling point solvent D
Due to the evaporation of ME, the electrolytic solution residual rate is significantly reduced, while
In Example 22, the decrease in the electrolytic solution residual rate was extremely small, and it can be seen that the hermetically sealed state at the time of high temperature storage was improved as compared with the conventional example.

【0087】(表10)は実施例22と従来例との15
0℃保存後の放電容量と容量残存率を示す。
Table 10 shows the results of Example 22 and the conventional example 15
The discharge capacity and the capacity remaining rate after storage at 0 ° C are shown.

【0088】[0088]

【表10】 [Table 10]

【0089】放電容量の確認は150℃保存後、20℃
30kΩ放電、2.5V終止により行った。(表10)
より、従来例は150℃20日で容量残存率が0%とな
るが、実施例22は40日保存後も64%の容量残存率
を示すことがわかる。
The discharge capacity was confirmed by storing at 150 ° C and then at 20 ° C.
It was carried out by discharging 30 kΩ and ending at 2.5 V. (Table 10)
From the results, it can be seen that the capacity remaining ratio of the conventional example is 0% at 150 ° C. for 20 days, but the capacity remaining ratio of Example 22 is 64% even after storage for 40 days.

【0090】なお、正極活物質、負極活物質の種類が異
なる他の電池系、例えばリチウム、ナトリウム、マグネ
シウム等の軽金属、あるいはこれらの合金からなる負極
活物質とし、酸化銅、三酸化モリブデン、二酸化マンガ
ン等の金属酸化物、フッ化黒鉛等のハロゲン化物等を正
極活物質としても、本発明のガスケット材料、電解液、
セパレータ材料を使用することにより同様の効果が得ら
れることが実験より判明している。
Other battery systems in which the types of the positive electrode active material and the negative electrode active material are different, for example, the negative electrode active material made of a light metal such as lithium, sodium, magnesium, or an alloy thereof, such as copper oxide, molybdenum trioxide, and dioxide. A metal oxide such as manganese, a halide such as fluorinated graphite as a positive electrode active material, the gasket material of the present invention, an electrolytic solution,
Experiments have shown that the same effect can be obtained by using a separator material.

【0091】[0091]

【発明の効果】以上の説明から明らかなように、本発明
の非水電解液電池は高温環境下、熱衝撃に対して保存、
使用が可能となる効果が得られる。
As is apparent from the above description, the non-aqueous electrolyte battery of the present invention can be stored in a high temperature environment against thermal shock,
The effect that it can be used is obtained.

【0092】本発明は、広範囲の温度、特に高温環境下
で保存あるいは使用ができ、この種の非水電解液電池の
使用用途をさらに拡大することができ、その工業価値は
大きいものである。
INDUSTRIAL APPLICABILITY The present invention can be stored or used in a wide range of temperature, especially in a high temperature environment, and can be used for a wider range of applications of this type of non-aqueous electrolyte battery, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的なコイン形電池の構成断面図FIG. 1 is a sectional view showing the structure of a general coin-type battery.

【図2】各溶媒配合における電池の30kΩ放電、放電
深度40%時点での各温度における作動電圧を示す図
FIG. 2 is a diagram showing the operating voltage at each temperature when a 30 kΩ discharge and a depth of discharge of 40% of the battery in each solvent formulation were performed.

【図3】本実施例と従来例との150℃保存後の電池特
性を示す図
FIG. 3 is a diagram showing battery characteristics of this example and a conventional example after storage at 150 ° C.

【図4】本実施例と従来例との150℃保存後の電解液
残存率を示す図
FIG. 4 is a diagram showing a residual ratio of an electrolytic solution after storage at 150 ° C. in this example and a conventional example.

【符号の説明】[Explanation of symbols]

1 封口板 2 リチウム 3 正極合剤 4 セパレータ 5 電池ケース 6 ガスケット 7 集電体 1 Sealing Plate 2 Lithium 3 Positive Electrode Mixture 4 Separator 5 Battery Case 6 Gasket 7 Current Collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小黒 秀祐 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 近藤 正嗣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shusuke Oguro 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masatsugu Kondo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】リチウムを負極活物質、フッ化黒鉛を正極
活物質とする非水電解液電池において、正極端子と負極
端子の間に介在するガスケットとしてパーフルオロアル
コキシ(PFA)樹脂を用い、非水電解液として沸点が
170℃以上の有機溶媒を単体、もしくは混合物に、溶
質としてリチウム塩を溶解させ、セパレータとして平均
繊維径2μm以下、目付重量5.0〜9.0g/m2
平均孔径3.0〜7.5μmのガラス繊維材を用いるこ
とを特徴とする非水電解液電池。
1. In a non-aqueous electrolyte battery using lithium as a negative electrode active material and fluorinated graphite as a positive electrode active material, a perfluoroalkoxy (PFA) resin is used as a gasket interposed between a positive electrode terminal and a negative electrode terminal. As a water electrolyte, an organic solvent having a boiling point of 170 ° C. or higher is dissolved alone or in a mixture, and a lithium salt is dissolved as a solute. The separator has an average fiber diameter of 2 μm or less and a basis weight of 5.0 to 9.0 g / m 2 ,
A non-aqueous electrolyte battery comprising a glass fiber material having an average pore diameter of 3.0 to 7.5 μm.
【請求項2】有機溶媒が、γ−ブチロラクトンを主成分
とする請求項1記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the organic solvent contains γ-butyrolactone as a main component.
【請求項3】溶質が、ホウフッ化リチウム(LiB
4)を0.90〜1.50mol/lで溶媒に溶解さ
せたものを用いることを特徴とする請求項1記載の非水
電解液電池。
3. The solute is lithium borofluoride (LiB
The non-aqueous electrolyte battery according to claim 1, wherein F 4 ) dissolved in a solvent at 0.90 to 1.50 mol / l is used.
【請求項4】パーフルオロアルコキシ(PFA)樹脂を
主成分とするガスケットを正極端子と負極端子の間で圧
縮前の厚さに対して平均値が50〜90%の厚さに圧縮
して密閉することを特徴とする請求項1記載の非水電解
液電池。
4. A gasket containing a perfluoroalkoxy (PFA) resin as a main component is compressed between a positive electrode terminal and a negative electrode terminal to an average thickness of 50 to 90% of the thickness before compression and hermetically sealed. The non-aqueous electrolyte battery according to claim 1, wherein
【請求項5】正極端子を兼ねる金属容器において、正極
と電気的に接続され、かつ電解液と接する部分にクロム
を15重量%以上、モリブデンを0.5重量%以上含む
鋼を使用することを特徴とする請求項1記載の非水電解
液電池。
5. In a metal container that also serves as a positive electrode terminal, steel containing 15% by weight or more of chromium and 0.5% by weight or more of molybdenum is used in a portion which is electrically connected to the positive electrode and is in contact with the electrolytic solution. The non-aqueous electrolyte battery according to claim 1, which is characterized in that.
【請求項6】リチウム、ナトリウム、マグネシウム等の
軽金属、あるいはこれらの合金からなる負極活物質、酸
化銅、三酸化モリブデン、二酸化マンガン等の金属酸化
物、フッ化黒鉛等のハロゲン化物等を正極活物質とする
非水電解液電池において、正極端子と負極端子の間に介
在するガスケットとしてパーフルオロアルコキシ(PF
A)樹脂を用い、非水電解液として沸点が170℃以上
の有機溶媒を単体、もしくは混合物に、溶質として無機
塩を溶解させ、セパレータとして平均繊維径2μm以
下、目付重量5.0〜9.0g/m2、平均孔径3.0
〜7.5μmのガラス繊維材を用いることを特徴とする
非水電解液電池。
6. A positive electrode is made of a light metal such as lithium, sodium or magnesium, or a negative electrode active material composed of an alloy thereof, a metal oxide such as copper oxide, molybdenum trioxide or manganese dioxide, or a halide such as fluorinated graphite. In a non-aqueous electrolyte battery as a material, a perfluoroalkoxy (PF) is used as a gasket interposed between a positive electrode terminal and a negative electrode terminal.
A) a resin, an organic solvent having a boiling point of 170 ° C. or higher as a non-aqueous electrolytic solution is dissolved in a simple substance or in a mixture, an inorganic salt is dissolved as a solute, an average fiber diameter of 2 μm or less, and a basis weight of 5.0 to 9. 0 g / m 2 , average pore size 3.0
A non-aqueous electrolyte battery characterized by using a glass fiber material of ˜7.5 μm.
【請求項7】有機溶媒が、γ−ブチロラクトンを主成分
とする請求項6記載の非水電解液電池。
7. The non-aqueous electrolyte battery according to claim 6, wherein the organic solvent contains γ-butyrolactone as a main component.
【請求項8】溶質が、ホウフッ化リチウム(LiB
4)を0.90〜1.50mol/lで溶媒に溶解さ
せたものを用いることを特徴とする請求項6記載の非水
電解液電池。
8. The solute is lithium borofluoride (LiB
The non-aqueous electrolyte battery according to claim 6, wherein F 4 ) dissolved in a solvent at 0.90 to 1.50 mol / l is used.
【請求項9】パーフルオロアルコキシ(PFA)樹脂を主
成分とするガスケットを正極端子と負極端子の間で圧縮
前の厚さに対して平均値が50〜90%の厚さに圧縮し
て密閉することを特徴とする請求項6記載の非水電解液
電池。
9. A gasket containing a perfluoroalkoxy (PFA) resin as a main component is compressed and sealed between the positive electrode terminal and the negative electrode terminal to an average value of 50 to 90% of the thickness before compression. The non-aqueous electrolyte battery according to claim 6, wherein
【請求項10】正極端子を兼ねる金属容器において、正
極と電気的に接続され、かつ電解液とを接する部分にク
ロムを15重量%以上、モリブデンを0.5重量%以上
含む鋼を使用することを特徴とする請求項6記載の非水
電解液電池。
10. In a metal container which also serves as a positive electrode terminal, a steel containing 15% by weight or more of chromium and 0.5% by weight or more of molybdenum is used in a portion which is electrically connected to the positive electrode and is in contact with the electrolyte. The nonaqueous electrolyte battery according to claim 6.
JP27638994A 1994-11-10 1994-11-10 Non-aqueous electrolyte battery Expired - Fee Related JP3058031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27638994A JP3058031B2 (en) 1994-11-10 1994-11-10 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27638994A JP3058031B2 (en) 1994-11-10 1994-11-10 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08138686A true JPH08138686A (en) 1996-05-31
JP3058031B2 JP3058031B2 (en) 2000-07-04

Family

ID=17568737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27638994A Expired - Fee Related JP3058031B2 (en) 1994-11-10 1994-11-10 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3058031B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058009A (en) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd Flat-shaped nonaqueous electrolyte battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2002100408A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
WO2009110540A1 (en) * 2008-03-06 2009-09-11 Fdkエナジー株式会社 Bobbin type lithium battery
US7670715B2 (en) 2003-10-09 2010-03-02 Eveready Battery Co., Inc. Nonaqueous cell with improved thermoplastic sealing member
US7727676B2 (en) 1998-10-29 2010-06-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
US8252458B2 (en) 2003-10-09 2012-08-28 Eveready Battery Company, Inc. Electrolyte-absoring, non-permeable sealing materials
JP2012190729A (en) * 2011-03-13 2012-10-04 Seiko Instruments Inc Coin-type nonaqueous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058009A (en) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd Flat-shaped nonaqueous electrolyte battery
US7727676B2 (en) 1998-10-29 2010-06-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2000235868A (en) * 1998-10-29 2000-08-29 Toshiba Corp Nonaqueous electrolyte secondary battery
US9029008B2 (en) 1998-10-29 2015-05-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US8383275B2 (en) 1998-10-29 2013-02-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2002100408A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
US7923137B2 (en) 2003-10-09 2011-04-12 Eveready Battery Company, Inc. Nonaqueous cell with improved thermoplastic sealing member
US7670715B2 (en) 2003-10-09 2010-03-02 Eveready Battery Co., Inc. Nonaqueous cell with improved thermoplastic sealing member
US8252458B2 (en) 2003-10-09 2012-08-28 Eveready Battery Company, Inc. Electrolyte-absoring, non-permeable sealing materials
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
JP2009212051A (en) * 2008-03-06 2009-09-17 Fdk Energy Co Ltd Bobbin type lithium bettry
WO2009110540A1 (en) * 2008-03-06 2009-09-11 Fdkエナジー株式会社 Bobbin type lithium battery
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2012190729A (en) * 2011-03-13 2012-10-04 Seiko Instruments Inc Coin-type nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3058031B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JPH0831429A (en) Non-aqueous electrolyte battery
US8497041B2 (en) Electrochemical cell including electrolyte containing bis(oxalate)borate salt
US7927739B2 (en) Non-aqueous electrochemical cells
US5658688A (en) Lithium-silver oxide battery and lithium-mercuric oxide battery
JPH033337B2 (en)
JP3058031B2 (en) Non-aqueous electrolyte battery
US7479348B2 (en) Non-aqueous electrochemical cells
JP5583270B2 (en) Lithium primary battery
JP2000106195A (en) Board-mounting battery, and method and device for fitting thereof
JP7079629B2 (en) Non-aqueous electrolyte secondary battery
US20230163358A1 (en) Non-aqueous ammonia electrolytes for lithium anode based primary and reserve batteries
JP2006260945A (en) Non-aqueous electrolyte primary battery
JP2000040525A (en) Organic electrolyte secondary battery
JPH1050278A (en) Nonaqueous electrolyte battery
JP2002063906A (en) Flat nonaqueous electrolyte secondary battery
JP4687021B2 (en) Non-aqueous electrolyte primary battery
JPH0673301B2 (en) Non-aqueous electrochemical cell
JP2013012385A (en) Lithium air battery
JPH08222209A (en) Nonaqueous electrolyte battery and manufacture of its positive electrode
JP2001273926A (en) Organic electrolytic solution battery
JP2003100300A (en) Nonaqueous solution electrolyte secondary battery
JP2974739B2 (en) Organic electrolyte battery
JPS63155560A (en) Organic electrolyte battery
JP2009140737A (en) Coin type electrochemical element
JPH09245806A (en) Nonaqueous solvent battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090421

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees