JP7079629B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7079629B2
JP7079629B2 JP2018046711A JP2018046711A JP7079629B2 JP 7079629 B2 JP7079629 B2 JP 7079629B2 JP 2018046711 A JP2018046711 A JP 2018046711A JP 2018046711 A JP2018046711 A JP 2018046711A JP 7079629 B2 JP7079629 B2 JP 7079629B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mass
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046711A
Other languages
Japanese (ja)
Other versions
JP2019160619A (en
Inventor
研 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2018046711A priority Critical patent/JP7079629B2/en
Priority to TW107136666A priority patent/TWI793199B/en
Priority to KR1020180165268A priority patent/KR20190108477A/en
Priority to CN201910192691.2A priority patent/CN110277589B/en
Publication of JP2019160619A publication Critical patent/JP2019160619A/en
Application granted granted Critical
Publication of JP7079629B2 publication Critical patent/JP7079629B2/en
Priority to KR1020240021075A priority patent/KR20240024162A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

コイン形の非水電解質二次電池は、回路基板に対する搭載時のハンダ付けの効率を上げるためリフローハンダ付けが採用される。リフローハンダ付けにおける耐熱性を備えるために、この種の二次電池においては電解液やガスケット等、種々の耐熱性の部材が採用されている。このうち、電解液については、沸点の高いスルホン系やグライム系の溶媒が用いられることが多い。例えば、下記先行技術文献1では、電解液の溶媒としてポリエチレングリコールジアルキルエーテル及びエチレングリコールジアルキルエーテルを所定割合含有することで、リフローハンダ付けに耐え得る耐熱性を有するとともに、低温環境においても放電容量を維持することが示されている。 For coin-shaped non-aqueous electrolyte secondary batteries, reflow soldering is adopted to improve the efficiency of soldering when mounted on the circuit board. In order to have heat resistance in reflow soldering, various heat resistant members such as an electrolytic solution and a gasket are adopted in this type of secondary battery. Of these, for the electrolytic solution, a sulfone-based or grime-based solvent having a high boiling point is often used. For example, in the following Prior Art Document 1, by containing polyethylene glycol dialkyl ether and ethylene glycol dialkyl ether in a predetermined ratio as the solvent of the electrolytic solution, the heat resistance is high enough to withstand reflow soldering, and the discharge capacity is increased even in a low temperature environment. It has been shown to be maintained.

特開2011-060444号公報Japanese Unexamined Patent Publication No. 2011-060444

このようなリフロー対応非水電解質二次電池においては、正極活物質としてスピネル型リチウムマンガン酸化物を採用し、負極活物質としてリチウム-アルミニウム合金を採用することで、高容量とすることができる。
一方で、このような電池においてさらに容量を高めることが求められてきている。例えば、負極合金の量を増やす、あるいは、理論容量の大きな酸化珪素を負極活物質として用いることが考えられる。しかしながら、このように電極を変更する場合に、充放電の安定性を確保し、電極や電解液の予期せぬ反応を抑制することが必要となる。
In such a reflow-compatible non-aqueous electrolyte secondary battery, a spinel-type lithium manganese oxide is used as the positive electrode active material, and a lithium-aluminum alloy is used as the negative electrode active material, whereby a high capacity can be obtained.
On the other hand, there is a demand for further increasing the capacity of such batteries. For example, it is conceivable to increase the amount of the negative electrode alloy or to use silicon oxide having a large theoretical capacity as the negative electrode active material. However, when the electrodes are changed in this way, it is necessary to ensure the stability of charge and discharge and suppress unexpected reactions of the electrodes and the electrolytic solution.

本発明は、このような問題に鑑み、小型で高容量であり、リフローハンダ付けに耐える耐熱性を有するとともに、非水電解質二次電池における安定性を高めることを課題とする。 In view of these problems, it is an object of the present invention to improve the stability of a non-aqueous electrolyte secondary battery while having a small size and a high capacity and heat resistance to withstand reflow soldering.

「1」前記課題を解決するため、本発明の一形態に係る非水電解質二次電池は、正極と、負極と、支持塩及び溶媒を含む電解液と、セパレータが、正極缶と負極缶によって構成された収容容器に収容されてなる非水電解質二次電池であって、前記溶媒が、グライム系溶媒であるテトラグライム(TEG)及びジエトキシエタン(DEE)と、エチレンカーボネート(EC)とビニレンカーボネート(VC)を含有してなり、テトラグライム(TEG):30質量% 以上48.5質量% 以下、ジエトキシエタン(DEE):30質量%以上48.5質量% 以下、エチレンカーボネート(EC):0.5質量%以上10質量% 以下、ビニレンカーボネート(VC):2質量%以上13%以下の範囲(トータル100%)を含むことを特徴とする。 "1" In order to solve the above-mentioned problems, the non-aqueous electrolyte secondary battery according to one embodiment of the present invention uses a positive electrode, a negative electrode, an electrolytic solution containing a supporting salt and a solvent, and a separator using a positive electrode can and a negative electrode can. A non-aqueous electrolyte secondary battery housed in a configured storage container, wherein the solvents are tetraglyme (TEG) and diethoxyethane (DEE), which are glyme-based solvents, ethylene carbonate (EC), and vinylene. Containing carbonate (VC), tetraglyme (TEG): 30% by mass or more and 48.5% by mass or less, diethoxyethane (DEE): 30% by mass or more and 48.5% by mass or less, ethylene carbonate (EC) : 0.5% by mass or more and 10% by mass or less, vinylene carbonate (VC): 2% by mass or more and 13% or less (total 100%) .

本形態では、テトラグライムなどを含むグライム系溶媒にジエトキシエタンとエチレンカーボネートとビニレンカーボネートを含むため、リフローハンダ付け時の加熱に耐える耐熱性を得ることができ、電極と電解液の劣化を抑えることができる特徴を有する。
溶媒としてテトラグライムとジエトキシエタンを主体として含むグライム系の溶媒であるならば、これら溶媒の沸点が高いことに起因して耐熱性を高めることができる。
本形態の非水電解質二次電池において、テトラグライムを含むグライム系溶媒に適量のビニレンカーボネートを含むため、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器の内圧が上昇するおそれが少なく、収容容器に膨出などの変形を生じ難い構成を提供できる。
また、この範囲のビニレンカーボネート添加量であるならば、非水電解質二次電池としての内部抵抗を小さくできるので、高容量化が可能であり、収容容器の膨らみを抑制できるので、電極や電解液の劣化を生じていない非水電解質二次電池を提供できる。
In this embodiment, since the glyme-based solvent containing tetraglyme or the like contains diethoxyethane, ethylene carbonate, and vinylene carbonate, heat resistance that can withstand heating during reflow soldering can be obtained, and deterioration of the electrode and the electrolytic solution is suppressed. It has the characteristics that can be.
If the solvent is a grime-based solvent mainly containing tetraglyme and diethoxyethane, the heat resistance can be enhanced due to the high boiling point of these solvents.
In the non-aqueous electrolyte secondary battery of this embodiment, since the glyme-based solvent containing tetraglyme contains an appropriate amount of vinylene carbonate, it has heat resistance that can withstand reflow soldering, and even if it is heated by reflow soldering. It is possible to provide a configuration in which the solvent is less likely to vaporize, the internal pressure of the accommodating container is less likely to increase, and the accommodating container is less likely to be deformed such as swelling.
Further, if the amount of vinylene carbonate added is within this range, the internal resistance of the non-aqueous electrolyte secondary battery can be reduced, so that the capacity can be increased and the swelling of the storage container can be suppressed, so that the electrodes and the electrolytic solution can be suppressed. It is possible to provide a non-aqueous electrolyte secondary battery that has not been deteriorated.

」前記一形態の非水電解質二次電池では、前記支持塩が、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSOのいずれかの有機酸リチウム塩、あるいは、LiPF、LiBF、LiB(C、LiCl、LiBrのいずれかの無機酸リチウム塩であることが好ましい。 " 2 " In the non-aqueous electrolyte secondary battery of the above embodiment, the supporting salts are LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 3 ) 2 , LiN (FSO 2 ) 2 organic acid lithium salt, or LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , It is preferably an inorganic acid lithium salt of either LiCl or LiBr.

本形態の非水電解質二次電池において、テトラグライムなどを含むグライム系溶媒に適量のビニレンカーボネートを含むため、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器の内圧が上昇するおそれが少なく、収容容器に膨出などの変形を生じ難い構成を提供できる。また、この範囲のビニレンカーボネート添加量であるならば、非水電解質二次電池としての内部抵抗を小さくできるので、高容量化が可能であり、収容容器の膨らみを抑制できるので、電極や電解液の劣化を生じていない非水電解質二次電池を提供できる。 In the non-aqueous electrolyte secondary battery of this embodiment, since the glyme-based solvent including tetraglyme and the like contains an appropriate amount of vinylene carbonate, it has heat resistance that can withstand reflow soldering, and it is assumed that it has been heated by reflow soldering. However, it is possible to provide a configuration in which the solvent is less likely to vaporize, the internal pressure of the accommodating container is less likely to increase, and the accommodating container is less likely to be deformed such as swelling. Further, if the amount of vinylene carbonate added is within this range, the internal resistance of the non-aqueous electrolyte secondary battery can be reduced, so that the capacity can be increased and the swelling of the storage container can be suppressed, so that the electrodes and the electrolytic solution can be suppressed. It is possible to provide a non-aqueous electrolyte secondary battery that has not been deteriorated.

」前記一形態の非水電解質二次電池では、前記溶媒中にビニレンカーボネートが2.5質量% 以上、10質量%以下含まれていることが好ましい。 " 3 " In the non-aqueous electrolyte secondary battery of the above embodiment, it is preferable that the solvent contains vinylene carbonate in an amount of 2.5% by mass or more and 10% by mass or less.

本形態の非水電解質二次電池において、テトラグライムとジエトキシエタンを含むグライム系溶媒に、2.5質量%以上10質量%以下のより好ましい量のビニレンカーボネートを含むため、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器の内圧が上昇するおそれが少なく、収容容器に殆ど変形を生じない構成を提供できる。また、この範囲のビニレンカーボネート添加量であるならば、非水電解質二次電池としての内部抵抗をより小さくできるので、高容量化が可能であり、収容容器の膨らみも更に抑制できるので、電極や電解液の劣化を生じていない非水電解質二次電池を提供できる。
In the non-aqueous electrolyte secondary battery of this embodiment, since the glyme-based solvent containing tetraglyme and diethoxyethane contains a more preferable amount of vinylene carbonate of 2.5% by mass or more and 10% by mass or less, it can withstand reflow soldering. It has heat resistance to be obtained, and even if it is heated by reflow soldering, there is little possibility that the solvent is vaporized, there is little possibility that the internal pressure of the storage container rises, and it is possible to provide a configuration in which the storage container is hardly deformed. .. Further, if the amount of vinylene carbonate added is within this range, the internal resistance of the non-aqueous electrolyte secondary battery can be made smaller, so that the capacity can be increased and the swelling of the storage container can be further suppressed. It is possible to provide a non-aqueous electrolyte secondary battery in which the deterioration of the electrolytic solution is not caused.

」前記一形態の非水電解質二次電池では、前記正極が、正極活物質としてリチウムマンガン酸化物を含有し、前記負極が、負極活物質としてシリコン酸化物またはリチウムアルミニウム合金を含有してなることが好ましい。 " 4 " In the non-aqueous electrolyte secondary battery of the above embodiment, the positive electrode contains a lithium manganese oxide as a positive electrode active material, and the negative electrode contains a silicon oxide or a lithium aluminum alloy as a negative electrode active material. Is preferable.

正極活物質としてリチウムマンガン酸化物を用いることができ、負極活物質としてシリコン酸化物またはリチウムアルミニウム合金を用いることができる。リチウムマンガン酸化物の正極活物質とリチウムアルミニウム合金の負極活物質の組み合わせであるならば、高容量の非水電解質二次電池を提供できる。 Lithium manganese oxide can be used as the positive electrode active material, and silicon oxide or lithium aluminum alloy can be used as the negative electrode active material. A combination of a positive electrode active material of a lithium manganese oxide and a negative electrode active material of a lithium aluminum alloy can provide a high-capacity non-aqueous electrolyte secondary battery.

」前記一形態の非水電解質二次電池では、有底円筒状の正極缶と、前記正極缶の開口部内側にガスケットを介在し固定され、前記正極缶との間に収容空間を形成する負極缶とを備え、前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことが好ましい。
" 5 " In the non-aqueous electrolyte secondary battery of the above embodiment, the bottomed cylindrical positive electrode can and the positive electrode can are fixed with a gasket inside the opening of the positive electrode can to form a storage space between the positive electrode can and the positive electrode can. The storage container is sealed by providing a caulking portion for crimping the opening of the positive electrode can to the negative electrode can side, and the positive electrode, the negative electrode, the separator, and the electrolytic solution are stored in the storage container. Is preferable.

正極缶の開口部を負極缶側にかしめて収容容器を密封した構造の場合、内部に収容している溶媒の成分によってはリフローハンダ付け時の加熱によって溶媒の一部が気化して収容容器の内部圧力が上昇し、収容容器が膨らむおそれがある。上述のグライム系溶媒に適量のビニレンカーボネートを含む溶媒であれば、リフローハンダ付けによる加熱を経たとしても、収容容器が大きく膨らむおそれが少なく、リフローハンダ付け後の電極劣化を生じることがなく、電解液の劣化も生じ難い非水電解質二次電池を提供できる。 In the case of a structure in which the opening of the positive electrode can is crimped to the negative electrode can side to seal the storage container, a part of the solvent is vaporized by heating during reflow soldering depending on the component of the solvent stored inside, and the storage container The internal pressure may increase and the container may swell. If the above-mentioned glyme-based solvent contains an appropriate amount of vinylene carbonate, there is little possibility that the storage container will swell significantly even after heating by reflow soldering, and electrode deterioration after reflow soldering will not occur, and electrolysis will occur. It is possible to provide a non-aqueous electrolyte secondary battery in which deterioration of the liquid is unlikely to occur.

本形態によれば、テトラグライムなどを含むグライム系溶媒にジエトキシエタンとエチレンカーボネートとビニレンカーボネートを含むため、リフローハンダ付け時の加熱に耐えることができ、電極と電解液の劣化を抑制できる非水電解質二次電池を提供できる。 According to this embodiment, since the glyme-based solvent containing tetraglyme or the like contains diethoxyethane, ethylene carbonate, and vinylene carbonate, it can withstand heating during reflow soldering and can suppress deterioration of the electrode and the electrolytic solution. A water electrolyte secondary battery can be provided.

第1実施形態に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the non-aqueous electrolyte secondary battery which concerns on 1st Embodiment. 第2実施形態に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the non-aqueous electrolyte secondary battery which concerns on 2nd Embodiment. 実施例で作製した複数の溶媒を用いて構成した複数の非水電解質二次電池に対しリフローハンダ付けに相当する熱処理を加えた場合の電池厚みの変化量を示すグラフ。The graph which shows the change amount of the battery thickness at the time of applying the heat treatment corresponding to the reflow soldering to the plurality of non-aqueous electrolyte secondary batteries constructed by using the plurality of solvents produced in the Example. 実施例で作製した複数の溶媒を用いて構成した複数の非水電解質二次電池について内部抵抗(交流インピーダンス)を測定した結果を示すグラフ。The graph which shows the result of having measured the internal resistance (AC impedance) of a plurality of non-aqueous electrolyte secondary batteries configured by using the plurality of solvents prepared in the Example.

以下、本発明の実施形態である非水電解質二次電池の例を挙げ、その構成について図1及び図2を参照しながら詳述する。なお、本発明で説明する非水電解質二次電池とは、正極または負極として用いる活物質とセパレータが収容容器内に収容されてなる二次電池である。また、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更し表示しているため、各部材の相対的な大きさが図面に示す形態に限らないのは勿論である。 Hereinafter, an example of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be given, and the configuration thereof will be described in detail with reference to FIGS. 1 and 2. The non-aqueous electrolyte secondary battery described in the present invention is a secondary battery in which an active material and a separator used as a positive electrode or a negative electrode are housed in a storage container. Further, in the drawings used in the following description, in order to make each member a recognizable size, the scale of each member is appropriately changed and displayed, so that the relative size of each member is limited to the form shown in the drawing. Of course not.

[非水電解質二次電池の第1実施形態]
図1に示す本実施形態の非水電解質二次電池1は、いわゆるコイン(ボタン)型の電池である。この非水電解質二次電池1は、有底円筒状の正極缶12と、正極缶12の開口部を塞ぐ有蓋円筒状の蓋状の負極缶22と、正極缶12の内周面に沿って設けられたガスケット40とを有し、正極缶12の開口部周縁を内側にかしめて構成された薄型(偏平型)の収納容器2を備えている。収納容器2内には、正極缶12と負極缶22とに囲まれた収容空間が形成され、この収容空間に正極10と負極20とがセパレータ30を介し対向配置され、更に電解液50が充填されている。
正極缶12の材質として、従来公知のものが用いられ、例えば、SUS316LやSUS329JL、あるいは、NAS64等のステンレス鋼が挙げられる。
負極缶22の材質は、正極缶12の材質と同様、従来公知のステンレス鋼が挙げられ、例えば、SUS316LやSUS329JL、あるいは、SUS304-BA等が挙げられる。
[First Embodiment of Non-Water Electrolyte Secondary Battery]
The non-aqueous electrolyte secondary battery 1 of the present embodiment shown in FIG. 1 is a so-called coin (button) type battery. The non-aqueous electrolyte secondary battery 1 includes a bottomed cylindrical positive electrode can 12, a covered cylindrical lid-shaped negative electrode can 22 that closes the opening of the positive electrode can 12, and a positive electrode can 12 along the inner peripheral surface of the positive electrode can 12. It has a provided gasket 40, and is provided with a thin (flat type) storage container 2 configured by caulking the peripheral edge of the opening of the positive electrode can 12 inward. A storage space surrounded by the positive electrode can 12 and the negative electrode can 22 is formed in the storage container 2, and the positive electrode 10 and the negative electrode 20 are arranged to face each other via the separator 30 in this storage space, and the electrolytic solution 50 is further filled. Has been done.
As the material of the positive electrode can 12, conventionally known materials are used, and examples thereof include stainless steel such as SUS316L, SUS329JL, and NAS64.
Examples of the material of the negative electrode can 22 include conventionally known stainless steel as in the material of the positive electrode can 12, and examples thereof include SUS316L, SUS329JL, and SUS304-BA.

(正極)
本形態において正極10は、正極集電体14を介し正極缶12の内面に電気的に接続され、負極20は、負極集電体24を介し負極缶22の内面に電気的に接続されている。なお、正極集電体14と負極集電体24はこれらを略し、正極10を直接正極缶12に接続して正極缶12に集電体の機能を持たせても良く、負極12を直接負極缶12に接続して負極缶22に集電体の機能を持たせても良い。
ガスケット40は、セパレータ30の外周と接続され、ガスケット40がセパレータ30を保持している。正極10、負極20及びセパレータ30には、収納容器2内に充填された電解液50が含浸されている。
(Positive electrode)
In the present embodiment, the positive electrode 10 is electrically connected to the inner surface of the positive electrode can 12 via the positive electrode current collector 14, and the negative electrode 20 is electrically connected to the inner surface of the negative electrode can 22 via the negative electrode current collector 24. .. The positive electrode current collector 14 and the negative electrode current collector 24 are abbreviated, and the positive electrode 10 may be directly connected to the positive electrode can 12 so that the positive electrode can 12 has the function of a current collector, and the negative electrode 12 is directly connected to the negative electrode. The negative electrode can 22 may be connected to the can 12 to have the function of a current collector.
The gasket 40 is connected to the outer periphery of the separator 30, and the gasket 40 holds the separator 30. The positive electrode 10, the negative electrode 20, and the separator 30 are impregnated with the electrolytic solution 50 filled in the storage container 2.

正極10において、正極活物質の種類は特に限定されないが、例えば、正極活物質としてリチウムマンガン酸化物を含有するものを用いることが好ましい。
正極10中の正極活物質の含有量は、非水電解質二次電池1に要求される放電容量等を勘案して決定され、50~95質量%の範囲とすることができる。正極活物質の含有量が上記好ましい範囲の下限値以上であれば、充分な放電容量が得られやすく、好ましい上限値以下であれば、正極10を成形しやすい。
正極10は、バインダ(以下、正極10に用いられるバインダを「正極バインダ」ということがある)を含有してもよい。
In the positive electrode 10, the type of the positive electrode active material is not particularly limited, but for example, it is preferable to use a positive electrode active material containing a lithium manganese oxide.
The content of the positive electrode active material in the positive electrode 10 is determined in consideration of the discharge capacity required for the non-aqueous electrolyte secondary battery 1 and the like, and can be in the range of 50 to 95% by mass. When the content of the positive electrode active material is not less than the lower limit of the above preferable range, a sufficient discharge capacity can be easily obtained, and when it is not more than the preferable upper limit, the positive electrode 10 can be easily formed.
The positive electrode 10 may contain a binder (hereinafter, the binder used for the positive electrode 10 may be referred to as a “positive electrode binder”).

正極バインダとして、従来公知の物質を用いることができ、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)等を選択できる。
また、正極バインダは、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。正極10において正極バインダの含有量は、例えば、1~20質量%とすることができる。
正極集電体14として、従来公知のものを用いることができ、炭素を導電性フィラーとする導電性樹脂接着剤等が挙げられる。
Conventionally known substances can be used as the positive electrode binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC). , Polyvinyl alcohol (PVA) and the like can be selected.
Further, as the positive electrode binder, one of the above may be used alone, or two or more of them may be used in combination. The content of the positive electrode binder in the positive electrode 10 can be, for example, 1 to 20% by mass.
As the positive electrode current collector 14, a conventionally known one can be used, and examples thereof include a conductive resin adhesive using carbon as a conductive filler.

また、本実施形態では、正極活物質として、上記のリチウムマンガン酸化物に加え、他の正極活物質を含有していても良く、例えば、モリブデン酸化物、リチウム鉄リン酸化合物、リチウムコバルト酸化物、リチウムニッケル酸化物、バナジウム酸化物等、他の酸化物の何れか1種以上を含有していても良い。 Further, in the present embodiment, the positive electrode active material may contain other positive electrode active materials in addition to the above lithium manganese oxide, for example, molybdenum oxide, lithium iron phosphate compound, lithium cobalt oxide. , Lithium nickel oxide, vanadium oxide and the like may contain any one or more of other oxides.

(負極)
負極20において、負極活物質の種類は特に限定されないが、例えば、負極活物質としてシリコン酸化物又はアルミニウム合金を含有することが好ましい。
また、負極20において、負極活物質がSiOx(0≦x<2)で表されるシリコン酸化物からなることが好ましい。負極20において、負極活物質にリチウムアルミニウム合金を用いることもできる。負極活物質にリチウムアルミニウム合金を用いる場合の構造については後述の第2実施形態において説明する。
(Negative electrode)
In the negative electrode 20, the type of the negative electrode active material is not particularly limited, but for example, it is preferable to contain a silicon oxide or an aluminum alloy as the negative electrode active material.
Further, in the negative electrode 20, it is preferable that the negative electrode active material is made of a silicon oxide represented by SiOx (0 ≦ x <2). In the negative electrode 20, a lithium aluminum alloy can also be used as the negative electrode active material. The structure when a lithium aluminum alloy is used as the negative electrode active material will be described in the second embodiment described later.

また、負極20は、負極活物質として、上記のSiO(0≦x<2)に加え、他の負極活物質を含有していても良く、例えば、Si、C等、他の負極活物質を含有していても良い。
負極活物質として粒状のSiO(0≦x<2)を用いる場合、これらの粒子径(D50)は、特に限定されず、例えば、0.1~30μmの範囲を選択することができ、1~10μmの範囲を選択することができる。SiOの粒子径(D50)が、上記範囲の下限値未満であると、例えば、非水電解質二次電池1を過酷な高温高湿環境下において保管・使用した場合や、リフロー処理による反応性が高まり、電池特性が損なわれるおそれがあり、また、上限値を超えると、放電レートが低下するおそれがある。
Further, the negative electrode 20 may contain another negative electrode active material in addition to the above SiO X (0 ≦ x <2) as the negative electrode active material, for example, other negative electrode active materials such as Si and C. May be contained.
When granular SiO X (0 ≦ x <2) is used as the negative electrode active material, these particle diameters (D50) are not particularly limited, and for example, a range of 0.1 to 30 μm can be selected. A range of up to 10 μm can be selected. When the particle size (D50) of SiO X is less than the lower limit of the above range, for example, when the non-aqueous electrolyte secondary battery 1 is stored and used in a harsh high temperature and high humidity environment, or when the reactivity due to the reflow treatment is performed. The battery characteristics may be impaired, and if the upper limit is exceeded, the discharge rate may decrease.

負極20中の負極活物質、即ち、SiO(0≦x<2)の含有量は、非水電解質二次電池1に要求される放電容量等を勘案して決定され、50質量%以上の範囲を選択することができ、60~70質量%の範囲を選択することができる。
負極20において、上記元素からなる負極活物質の含有量が、上記範囲の下限値以上であれば、充分な放電容量が得られやすく、また、上限値以下であれば、負極20を成形しやすい。
The content of the negative electrode active material, that is, SiO X (0 ≦ x <2) in the negative electrode 20, is determined in consideration of the discharge capacity required for the non-aqueous electrolyte secondary battery 1, and is 50% by mass or more. The range can be selected, and the range of 60 to 70% by mass can be selected.
In the negative electrode 20, if the content of the negative electrode active material composed of the above elements is at least the lower limit of the above range, a sufficient discharge capacity can be easily obtained, and if it is at least the upper limit, the negative electrode 20 can be easily molded. ..

負極20は、導電助剤(以下、負極20に用いられる導電助剤を「負極導電助剤」ということがある)を含有してもよい。負極導電助剤は、正極導電助剤と同様のものである。
負極20は、バインダ(以下、負極20に用いられるバインダを「負極バインダ」ということがある)を含有してもよい。
負極バインダとして、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリイミドアミド(PAI)等を選択することができる。
The negative electrode 20 may contain a conductive auxiliary agent (hereinafter, the conductive auxiliary agent used for the negative electrode 20 may be referred to as a “negative electrode conductive auxiliary agent”). The negative electrode conductive auxiliary agent is the same as the positive electrode conductive auxiliary agent.
The negative electrode 20 may contain a binder (hereinafter, the binder used for the negative electrode 20 may be referred to as a “negative electrode binder”).
As the negative electrode binder, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC), polyimide (PI), polyimide amide (PAI) and the like can be selected.

また、負極バインダは、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。なお、負極バインダにポリアクリル酸を用いる場合には、ポリアクリル酸を、予め、pH3~10に調整しておくことができる。この場合のpHの調整には、例えば、水酸化リチウム等のアルカリ金属水酸化物や水酸化マグネシウム等のアルカリ土類金属水酸化物を用いることができる。
負極20中の負極バインダの含有量は、例えば1~20質量%の範囲とされる。
Further, as the negative electrode binder, one of the above types may be used alone, or two or more types may be used in combination. When polyacrylic acid is used for the negative electrode binder, the pH of the polyacrylic acid can be adjusted to 3 to 10 in advance. For adjusting the pH in this case, for example, an alkali metal hydroxide such as lithium hydroxide or an alkaline earth metal hydroxide such as magnesium hydroxide can be used.
The content of the negative electrode binder in the negative electrode 20 is, for example, in the range of 1 to 20% by mass.

なお、本形態において負極20の大きさ、厚さについては、正極10の大きさ、厚さと同様に形成できる。
また、図1に示す非水電解質二次電池1においては、図示を省略しているが、負極20の表面、即ち、負極20と後述のセパレータ30との間に、リチウムフォイルなどのリチウム体60を設けた構成を採用することができる。
In this embodiment, the size and thickness of the negative electrode 20 can be formed in the same manner as the size and thickness of the positive electrode 10.
Further, in the non-aqueous electrolyte secondary battery 1 shown in FIG. 1, although not shown, a lithium body 60 such as a lithium foil is formed between the surface of the negative electrode 20, that is, between the negative electrode 20 and the separator 30 described later. It is possible to adopt a configuration provided with.

「電解液」
電解液50は、通常、支持塩を非水溶媒に溶解させたものである。
本形態の非水電解質二次電池1においては、電解液50をなす非水溶媒が、テトラグライム(TEG)を主溶媒とし、ジエトキシエタン(DEE)を副溶媒とし、更にエチレンカーボネート(EC)およびビニレンカーボネート(VC)を添加剤として含有するものである。非水溶媒は、通常、電解液50に求められる耐熱性や粘度等を勘案して決定されるが、本形態においては、上記の各溶媒からなるものを用いる。
グライム系溶媒を構成するための主溶媒は、テトラグライム、トリグライム、ペンタグライム、ジグライムなどを利用することができる。
"Electrolytic solution"
The electrolytic solution 50 is usually obtained by dissolving the supporting salt in a non-aqueous solvent.
In the non-aqueous electrolyte secondary battery 1 of the present embodiment, the non-aqueous solvent forming the electrolytic solution 50 uses tetraglyme (TEG) as a main solvent, diethoxyethane (DEE) as a secondary solvent, and ethylene carbonate (EC). And vinylene carbonate (VC) are contained as an additive. The non-aqueous solvent is usually determined in consideration of the heat resistance, viscosity, etc. required for the electrolytic solution 50, but in this embodiment, the solvent consisting of each of the above solvents is used.
As the main solvent for forming the grime-based solvent, tetraglyme, triglyme, pentaglyme, diglyme and the like can be used.

本形態では、エチレンカーボネート(EC)、テトラグライム(TEG)およびジエトキシエタン(DEE)を含有する非水溶媒を用いた電解液50を採用している。このような構成を採用することで、支持塩をなすLiイオンに、DEE及びTEGが溶媒和する。
このとき、DEEがTEGよりもドナーナンバーが高いため、DEEが選択的にLiイオンと溶媒和する。このように、支持塩をなすLiイオンにDEE及びTEGが溶媒和し、Liイオンを保護する。これにより、例え、高温高湿環境下において非水電解質二次電池の内部に水分が侵入した場合であっても、水分とLiとが反応するのを防止できるので、放電容量が低下するのを抑制し、保存特性が向上する効果が得られる。
In this embodiment, the electrolytic solution 50 using a non-aqueous solvent containing ethylene carbonate (EC), tetraglyme (TEG) and diethoxyethane (DEE) is adopted. By adopting such a configuration, DEE and TEG are solvated with Li ions forming the supporting salt.
At this time, since DEE has a higher donor number than TEG, DEE selectively solvates Li ions. In this way, DEE and TEG are solvated with the Li ions forming the supporting salt to protect the Li ions. As a result, even if water enters the inside of the non-aqueous electrolyte secondary battery in a high temperature and high humidity environment, it is possible to prevent the water from reacting with Li, so that the discharge capacity is reduced. The effect of suppressing and improving the storage characteristics can be obtained.

電解液50中の非水溶媒における上記各溶媒の比率は、特に限定されないが、例えば、TEG:30質量%以上48.5質量%以下、DEE:30質量%以上48.5質量%以下、EC:0.5質量%以上10質量%以下、VC:2質量%以上13%以下の範囲(トータル100%)の範囲を選択できる。
非水溶媒に含まれるTEGとDEEとECの割合が上記範囲であると、上述した、DEEがLiイオンに溶媒和することでLiイオンが保護される作用が得られる。
上述の範囲であっても、VCの含有量について、2.5質量%以上10質量%の範囲が望ましく、5.0質量%以上7.5質量%の範囲がより好ましい。TEGとDEEの含有量の上限値については、48.25質量%以下が好ましく、48質量%以下がより好ましい。
VCの含有量が2質量%以上13%以下の範囲の場合、リフローハンダ付け時の加熱を受けたとしても正極缶12と負極缶22からなる収容容器2に生じる厚みの変化が小さく、内部抵抗の増加も少なくできる。また、VCの含有量が2.5質量%以上10.0質量%以下の範囲の場合、リフローハンダ付け時の加熱を受けたとしても収容容器2に生じる厚みの変化をより小さくでき、内部抵抗の増加もより少なくできる。これらの範囲内であっても、VCの含有量が5.0質量%以上7.5質量%以下の範囲が最も好ましい。
The ratio of each of the above solvents to the non-aqueous solvent in the electrolytic solution 50 is not particularly limited, but for example, TEG: 30% by mass or more and 48.5% by mass or less, DEE: 30% by mass or more and 48.5% by mass or less, EC. : 0.5% by mass or more and 10% by mass or less, VC: 2% by mass or more and 13% or less (total 100%) can be selected.
When the ratio of TEG, DEE and EC contained in the non-aqueous solvent is in the above range, the above-mentioned effect of solvating DEE to Li ions to protect Li ions can be obtained.
Even within the above range, the VC content is preferably in the range of 2.5% by mass or more and 10% by mass, and more preferably in the range of 5.0% by mass or more and 7.5% by mass. The upper limit of the contents of TEG and DEE is preferably 48.25% by mass or less, more preferably 48% by mass or less.
When the VC content is in the range of 2% by mass or more and 13% or less, the change in thickness that occurs in the storage container 2 composed of the positive electrode can 12 and the negative electrode can 22 is small even if it is heated during reflow soldering, and the internal resistance is small. Can be reduced. Further, when the VC content is in the range of 2.5% by mass or more and 10.0% by mass or less, the change in thickness that occurs in the storage container 2 can be made smaller even if it is heated during reflow soldering, and the internal resistance can be reduced. Can be less increased. Even within these ranges, the VC content is most preferably in the range of 5.0% by mass or more and 7.5% by mass or less.

支持塩は、非水電解質二次電池の電解液に支持塩として用いられる公知のLi化合物を用いることができ、例えば、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSO等の有機酸リチウム塩;LiPF、LiBF、LiB(C、LiCl、LiBr等の無機酸リチウム塩等のリチウム塩等が挙げられる。なかでも、リチウムイオン導電性を有する化合物であるリチウム塩が好ましく、LiN(CFSO、LiN(FSO、LiBFがより好ましく、耐熱性及び水分との反応性が低く、保存特性を充分に発揮できるという観点から、LiN(CFSOが特に好ましい。
支持塩は、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
As the supporting salt, a known Li compound used as a supporting salt in the electrolytic solution of the non-aqueous electrolyte secondary battery can be used, and for example, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2) 2, LiN (CF 3 SO 2 ) 2 , Lithium organic acid salts such as LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 3 ) 2 , LiN (FSO 2 ) 2 ; LiPF 6 , LiBF 4 , LiB ( C 6 H 5 ) 4 , Lithium salts such as inorganic acid lithium salts such as LiCl and LiBr, and the like can be mentioned. Among them, a lithium salt, which is a compound having lithium ion conductivity, is preferable, LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiBF 4 are more preferable, and heat resistance and reactivity with water are low. LiN (CF 3 SO 2 ) 2 is particularly preferable from the viewpoint of sufficiently exhibiting storage characteristics.
As the supporting salt, one of the above may be used alone, or two or more thereof may be used in combination.

電解液50中の支持塩の含有量は、支持塩の種類等を勘案して決定でき、例えば、0.1~3.5mol/Lが好ましく、0.5~3mol/Lがより好ましく、1~2.5mol/Lが特に好ましい。電解液50中の支持塩濃度が高過ぎても、あるいは低過ぎても、電導度の低下が起き、電池特性に悪影響を及ぼすおそれがある。 The content of the supporting salt in the electrolytic solution 50 can be determined in consideration of the type of the supporting salt and the like. For example, 0.1 to 3.5 mol / L is preferable, 0.5 to 3 mol / L is more preferable, and 1 ~ 2.5 mol / L is particularly preferable. If the concentration of the supporting salt in the electrolytic solution 50 is too high or too low, the conductivity may be lowered and the battery characteristics may be adversely affected.

(セパレータ)
セパレータ30は、正極10と負極20との間に介在され、大きなイオン透過度を有し、かつ、機械的強度を有する絶縁膜が用いられる。
セパレータ30としては、従来から非水電解質二次電池のセパレータに用いられるものを何ら制限無く適用でき、例えば、アルカリガラス、ホウ珪酸ガラス、石英ガラス、鉛ガラス等のガラス、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリアミドイミド(PAI)、ポリアミド、ポリイミド(PI)等の樹脂からなる不織布等が挙げられる。中でも、ガラス製不織布が好ましく、ホウ珪酸ガラス製不織布がより好ましい。ガラス製不織布は、機械強度に優れるとともに、大きなイオン透過度を有するため、内部抵抗を低減して放電容量の向上を図ることができる。
セパレータ30の厚さは、非水電解質二次電池1の大きさや、セパレータ30の材質等を勘案して決定され、例えば5~300μmとすることができる。
(Separator)
As the separator 30, an insulating film interposed between the positive electrode 10 and the negative electrode 20 and having a large ion transmittance and mechanical strength is used.
As the separator 30, those conventionally used for separators of non-aqueous electrolyte secondary batteries can be applied without any limitation. For example, alkaline glass, borosilicate glass, quartz glass, glass such as lead glass, polyphenylene sulfide (PPS), and the like. Examples thereof include non-woven fabrics made of resins such as polyetheretherketone (PEEK), polyethylene terephthalate (PET), polyamideimide (PAI), polyamide, and polyimide (PI). Among them, a non-woven fabric made of glass is preferable, and a non-woven fabric made of borosilicate glass is more preferable. Since the non-woven fabric made of glass has excellent mechanical strength and high ion permeability, it is possible to reduce the internal resistance and improve the discharge capacity.
The thickness of the separator 30 is determined in consideration of the size of the non-aqueous electrolyte secondary battery 1, the material of the separator 30, and the like, and can be, for example, 5 to 300 μm.

(ガスケット)
ガスケット40は、例えば、熱変形温度230℃以上の樹脂からなることが好ましい。ガスケット40に用いる樹脂材料の熱変形温度が230℃以上であれば、リフローハンダ処理や非水電解質二次電池1の使用中の加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。
ガスケット40は、図1に示すように、正極缶12の内周面に沿って円環状に形成され、その環状溝41の内部に負極缶22の外周端部22aが配置されている。
ガスケット40は、正極缶12の開口部内周側に隙間無く挿入される外径を有するリング状の外縁部40Aと、リング状の内縁部40Bと、これら外縁部40Aおよび内縁部40Bの下端部どうしを接続した底壁部40Cからなる。従って、ガスケット40の外周縁上面側には負極缶22の外周端部22aを挿入可能な環状溝41が形成されている。
図1に示す正極缶12の開口部12aの周縁部12bを内側、即ち負極缶22側にかしめることでガスケット40を挟み込むことにより収容空間を密封した構造の収納容器2が構成されている。
(gasket)
The gasket 40 is preferably made of, for example, a resin having a heat distortion temperature of 230 ° C. or higher. If the heat distortion temperature of the resin material used for the gasket 40 is 230 ° C. or higher, the gasket is significantly deformed due to reflow soldering treatment or heating during use of the non-aqueous electrolyte secondary battery 1 to prevent the electrolytic solution 50 from leaking. can.
As shown in FIG. 1, the gasket 40 is formed in an annular shape along the inner peripheral surface of the positive electrode can 12, and the outer peripheral end portion 22a of the negative electrode can 22 is arranged inside the annular groove 41.
The gasket 40 has a ring-shaped outer edge portion 40A having an outer diameter that is inserted without a gap on the inner peripheral side of the opening of the positive electrode can 12, a ring-shaped inner edge portion 40B, and the lower ends of the outer edge portion 40A and the inner edge portion 40B. It is composed of a bottom wall portion 40C to which the above is connected. Therefore, an annular groove 41 into which the outer peripheral end portion 22a of the negative electrode can 22 can be inserted is formed on the upper surface side of the outer peripheral edge of the gasket 40.
A storage container 2 having a structure in which the storage space is sealed by sandwiching the gasket 40 by crimping the peripheral edge portion 12b of the opening portion 12a of the positive electrode can 12 shown in FIG. 1 to the inside, that is, to the negative electrode can 22 side is configured.

以上のようなガスケット40の材質としては、例えば、ポリフェニルサルファイド(PPS)、ポリエチレンテレフタレート(PET)、ポリアミド、液晶ポリマー(LCP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)、ポリエーテルケトン樹脂(PEK)、ポリアリレート樹脂、ポリブチレンテレフタレート樹脂(PBT)、ポリシクロヘキサンジメチレンテレフタレート樹脂、ポリエーテルスルホン樹脂(PES)、ポリアミノビスマレイミド樹脂、ポリエーテルイミド樹脂、フッ素樹脂等が挙げられる。また、これらの材料にガラス繊維、マイカウイスカー、セラミック微粉末等を、30質量%以下の添加量で添加したものを好適に用いることができる。このような材質を用いることで、加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。 Examples of the material of the gasket 40 as described above include polyphenyl sulfide (PPS), polyethylene terephthalate (PET), polyamide, liquid crystal polymer (LCP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), and poly. Ether ether ketone resin (PEEK), polyether nitrile resin (PEN), polyether ketone resin (PEK), poly allylate resin, polybutylene terephthalate resin (PBT), polycyclohexanedimethylene terephthalate resin, polyether sulfone resin (PES) , Polyaminobismaleimide resin, polyetherimide resin, fluororesin and the like. Further, those to which glass fiber, mica whiskers, ceramic fine powder or the like are added in an addition amount of 30% by mass or less can be preferably used. By using such a material, the gasket is significantly deformed by heating, and it is possible to prevent the electrolytic solution 50 from leaking.

以上説明した本形態の非水電解質二次電池1によれば、非水溶媒が、テトラグライム(TEG)とジエトキシエタン(DEE)を主体として含み、エチレンカーボネート(EC)と上述の適量範囲のビニレンカーボネート(VC)を適量範囲含む電解液50を備えているので、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器2の内圧が上昇するおそれが少なく、収容容器2に変形を生じ難い構成を提供できる。
また、溶媒としてテトラグライムとジエトキシエタンを主体として含むグライム系の溶媒であるならば、これら溶媒の沸点が高いことに起因して電解液の耐熱性を高めることができる。
According to the non-aqueous electrolyte secondary battery 1 of the present embodiment described above, the non-aqueous solvent contains tetraglyme (TEG) and diethoxyethane (DEE) as main components, and ethylene carbonate (EC) and the above-mentioned appropriate amount range. Since the electrolytic solution 50 containing an appropriate amount of vinylene carbonate (VC) is provided, it has heat resistance that can withstand reflow soldering, and even if it is heated by reflow soldering, there is little risk of the solvent evaporating. It is possible to provide a configuration in which the internal pressure of the storage container 2 is unlikely to increase and the storage container 2 is unlikely to be deformed.
Further, if the solvent is a grime-based solvent mainly containing tetraglyme and diethoxyethane, the heat resistance of the electrolytic solution can be enhanced due to the high boiling point of these solvents.

「非水電解質二次電池の第2実施形態」
図2は第2実施形態の非水電解質二次電池11を示すもので、この形態の非水電解質二次電池11は、第1実施形態の非水電解質二次電池1と類似構造のコイン(ボタン)型の電池である。この非水電解質二次電池11は、正極缶12と、負極缶25と、ガスケット42とを有し、正極缶12の開口部周縁を内側にかしめて構成された薄型(偏平型)の収納容器2を備えている点について、第1実施形態の非水電解質二次電池1と同等構造である。
第2実施形態の負極缶25は、ステンレス鋼材と硬質アルミニウム材を圧延加工にて貼り合わせたものであって、外側のステンレス層21と内側の硬質アルミニウム層23との2層構造とされている。
"Second Embodiment of Non-Water Electrolyte Secondary Battery"
FIG. 2 shows the non-aqueous electrolyte secondary battery 11 of the second embodiment, and the non-aqueous electrolyte secondary battery 11 of this embodiment is a coin having a structure similar to that of the non-aqueous electrolyte secondary battery 1 of the first embodiment. It is a button) type battery. The non-aqueous electrolyte secondary battery 11 has a positive electrode can 12, a negative electrode can 25, and a gasket 42, and is a thin (flat type) storage container configured by crimping the peripheral edge of the opening of the positive electrode can 12 inward. It has the same structure as the non-aqueous electrolyte secondary battery 1 of the first embodiment in that it is provided with 2.
The negative electrode can 25 of the second embodiment is formed by laminating a stainless steel material and a hard aluminum material by rolling, and has a two-layer structure of an outer stainless steel layer 21 and an inner hard aluminum layer 23. ..

第2実施形態の非水電解質二次電池11において、収納容器2内に、正極13と負極26がセパレータ30Aを介し対向配置され、電解液50が密閉空間16に充填されている。そして、正極13、負極26及びセパレータ30Aには、収納容器2内に充填された電解液50が含浸されている。
正極13は、炭素を導電性フィラーとする導電性樹脂接着剤からなる正極集電体14により、正極缶10の内部底面10bに接着され、正極12の上部にはセパレータ30Aが載置されている。セパレータ30Aの上部には、負極26が載置され、負極26は、負極缶25の内部天面20b、即ち、硬質アルミニウム層23に圧着されている。
正極13は先の第1実施形態の正極10を構成する材料と同等の材料を適用できる。
In the non-aqueous electrolyte secondary battery 11 of the second embodiment, the positive electrode 13 and the negative electrode 26 are arranged to face each other in the storage container 2 via the separator 30A, and the electrolytic solution 50 is filled in the closed space 16. The positive electrode 13, the negative electrode 26, and the separator 30A are impregnated with the electrolytic solution 50 filled in the storage container 2.
The positive electrode 13 is adhered to the inner bottom surface 10b of the positive electrode can 10 by a positive electrode current collector 14 made of a conductive resin adhesive containing carbon as a conductive filler, and a separator 30A is placed on the upper portion of the positive electrode 12. .. A negative electrode 26 is placed on the upper portion of the separator 30A, and the negative electrode 26 is crimped to the inner top surface 20b of the negative electrode can 25, that is, the hard aluminum layer 23.
As the positive electrode 13, a material equivalent to the material constituting the positive electrode 10 of the first embodiment can be applied.

負極26としては、リチウム箔(リチウムフォイル)、リチウム-アルミニウム合金、リチウムを接触又は電気化学的にドープした炭素等が挙げられる。
セパレータ30Aは、ガラス製繊維からなり、例えば、ホウ珪酸ガラス、石英ガラス、鉛ガラス等のガラス製の不織布が挙げられ、中でも、ホウ珪酸ガラス製不織布がより好ましい。ホウ珪酸ガラス製不織布は、機械強度に優れると共に、大きなイオン透過度を有するため、内部抵抗を低減して放電容量の向上を図れる。
Examples of the negative electrode 26 include a lithium foil (lithium foil), a lithium-aluminum alloy, carbon contacted or electrochemically doped with lithium, and the like.
The separator 30A is made of glass fiber, and examples thereof include glass non-woven fabrics such as borosilicate glass, quartz glass, and lead glass, and among them, borosilicate glass non-woven fabric is more preferable. Since the non-woven fabric made of borosilicate glass is excellent in mechanical strength and has a large ion permeability, it is possible to reduce the internal resistance and improve the discharge capacity.

電解液50の組成は先の第1実施形態の電解液50と同等である。テトラグライム(TEG)を主溶媒とし、ジエトキシエタン(DEE)を副溶媒とし、更にエチレンカーボネート(EC)に加え、ビニレンカーボネート(VC)を添加剤として適量範囲含有する電解液である。電解液50において各成分の組成比も先の第1実施形態と同等で良い。 The composition of the electrolytic solution 50 is the same as that of the electrolytic solution 50 of the first embodiment. An electrolytic solution containing tetraglyme (TEG) as a main solvent, diethoxyethane (DEE) as a secondary solvent, and vinyl carbonate (VC) as an additive in an appropriate amount in addition to ethylene carbonate (EC). The composition ratio of each component in the electrolytic solution 50 may be the same as that of the first embodiment.

第2実施形態の構造においても、第1実施形態の構造と同様に、上述の適量範囲のビニレンカーボネート(VC)を含む電解液50を備えているので、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器2の内圧が上昇するおそれが少なく、収容容器2に変形を生じ難い構成を提供できる。
第2実施形態の構造では、負極25としてリチウム箔(リチウムフォイル)、リチウム-アルミニウム合金を用いているので、高容量化することができる。
第2実施形態の構造において、その他の構造は先の第1実施形態の構造と同等であるので、同等の作用効果を得ることができる。
Similar to the structure of the first embodiment, the structure of the second embodiment also has the heat resistance that can withstand reflow soldering because the electrolytic solution 50 containing the above-mentioned appropriate amount range of vinylene carbonate (VC) is provided. However, even if the solvent is heated due to reflow soldering, the solvent is less likely to vaporize, the internal pressure of the storage container 2 is less likely to increase, and the storage container 2 can be provided with a structure in which deformation is unlikely to occur.
In the structure of the second embodiment, a lithium foil (lithium foil) and a lithium-aluminum alloy are used as the negative electrode 25, so that the capacity can be increased.
In the structure of the second embodiment, the other structures are the same as the structures of the first embodiment, so that the same effects can be obtained.

なお、先の実施形態において、好ましくはステンレス鋼製の正極缶とステンレス鋼製の負極缶とを用い、これらをかしめた収納容器を備えるコイン型構造の非水電解質二次電池を例に挙げて説明したが、本形態はこの構造に限定されるものではない。
例えば、セラミックス製の容器本体の開口部が、金属製の封口部材を用いたシーム溶接等の加熱処理によってセラミックス製の蓋体で封止された構造の非水電解質二次電池に本発明構造を適用してもよい。
In the above embodiment, preferably, a positive electrode can made of stainless steel and a negative electrode can made of stainless steel are used, and a non-aqueous electrolyte secondary battery having a coin-shaped structure provided with a storage container crimped thereof is taken as an example. As described above, this embodiment is not limited to this structure.
For example, the structure of the present invention is applied to a non-aqueous electrolyte secondary battery having a structure in which the opening of the ceramic container body is sealed with a ceramic lid by heat treatment such as seam welding using a metal sealing member. May be applied.

図1に示す構成の非水電解質二次電池を試作し、後述する評価試験を行った。
正極10として、まず、市販のリチウムマンガン酸化物(Li1.14Co0.06Mn1.80)に、導電助剤としてグラファイトを、結着剤としてポリアクリル酸を、リチウムマンガン酸化物:グラファイト:ポリアクリル酸=90:8:2(質量比)の割合で混合して正極合剤とした。この正極合剤98.6mgを、2ton/cmの加圧力で加圧し、直径4mmの円盤形ペレットに加圧成形した。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 1 was prototyped and subjected to an evaluation test described later.
As the positive electrode 10, first, commercially available lithium manganese oxide (Li 1.14 Co 0.06 Mn 1.80 O 4 ), graphite as a conductive auxiliary agent, polyacrylic acid as a binder, and lithium manganese oxide are used. : Graphite: Polyacrylic acid = 90: 8: 2 (mass ratio) was mixed to prepare a positive electrode mixture. 98.6 mg of this positive electrode mixture was pressurized with a pressure of 2 ton / cm 2 , and pressure-molded into disc-shaped pellets having a diameter of 4 mm.

得られたペレット(正極)を、ステンレス鋼(SUS316L:t=0.20mm)製の正極缶の内面に、炭素を含む導電性樹脂接着剤を用いて接着し、これらを一体化して正極ユニットを得た。その後、この正極ユニットを、大気中で120℃×11時間の条件で減圧加熱乾燥した。次に、正極ユニットにおける正極缶の開口部の内側面にシール剤を塗布した。 The obtained pellets (positive electrode) are bonded to the inner surface of a stainless steel (SUS316L: t = 0.20 mm) positive electrode can using a conductive resin adhesive containing carbon, and these are integrated to form a positive electrode unit. Obtained. Then, this positive electrode unit was heated and dried under reduced pressure in the air under the condition of 120 ° C. × 11 hours. Next, a sealant was applied to the inner surface of the opening of the positive electrode can in the positive electrode unit.

次に、負極として、表面全体に炭素(C)が形成されたSiO粉末を準備し、これを負極活物質とした。そして、この負極活物質に、導電剤としてグラファイトを、結着剤としてポリアクリル酸を、それぞれ54:44:2(質量比)の割合で混合して負極合剤とした。この負極合剤15.1mgを、2ton/cm加圧力で加圧成形し、直径4mmの円盤形ペレットに加圧成形した。 Next, as the negative electrode, SiO powder in which carbon (C) was formed on the entire surface was prepared, and this was used as the negative electrode active material. Then, graphite as a conductive agent and polyacrylic acid as a binder were mixed with this negative electrode active material at a ratio of 54:44: 2 (mass ratio) to obtain a negative electrode mixture. 15.1 mg of this negative electrode mixture was pressure-molded with a pressure of 2 ton / cm 2 and pressure-molded into a disk-shaped pellet having a diameter of 4 mm.

得られたペレット(負極)を、ステンレス鋼(SUS316L:t=0.20mm)製の負極缶の内面に、炭素を導電性フィラーとする導電性樹脂接着剤を用いて接着し、これらを一体化して負極ユニットを得た。その後、この負極ユニットを、大気中で160℃×11時間の条件で減圧加熱乾燥した。
このペレット状の負極の上に、さらに、直径4mm、厚さ0.38mmに打ち抜いたリチウムフォイルを圧着し、リチウム-負極積層電極とした。
The obtained pellets (negative electrode) are bonded to the inner surface of a negative electrode can made of stainless steel (SUS316L: t = 0.20 mm) using a conductive resin adhesive containing carbon as a conductive filler, and these are integrated. Obtained a negative electrode unit. Then, this negative electrode unit was heated and dried under reduced pressure in the air under the conditions of 160 ° C. × 11 hours.
A lithium foil punched to a diameter of 4 mm and a thickness of 0.38 mm was further pressure-bonded onto the pellet-shaped negative electrode to obtain a lithium-negative electrode laminated electrode.

上述したように、本実施例においては、実施形態の構造に示す正極集電体及び負極集電体を設けることなく、正極缶に正極集電体の機能を持たせるとともに、負極缶に負極集電体の機能を持たせて、非水電解質二次電池を作製した。 As described above, in the present embodiment, the positive electrode can has the function of the positive electrode collector and the negative electrode can has the negative electrode collection without providing the positive electrode collector and the negative electrode current collector shown in the structure of the embodiment. A non-aqueous electrolyte secondary battery was produced by giving it the function of an electric body.

次に、ガラス繊維からなる不織布を乾燥させた後、直径4mmの円盤型に打ち抜いてセパレータとした。そして、このセパレータを、負極上に圧着されたリチウムフォイル上に載置し、負極缶の開口部に、ポリプロピレン製のガスケットを配置した。 Next, after drying the non-woven fabric made of glass fiber, it was punched into a disk shape having a diameter of 4 mm to form a separator. Then, this separator was placed on a lithium foil crimped onto the negative electrode, and a polypropylene gasket was placed in the opening of the negative electrode can.

(電解液の作製)
テトラグライム(TEG)、ジエトキシエタン(DEE)、エチレンカーボネート(EC)、および、ビニレンカーボネート(VC)の各溶媒を混合して非水溶媒とし、得られた非水溶媒に支持塩としてLiTFSI(1M)を溶解させて電解液を得た。この際の、各溶媒の混合比率は、質量%で、TEG:DEE:EC:VC=(41.25~48.25):(41.25~48.25):2.5:(1.0、2.5、5、7.5、10.0、15)とした。
ECはいずれの試料も2.5質量%に固定した配合量とし、VCについては1.0質量%、2.5質量%、5質量%、7.5質量%、10.0質量%、15質量%の6段階に個々に変量し、残部を構成するTEGとDEEは、相互に1:1の割合となるように配合して複数の試料を作製した。
上述の如く用意した正極缶及び負極缶に、上記手順で調整した各例の電解液を、電池1個あたりの合計で40μL充填した。
(Preparation of electrolyte)
Each solvent of tetraglyme (TEG), diethoxyethane (DEE), ethylene carbonate (EC), and vinylene carbonate (VC) was mixed to obtain a non-aqueous solvent, and the obtained non-aqueous solvent was used as a supporting salt for LiTFSI (. 1M) was dissolved to obtain an electrolytic solution. At this time, the mixing ratio of each solvent is mass%, and TEG: DEE: EC: VC = (41.25 to 48.25) :( 41.25 to 48.25): 2.5 :( 1. 0, 2.5, 5, 7.5, 10.0, 15).
The EC is fixed at 2.5% by mass for all samples, and 1.0% by mass, 2.5% by mass, 5% by mass, 7.5% by mass, 10.0% by mass, and 15 for VC. TEG and DEE, which are individually variable in 6 steps of mass% and constitute the balance, are blended in a ratio of 1: 1 to each other to prepare a plurality of samples.
The positive electrode can and the negative electrode can prepared as described above were filled with the electrolytic solution of each example prepared in the above procedure in a total of 40 μL per battery.

次に、セパレータが正極に当接するように、負極ユニットを正極ユニットにかしめた。そして、正極缶の開口部を嵌合することで正極缶と負極缶とを密封した後、25℃で7日間静置して、ビニレンカーボネート添加量の異なる試料1~試料6の非水電解質二次電池を得た。正極缶と負極缶を密封するガスケットはポリエーテルエーテルケトン樹脂(PEEK樹脂)から構成した。
これら、試料1~試料6の非水電解質二次電池は、後述する表1に示すように電解液に含まれるビニレンカーボネートの量がそれぞれ異なる試料である。
Next, the negative electrode unit was crimped to the positive electrode unit so that the separator was in contact with the positive electrode. Then, after sealing the positive electrode can and the negative electrode can by fitting the opening of the positive electrode can, the can is allowed to stand at 25 ° C. for 7 days, and the non-aqueous electrolytes 2 of Samples 1 to 6 having different amounts of vinylene carbonate added are used. I got the next battery. The gasket for sealing the positive electrode can and the negative electrode can was made of polyetheretherketone resin (PEEK resin).
These non-aqueous electrolyte secondary batteries of Samples 1 to 6 are samples in which the amounts of vinylene carbonate contained in the electrolytic solution are different as shown in Table 1 described later.

「評価試験」
(電池厚み変化量測定)
試料1~試料6の非水電解質二次電池について、160~200℃、10分間の予備加熱後、260℃、10秒で本加熱するリフローハンダ付けに相当する熱処理を施した後、電池厚みの変化量(mm)を測定した。電池厚みの変化量を把握することで正極缶と負極缶からなる収容容器の内部において気化あるいは分解したガスにより、どの程度内圧が上昇しているか把握することができる。
(内部抵抗測定)
試料1~試料6の非水電解質二次電池について、交流インピーダンス(1kHz:内部抵抗に相当)の測定を行った。
以上の測定結果を以下の表1にまとめて示すとともに、電池厚み変化量の測定結果を図3に示し、交流インピーダンス(内部抵抗)の測定結果を図4に示す。
"Evaluation test"
(Measurement of battery thickness change)
The non-aqueous electrolyte secondary batteries of Samples 1 to 6 are preheated at 160 to 200 ° C. for 10 minutes, then subjected to a heat treatment equivalent to reflow soldering at 260 ° C. for 10 seconds, and then the battery thickness is increased. The amount of change (mm) was measured. By grasping the amount of change in the battery thickness, it is possible to grasp how much the internal pressure is increased by the gas vaporized or decomposed inside the container composed of the positive electrode can and the negative electrode can.
(Measurement of internal resistance)
The AC impedance (1 kHz: corresponding to the internal resistance) was measured for the non-aqueous electrolyte secondary batteries of Samples 1 to 6.
The above measurement results are summarized in Table 1 below, the measurement results of the battery thickness change amount are shown in FIG. 3, and the measurement results of the AC impedance (internal resistance) are shown in FIG.

Figure 0007079629000001
Figure 0007079629000001

表1と図3に示す電池厚みの変化量測定結果からみて、テトラグライム(TEG)とジエトキシエタン(DEE)を主体とするグライム系の溶媒に、エチレンカーボネートに加えてビニレンカーボネートを適量添加する場合、ビニレンカーボネートの添加量が少な過ぎても多すぎても変化量が大きくなることがわかった。
ビニレンカーボネート添加量が1.0質量%の試料1と15.0質量%の試料6では、変化量が0.1mmを超えており、他の試料に比べて明らかに変化量が大きい。この結果から、変化量0.08mm以下とするのであれば、ビニレンカーボネート添加量を2質量%以上、13質量%以下とすることが望ましいことがわかる。
また、試料2~5の変化量が試料1、6の変化量より明らかに小さいことから、ビニレンカーボネート添加量を2.5質量%以上10質量%以下とすることが非水電解質二次電池においてリフローハンダ後の厚さ方向の膨らみを抑制する上でより好ましいことが判った。更に、ビニレンカーボネート添加量を5.0質量%以上7.5質量%以下とすることが最も好ましいことがわかった。
From the measurement results of the change in battery thickness shown in Table 1 and FIG. 3, an appropriate amount of vinylene carbonate is added to a grime-based solvent mainly composed of tetraglyme (TEG) and diethoxyethane (DEE) in addition to ethylene carbonate. In this case, it was found that the amount of change was large regardless of whether the amount of vinylene carbonate added was too small or too large.
In the sample 1 in which the amount of vinylene carbonate added is 1.0% by mass and the sample 6 in which the amount of vinylene carbonate is 15.0% by mass, the amount of change exceeds 0.1 mm, which is clearly larger than that of the other samples. From this result, it can be seen that if the amount of change is 0.08 mm or less, it is desirable that the amount of vinylene carbonate added is 2% by mass or more and 13% by mass or less.
Further, since the amount of change in Samples 2 to 5 is clearly smaller than the amount of change in Samples 1 and 6, it is necessary to set the amount of vinylene carbonate added to 2.5% by mass or more and 10% by mass or less in the non-aqueous electrolyte secondary battery. It was found to be more preferable in suppressing swelling in the thickness direction after reflow soldering. Further, it was found that the amount of vinylene carbonate added was most preferably 5.0% by mass or more and 7.5% by mass or less.

表1と図4に示す非水電解質二次電池の内部抵抗の測定結果からみて、電池厚み変化量の測定結果と同じ結論を得ることができた。
即ち、ビニレンカーボネート添加量が1.0質量%の試料1と15.0質量%の試料6では、内部抵抗が700Ωを超えており、他の試料に比べて明らかに内部抵抗が大きい。この結果から、内部抵抗700Ω以下を得て高容量化するのであれば、ビニレンカーボネート添加量を2質量%以上、13質量%以下とすることが望ましいことがわかる。
また、試料2~5の内部抵抗が試料1、6の内部抵抗より明らかに小さいことから、ビニレンカーボネート添加量を2.5質量%以上10質量%以下とすることが非水電解質二次電池の内部抵抗を抑制し、高容量を得る上でより好ましいことが判った。更に、内部抵抗の面から見ても、ビニレンカーボネート添加量を5.0質量%以上7.5質量%以下とすることが最も好ましいことがわかった。
From the measurement results of the internal resistance of the non-aqueous electrolyte secondary battery shown in Table 1 and FIG. 4, the same conclusion as the measurement result of the battery thickness change amount could be obtained.
That is, the internal resistance of the sample 1 in which the amount of vinylene carbonate added is 1.0% by mass and the sample 6 in which 15.0% by mass is 15.0% by mass exceeds 700Ω, and the internal resistance is clearly larger than that of the other samples. From this result, it can be seen that it is desirable that the amount of vinylene carbonate added is 2% by mass or more and 13% by mass or less in order to obtain an internal resistance of 700Ω or less and increase the capacity.
Further, since the internal resistance of the samples 2 to 5 is clearly smaller than the internal resistance of the samples 1 and 6, the amount of vinylene carbonate added should be 2.5% by mass or more and 10% by mass or less for the non-aqueous electrolyte secondary battery. It was found that it is more preferable to suppress the internal resistance and obtain a high capacity. Further, from the viewpoint of internal resistance, it was found that it is most preferable that the amount of vinylene carbonate added is 5.0% by mass or more and 7.5% by mass or less.

1、11…非水電解質二次電池、2…収容容器、10…正極、12…正極缶、12a…開口部、12b…周縁部、13…正極、14…正極集電体、20…負極、21…ステンレス層、22…負極缶、22a…外周端部、23…硬質アルミニウム層、24…負極集電体、25…負極缶、26…負極、30…セパレータ、40、42…ガスケット、41…環状溝、50…電解液。 1, 11 ... Non-aqueous electrolyte secondary battery, 2 ... Storage container, 10 ... Positive electrode, 12 ... Positive electrode can, 12a ... Opening, 12b ... Peripheral portion, 13 ... Positive electrode, 14 ... Positive electrode current collector, 20 ... Negative electrode, 21 ... Stainless steel layer, 22 ... Negative electrode can, 22a ... Outer peripheral end, 23 ... Hard aluminum layer, 24 ... Negative electrode collector, 25 ... Negative electrode can, 26 ... Negative electrode, 30 ... Separator, 40, 42 ... Gasket, 41 ... Circular groove, 50 ... Electrolyte.

Claims (5)

正極と、負極と、支持塩及び溶媒を含む電解液と、セパレータが、正極缶と負極缶によって構成された収容容器に収容されてなる非水電解質二次電池であって、
前記溶媒が、グライム系溶媒であるテトラグライム(TEG)及びジエトキシエタン(DEE)と、エチレンカーボネート(EC)とビニレンカーボネート(VC)を含有してなり、 テトラグライム(TEG):30質量% 以上48.5質量% 以下、ジエトキシエタン(DEE):30質量%以上48.5質量% 以下、エチレンカーボネート(EC):0.5質量%以上10質量% 以下、ビニレンカーボネート(VC):2質量%以上13%以下の範囲(トータル100%)を含むことを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, an electrolytic solution containing a supporting salt and a solvent, and a separator are housed in a storage container composed of a positive electrode can and a negative electrode can.
The solvent contains tetraglyme (TEG) and diethoxyethane (DEE), which are glyme-based solvents, ethylene carbonate (EC) and vinylene carbonate (VC), and tetraglyme (TEG): 30% by mass or more. 48.5% by mass or less, diethoxyethane (DEE): 30% by mass or more and 48.5% by mass or less, ethylene carbonate (EC): 0.5% by mass or more and 10% by mass or less, vinylene carbonate (VC): 2% by mass. A non-aqueous electrolyte secondary battery comprising a range of% or more and 13% or less (total 100%) .
前記支持塩が、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSOのいずれかの有機酸リチウム塩、あるいは、LiPF、LiBF、LiB(C、LiCl、LiBrのいずれかの無機酸リチウム塩であることを特徴とする請求項1に記載の非水電解質二次電池。 The supporting salts are LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 3 ). ) 2 , LiN (FSO 2 ) 2 organic acid lithium salt, or LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr inorganic acid lithium salt. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is characterized. 前記溶媒中にビニレンカーボネートが2.5質量% 以上、10質量%以下含まれていることを特徴とする請求項1または請求項2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the solvent contains vinylene carbonate in an amount of 2.5% by mass or more and 10% by mass or less. 前記正極が、正極活物質としてリチウムマンガン酸化物を含有し、前記負極が、負極活物質としてシリコン酸化物またはリチウムアルミニウム合金を含有してなることを特徴とする請求項1~請求項3のいずれか一項に記載の非水電解質二次電池。 Any of claims 1 to 3 , wherein the positive electrode contains a lithium manganese oxide as a positive electrode active material, and the negative electrode contains a silicon oxide or a lithium aluminum alloy as a negative electrode active material. The non-aqueous electrolyte secondary battery according to item 1. 前記正極缶が有底円筒状であり、
前記負極缶が前記正極缶の開口部内側にガスケットを介在し固定され、
前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことを特徴とする請求項1~請求項4のいずれか一項に記載の非水電解質二次電池。
The positive electrode can has a bottomed cylindrical shape.
The negative electrode can is fixed with a gasket inside the opening of the positive electrode can.
The claim is characterized in that the storage container is sealed by providing a caulking portion for crimping the opening of the positive electrode can on the negative electrode can side, and the positive electrode, the negative electrode, the separator, and the electrolytic solution are stored in the storage container. The non-aqueous electrolyte secondary battery according to any one of items 1 to 4 .
JP2018046711A 2018-03-14 2018-03-14 Non-aqueous electrolyte secondary battery Active JP7079629B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018046711A JP7079629B2 (en) 2018-03-14 2018-03-14 Non-aqueous electrolyte secondary battery
TW107136666A TWI793199B (en) 2018-03-14 2018-10-18 Nonaqueous electrolyte secondary battery
KR1020180165268A KR20190108477A (en) 2018-03-14 2018-12-19 Nonaqueous electrolyte secondary battery
CN201910192691.2A CN110277589B (en) 2018-03-14 2019-03-14 Nonaqueous electrolyte secondary battery
KR1020240021075A KR20240024162A (en) 2018-03-14 2024-02-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046711A JP7079629B2 (en) 2018-03-14 2018-03-14 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2019160619A JP2019160619A (en) 2019-09-19
JP7079629B2 true JP7079629B2 (en) 2022-06-02

Family

ID=67959210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046711A Active JP7079629B2 (en) 2018-03-14 2018-03-14 Non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JP7079629B2 (en)
KR (2) KR20190108477A (en)
CN (1) CN110277589B (en)
TW (1) TWI793199B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022059812A (en) * 2020-10-02 2022-04-14 セイコーインスツル株式会社 Non-aqueous electrolyte secondary battery
JP2022060923A (en) 2020-10-05 2022-04-15 セイコーインスツル株式会社 Electrochemical cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245034A (en) 2009-03-19 2010-10-28 Sanyo Chem Ind Ltd Electrolyte for lithium secondary battery
JP2014179203A (en) 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
JP2016207633A (en) 2015-10-02 2016-12-08 宇部興産株式会社 Nonaqueous electrolyte, and lithium-ion secondary cell and lithium-ion capacitor using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169400B2 (en) * 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP5403544B2 (en) 2009-09-07 2014-01-29 セイコーインスツル株式会社 Electrolytic solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245034A (en) 2009-03-19 2010-10-28 Sanyo Chem Ind Ltd Electrolyte for lithium secondary battery
JP2014179203A (en) 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
JP2016207633A (en) 2015-10-02 2016-12-08 宇部興産株式会社 Nonaqueous electrolyte, and lithium-ion secondary cell and lithium-ion capacitor using the same

Also Published As

Publication number Publication date
TWI793199B (en) 2023-02-21
CN110277589B (en) 2024-04-30
TW201939804A (en) 2019-10-01
KR20190108477A (en) 2019-09-24
JP2019160619A (en) 2019-09-19
CN110277589A (en) 2019-09-24
KR20240024162A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
CN110400922A (en) Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
TWI641170B (en) Nonaqueous electrolyte secondary battery
KR20240024162A (en) Nonaqueous electrolyte secondary battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP2014179203A (en) Electrochemical cell
EP2770562B1 (en) Nonaqueous electrolytic secondary battery
KR20180034664A (en) Electrode for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
JP2006228468A (en) Electrolyte secondary battery
JP2021150279A (en) Non-aqueous electrolyte secondary battery
JP7112860B2 (en) Coin type non-aqueous electrolyte secondary battery for reflow mounting
JP4201256B2 (en) Nonaqueous electrolyte secondary battery
EP3979366A1 (en) Non-aqueous electrolyte secondary battery
JP2023131278A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN113394391A (en) Nonaqueous electrolyte secondary battery
EP3876332A1 (en) Secondary battery
WO2020166189A1 (en) Positive electrode and secondary battery
JP2003317807A (en) Electrochemical element
JP2010225300A (en) Flat battery and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220418

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7079629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150