WO2009110540A1 - Bobbin type lithium battery - Google Patents

Bobbin type lithium battery Download PDF

Info

Publication number
WO2009110540A1
WO2009110540A1 PCT/JP2009/054149 JP2009054149W WO2009110540A1 WO 2009110540 A1 WO2009110540 A1 WO 2009110540A1 JP 2009054149 W JP2009054149 W JP 2009054149W WO 2009110540 A1 WO2009110540 A1 WO 2009110540A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
lithium battery
positive electrode
gasket
bobbin
Prior art date
Application number
PCT/JP2009/054149
Other languages
French (fr)
Japanese (ja)
Inventor
修一 荒栄
光宏 中村
正彦 鈴木
智久 野末
Original Assignee
Fdkエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdkエナジー株式会社 filed Critical Fdkエナジー株式会社
Publication of WO2009110540A1 publication Critical patent/WO2009110540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a manganese dioxide-lithium-based lithium battery using manganese dioxide as a positive electrode active material and metallic lithium as a negative electrode active material, and more particularly, a manganese dioxide-lithium bobbin-type lithium assuming use in a high temperature environment.
  • the present invention relates to battery improvement technology.
  • FIG. 1 shows the structure of a manganese dioxide-lithium lithium battery (CR type battery) using manganese dioxide as the positive electrode active material and metallic lithium as the negative electrode active material.
  • the CR type battery 1 shown here is called a bobbin type, and is formed by forming a bottomed cylindrical positive electrode can 11 and a positive electrode active material such as manganese dioxide into a hollow cylindrical shape together with a conductive aid such as graphite. It is comprised by the positive mix 21, the cylindrical negative electrode lithium 22, the cylindrical cup-shaped separator 23, the sealing body 30 which also serves as a negative electrode terminal (for example, refer patent document 1, 2).
  • the positive electrode can 11 is made of metal and serves as a battery case and a positive electrode current collector.
  • a convex positive terminal portion 12 is formed on the outer bottom surface by pressing.
  • a beading portion 10 is formed around the opening by drawing.
  • a positive electrode mixture 21, a separator 23, and a negative electrode lithium 22 are sequentially loaded to form a hollow cylindrical electrode body.
  • the separator 23 is often a composite material of PP and polyethylene (PE).
  • the negative electrode lithium 22 is a rolled metal lithium plate, and one end of the negative electrode lead 33 is attached to a part of the negative electrode lithium 22 in advance.
  • the negative electrode lead 33 is formed of a strip-shaped metal thin plate and also serves as a negative electrode current collector. The other end is spot welded to a sealing plate 32 constituting the sealing body 30.
  • the sealing body 30 includes a metal negative electrode terminal plate 31 and a sealing plate 32, and the other end of the negative electrode lead 33 is spot welded to the inner side (battery inner side) of the sealing plate 32.
  • the sealing plate 32 is formed with a groove-shaped thin portion that operates as an explosion-proof safety mechanism.
  • Gas is generated inside the battery 1 due to overdischarge or forced charging due to misuse of the battery, and the internal pressure suddenly increases.
  • the thin-walled portion breaks ahead as a safety valve, and the gas inside the battery 1 is allowed to escape to the outside. Thereby, the battery 1 is prevented from bursting.
  • the negative electrode lead 33 is welded to the negative electrode terminal 30, a nonaqueous electrolytic solution (not shown) is injected into the positive electrode can 11.
  • the negative electrode terminal 30 is mounted together with the gasket 34 inside the opening of the positive electrode can 11 with the beading portion 10 as a seat, and the positive electrode can 11 opening is caulked (curled) inwardly.
  • the positive electrode can 11 is hermetically sealed.
  • the gasket 34 is made of polypropylene (PP). JP 2001-273911 A JP 2003-208906 A
  • ER type battery thionyl chloride battery
  • This ER type battery like the CR type battery, has excellent long-term storage performance, and is used for systems and devices that operate without replacement / maintenance for a long period of time under no power supply conditions without external power supply.
  • ER type battery has the characteristic that heat resistance is high compared with CR type battery.
  • ER type battery is used by being incorporated in, for example, a painting robot of an automobile. In the painting process site where the robot is placed, the atmosphere may be close to 200 ° C. The battery itself is known to rise to a temperature of about 120 ° C. The ER type battery can be used even in such a severe environment.
  • the CR type battery using manganese dioxide with low environmental load as the positive electrode can be used as an alternative to the ER type battery.
  • the above-described CR type battery cannot withstand use in a high temperature environment. Specifically, there is a problem with the heat resistance of the gasket and the separator.
  • PP which is the main material of the gasket
  • PE used in the separator has a melting point of 120 ° C. When this temperature is exceeded, it melts and the hole of the fiber closes, and the electrolyte solution is blocked. It cannot be transmitted.
  • some CR type batteries have improved heat resistance by using, for example, a gasket in which potassium titanate is added to polypropylene (PP) to improve heat resistance, but this is not sufficient.
  • the sealing body is fitted by caulking from the outside of the positive electrode can through the gasket. Liquid leakage may occur before the pressure at which the seal breaks is reached.
  • PP has a high tensile elastic modulus (Young's modulus) and exhibits a high resistance to a force in the compression direction. Therefore, even if the gasket mainly composed of PP is caulked with a strong force, it is not sufficiently compressed. Sealing reliability may be reduced.
  • the present invention dramatically improves heat resistance in a bobbin type lithium battery having a structure in which manganese dioxide is used for the positive electrode and the sealing body is sealed by caulking, and can be used as an alternative to the ER type battery. It is an object.
  • the present invention provides a positive electrode mixture mainly composed of manganese dioxide formed into a hollow cylindrical shape in a bottomed cylindrical positive electrode can having a beading portion in the periphery, and the positive electrode mixture.
  • the cylindrical negative electrode lithium which is opposed to the separator via the separator is loaded, and the opening is caulked while the negative terminal is placed via the gasket with the beading portion protruding into the positive electrode can as a seat.
  • a bobbin type lithium battery in which the gasket is made of PFA and the separator is made of cellulose.
  • a bobbin-type lithium battery that can withstand use in a higher temperature environment while ensuring the characteristics of a conventional manganese dioxide-lithium lithium battery.
  • the lithium battery targeted by the present invention is a manganese dioxide-lithium lithium battery and has a bobbin shape.
  • the structure of the battery according to the embodiment of the present invention (hereinafter referred to as a bobbin-type lithium battery) is substantially the same as the conventional bobbin-type lithium battery 1 shown in FIG.
  • the material of the gasket 34 and the separator 23 is optimized in order to realize heat resistance that can replace the ER battery.
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • cellulose or a material mainly composed of cellulose is used for the separator 23.
  • the PFA employed for the gasket of the bobbin type lithium battery of this example has a melting point of 310 ° C. Therefore, it can be said that it has sufficient heat resistance. Moreover, Young's modulus (tensile modulus) is about 1/3 of PP used for the gasket of the conventional bobbin type lithium battery. Specifically, in a test based on the ASTM test method (D638), PFA is about 0.3 GPa with respect to PP of about 1 GPa. That is, when sealing the positive electrode can 11, when the sealing body 30 is caulked with the same force via the gasket 34, PFA is easier to compress. In other words, PP needs to be caulked with a greater force to compress it to the same thickness.
  • the gasket 34 itself is sufficiently compressed by caulking to ensure the reliability of the sealing. Or when compressing to the same thickness, since it compresses with a weaker force, the load concerning the machine tool which performs curl processing can be small, and the maintenance cost of manufacturing equipment can also be reduced.
  • the cellulose employed in the separator of the bobbin type lithium battery of this example does not melt but becomes carbonized at a high temperature. Therefore, at a temperature of about 120 ° C., the function as a separator can be maintained without any problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

Provided is a bobbin type lithium battery which has a positive-electrode made of manganese dioxide and a sealing member caulked hermetically and which is drastically improved in heat resistance so that it can also be used in place of an ER type battery. A bobbin type lithium battery (1) is constituted such that a bottomed cylindrical positive-electrode can (11) having a beading portion (10) therearound is charged with a positive-electrode mixture (21) formed into a hollow cylinder shape and composed mainly of manganese dioxide and a cylindrical negative-electrode lithium (22) confronting the positive-electrode mixture through a separator (23), and such that an opening is sealed by caulking the same while a negative-electrode terminal (31) is being placed through a gasket (34) on the beading portion protruding into the positive-electrode can. In the bobbin type lithium battery (1), the material for the gasket is PFA, and the material for the separator is cellulose.

Description

ボビン形リチウム電池Bobbin type lithium battery
 本発明は正極活物質に二酸化マンガンを用い、負極活物質に金属リチウムを用いる二酸化マンガン-リチウム系のリチウム電池に関し、とくに、高温環境下での用途を想定した二酸化マンガン-リチウム系のボビン形リチウム電池の改良技術に関する。 The present invention relates to a manganese dioxide-lithium-based lithium battery using manganese dioxide as a positive electrode active material and metallic lithium as a negative electrode active material, and more particularly, a manganese dioxide-lithium bobbin-type lithium assuming use in a high temperature environment. The present invention relates to battery improvement technology.
 図1に、正極活物質に二酸化マンガンを用い、負極活物質に金属リチウムを用いる二酸化マンガン-リチウム系のリチウム電池(CR型電池)の構造を示した。ここに示したCR型電池1は、ボビン形と言われるもので、有底円筒状の正極缶11、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともに中空円筒状に成形してなる正極合剤21、円筒状の負極リチウム22、円筒カップ状のセパレータ23、負極端子を兼ねる封口体30などによって構成されている(たとえば特許文献1,2参照)。 FIG. 1 shows the structure of a manganese dioxide-lithium lithium battery (CR type battery) using manganese dioxide as the positive electrode active material and metallic lithium as the negative electrode active material. The CR type battery 1 shown here is called a bobbin type, and is formed by forming a bottomed cylindrical positive electrode can 11 and a positive electrode active material such as manganese dioxide into a hollow cylindrical shape together with a conductive aid such as graphite. It is comprised by the positive mix 21, the cylindrical negative electrode lithium 22, the cylindrical cup-shaped separator 23, the sealing body 30 which also serves as a negative electrode terminal (for example, refer patent document 1, 2).
 正極缶11は金属製であって電池ケースと正極集電体を兼ねる。その外底面には凸状の正極端子部12がプレス加工により形成されている。また、開口部近傍の周囲には絞り加工によるビーディング部10が形成されている。そして、この正極缶11内に、正極合剤21、セパレータ23、および負極リチウム22が順次装填されて中空筒状の電極体が形成されている。なお、セパレータ23についてはPPとポリエチレン(PE)の複合素材とする場合が多い。 The positive electrode can 11 is made of metal and serves as a battery case and a positive electrode current collector. A convex positive terminal portion 12 is formed on the outer bottom surface by pressing. In addition, a beading portion 10 is formed around the opening by drawing. In the positive electrode can 11, a positive electrode mixture 21, a separator 23, and a negative electrode lithium 22 are sequentially loaded to form a hollow cylindrical electrode body. The separator 23 is often a composite material of PP and polyethylene (PE).
 負極リチウム22は金属リチウム板を丸めたものであって、その一部に負極リード33の一端部があらかじめ取り付けられている。この負極リード33は帯状の金属薄板で形成され、負極集電体を兼ねる。その他端部は封口体30を構成する封口板32にスポット溶接されている。封口体30は、具体的には、金属製の負極端子板31と封口板32からなり、負極リード33の他端部は、封口板32の内側(電池内側)にスポット溶接されている。封口板32には、防爆安全機構として作動する溝状の薄肉部が形成されており、電池の誤使用による過放電や強制充電などで、電池1内部にガスが発生し急激に内圧が上昇した場合、上記薄肉部が安全弁として先行破断し、電池1内部のガスを外部へ逃がすようになっている。それによって、電池1が破裂するのを防止している。 The negative electrode lithium 22 is a rolled metal lithium plate, and one end of the negative electrode lead 33 is attached to a part of the negative electrode lithium 22 in advance. The negative electrode lead 33 is formed of a strip-shaped metal thin plate and also serves as a negative electrode current collector. The other end is spot welded to a sealing plate 32 constituting the sealing body 30. Specifically, the sealing body 30 includes a metal negative electrode terminal plate 31 and a sealing plate 32, and the other end of the negative electrode lead 33 is spot welded to the inner side (battery inner side) of the sealing plate 32. The sealing plate 32 is formed with a groove-shaped thin portion that operates as an explosion-proof safety mechanism. Gas is generated inside the battery 1 due to overdischarge or forced charging due to misuse of the battery, and the internal pressure suddenly increases. In this case, the thin-walled portion breaks ahead as a safety valve, and the gas inside the battery 1 is allowed to escape to the outside. Thereby, the battery 1 is prevented from bursting.
 負極リード33が負極端子30に溶接された後、正極缶11内に非水電解液(図示省略)が注液される。この注液の後、負極端子30はガスケット34とともに正極缶11の開口部内側にビーディング部10を座として装着され、その正極缶11開口部が内方にかしめ加工(カール加工)されることで、正極缶11が密閉封口される。なお、ガスケット34は、ポリプロピレン(PP)を素材としている場合が多い。
特開2001-273911号公報 特開2003-208906号公報
After the negative electrode lead 33 is welded to the negative electrode terminal 30, a nonaqueous electrolytic solution (not shown) is injected into the positive electrode can 11. After this injection, the negative electrode terminal 30 is mounted together with the gasket 34 inside the opening of the positive electrode can 11 with the beading portion 10 as a seat, and the positive electrode can 11 opening is caulked (curled) inwardly. Thus, the positive electrode can 11 is hermetically sealed. In many cases, the gasket 34 is made of polypropylene (PP).
JP 2001-273911 A JP 2003-208906 A
 リチウム電池には、正極に用いる活物質により、様々なタイプがある。その中に、塩化チオニルを正極に使用する塩化チオニル電池(ER型電池)がある。このER型電池は、CR型電池と同様に、長期保存性能にすぐれ、外部からの電源供給がない無電源条件下にて長期間無交換/無保守で運用するシステムや装置などに利用される。そして、ER型電池は、CR型電池と比べて耐熱性が高い、という特徴を有する。 There are various types of lithium batteries depending on the active material used for the positive electrode. Among them, there is a thionyl chloride battery (ER type battery) using thionyl chloride as a positive electrode. This ER type battery, like the CR type battery, has excellent long-term storage performance, and is used for systems and devices that operate without replacement / maintenance for a long period of time under no power supply conditions without external power supply. . And ER type battery has the characteristic that heat resistance is high compared with CR type battery.
 ER型電池は、例えば、自動車の塗装用ロボットなどに組み込まれて使用される。そのロボットが置かれる塗装工程の現場では、200℃近い雰囲気となる場合もある。そして、電池自体も120℃程度の温度まで上昇することが知られている。ER型電池は、このような過酷な環境下でも使用可能である。 ER type battery is used by being incorporated in, for example, a painting robot of an automobile. In the painting process site where the robot is placed, the atmosphere may be close to 200 ° C. The battery itself is known to rise to a temperature of about 120 ° C. The ER type battery can be used even in such a severe environment.
 しかしながら、ER型電池は、正極に劇物である塩化チオニルを使用しているため、環境負荷が大きい、そこで、正極に環境負荷が小さい二酸化マンガンを使用するCR型電池をER型電池の代替とすることが考えられるが、上述したCR型電池では、高温環境下での使用には耐えられない。具体的には、ガスケットとセパレータの耐熱性に問題がある。例えば、ガスケットの主要な素材であるPPは85℃で脆化し、セパレータに使用されているPEは、融点が120℃であり、この温度を超えると融けて繊維の穴が閉塞し、電解液を透過させることができなくなる。確かに、ポリプロピレン(PP)にチタン酸カリウムを添加して耐熱性を向上させたガスケットを用いるなどして耐熱性を向上させているCR型電池もあるが、それでも十分とは言えない。 However, since ER type batteries use deleterious thionyl chloride as the positive electrode, the environmental load is large. Therefore, the CR type battery using manganese dioxide with low environmental load as the positive electrode can be used as an alternative to the ER type battery. However, the above-described CR type battery cannot withstand use in a high temperature environment. Specifically, there is a problem with the heat resistance of the gasket and the separator. For example, PP, which is the main material of the gasket, becomes brittle at 85 ° C., and PE used in the separator has a melting point of 120 ° C. When this temperature is exceeded, it melts and the hole of the fiber closes, and the electrolyte solution is blocked. It cannot be transmitted. Certainly, some CR type batteries have improved heat resistance by using, for example, a gasket in which potassium titanate is added to polypropylene (PP) to improve heat resistance, but this is not sufficient.
 特に、上記構造のボビン形の電池では、封口体をガスケットを介して正極缶外側からかしめて嵌着しているため、高温環境下では、内圧が上昇し、より強固な力でかしめないと、封口体が破断する圧力に達する前に液漏れが生じる可能性がある。しかし、PPは、引張弾性率(ヤング率)が高く、圧縮方向の力に対して高い抵抗を示すため、PPを主体としたガスケットでは、強い力でかしめたとしても、十分に圧縮されず、封口の信頼性が低下する可能性がある。 In particular, in the bobbin-shaped battery having the above structure, the sealing body is fitted by caulking from the outside of the positive electrode can through the gasket. Liquid leakage may occur before the pressure at which the seal breaks is reached. However, PP has a high tensile elastic modulus (Young's modulus) and exhibits a high resistance to a force in the compression direction. Therefore, even if the gasket mainly composed of PP is caulked with a strong force, it is not sufficiently compressed. Sealing reliability may be reduced.
 そこで本発明は、正極に二酸化マンガンを用い、かつ、かしめによって封口体を密封する構造のボビン形リチウム電池において、耐熱性を飛躍的に向上させ、ER型電池の代替としても使用可能とすることを目的としている。 Therefore, the present invention dramatically improves heat resistance in a bobbin type lithium battery having a structure in which manganese dioxide is used for the positive electrode and the sealing body is sealed by caulking, and can be used as an alternative to the ER type battery. It is an object.
 上記目的を達成するための本発明は、周囲にビーディング部を有する有底円筒状の正極缶内に、中空円筒状に成形された二酸化マンガンを主体とする正極合剤と、この正極合剤にセパレータを介して対向する円筒状の負極リチウムとを装填するとともに、正極缶内に突出する前記ビーディング部を座として負極端子をガスケットを介して載置しつつ開口をかしめることで当該開口を封口してなるボビン形リチウム電池であって、前記ガスケットの材質はPFAであり、前記セパレータの材質はセルロースであることを特徴とするボビン形リチウム電池。 In order to achieve the above object, the present invention provides a positive electrode mixture mainly composed of manganese dioxide formed into a hollow cylindrical shape in a bottomed cylindrical positive electrode can having a beading portion in the periphery, and the positive electrode mixture. The cylindrical negative electrode lithium which is opposed to the separator via the separator is loaded, and the opening is caulked while the negative terminal is placed via the gasket with the beading portion protruding into the positive electrode can as a seat. A bobbin type lithium battery in which the gasket is made of PFA and the separator is made of cellulose.
 本発明によれば、従来の二酸化マンガン-リチウム系のリチウム電池の特性を確保しつつ、より高温環境下での使用に耐えうるボビン形リチウム電池を提供することができる。 According to the present invention, it is possible to provide a bobbin-type lithium battery that can withstand use in a higher temperature environment while ensuring the characteristics of a conventional manganese dioxide-lithium lithium battery.
本発明の対象であるボビン形リチウム電池の構成を示す断面図である。It is sectional drawing which shows the structure of the bobbin-type lithium battery which is the object of this invention.
符号の説明Explanation of symbols
 1 ボビン形リチウム電池
 11 正極缶
 12 正極端子部
 21 正極合剤
 22 負極リチウム
 23 セパレータ
 30 封口体
 31 負極端子板
 32 封口板
 33 負極リード
 34 ガスケット
DESCRIPTION OF SYMBOLS 1 Bobbin-type lithium battery 11 Positive electrode can 12 Positive electrode terminal part 21 Positive electrode mixture 22 Negative electrode lithium 23 Separator 30 Sealing body 31 Negative electrode terminal board 32 Sealing board 33 Negative electrode lead 34 Gasket
===リチウム電池の基本的な構造===
 本発明が対象とするリチウム電池は、二酸化マンガン-リチウム系のリチウム電池であって、形状は、ボビン形である。本発明の実施例に係る当該電池(以下、ボビン形リチウム電池)の構造は、実質的に図1に示した従来のボビン形リチウム電池1と同様である。しかし、本実施例のボビン形リチウム電池では、ER電池の代替と成り得る耐熱性を実現させるため、ガスケット34とセパレータ23の材質の最適化を図っている。具体的には、ガスケット34には、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエータル共重合体)を用い、セパレータ23には、セルロース、またはセルロースを主体とした材質を用いている。
=== Basic structure of lithium battery ===
The lithium battery targeted by the present invention is a manganese dioxide-lithium lithium battery and has a bobbin shape. The structure of the battery according to the embodiment of the present invention (hereinafter referred to as a bobbin-type lithium battery) is substantially the same as the conventional bobbin-type lithium battery 1 shown in FIG. However, in the bobbin-type lithium battery of this embodiment, the material of the gasket 34 and the separator 23 is optimized in order to realize heat resistance that can replace the ER battery. Specifically, PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is used for the gasket 34, and cellulose or a material mainly composed of cellulose is used for the separator 23.
===ガスケット===
 本実施例のボビン形リチウム電池のガスケットに採用されたPFAは、融点が310℃である。したがって、十分な耐熱性を有していると言える。また、ヤング率(引張弾性率)が従来のボビン形リチウム電池のガスケットに使用されていたPPの1/3程度である。具体的には、ASTM試験法(D638)に準拠した試験において、PPの1GPa程度に対し、PFAは0.3GPa程度である。すなわち、正極缶11を封口する際、ガスケット34を介して封口体30を同じ力でかしめた場合、PFAの方が圧縮しやすい。換言すれば、同じ厚さにまで圧縮させるにはPPの方がより大きな力でかしめる必要がある。したがって、PFAをガスケット34に採用した本実施例のボビン形リチウム電池では、ガスケット34自体がかしめによって十分に圧縮され封口の信頼性を確保することができる。あるいは、同じ厚さにまで圧縮させる場合、より弱い力でも圧縮されるため、カール加工を施す工作機械に掛かる負荷が小さくて済み、製造設備の保守コストを削減することもできる。
=== Gasket ===
The PFA employed for the gasket of the bobbin type lithium battery of this example has a melting point of 310 ° C. Therefore, it can be said that it has sufficient heat resistance. Moreover, Young's modulus (tensile modulus) is about 1/3 of PP used for the gasket of the conventional bobbin type lithium battery. Specifically, in a test based on the ASTM test method (D638), PFA is about 0.3 GPa with respect to PP of about 1 GPa. That is, when sealing the positive electrode can 11, when the sealing body 30 is caulked with the same force via the gasket 34, PFA is easier to compress. In other words, PP needs to be caulked with a greater force to compress it to the same thickness. Therefore, in the bobbin-type lithium battery of this embodiment employing PFA as the gasket 34, the gasket 34 itself is sufficiently compressed by caulking to ensure the reliability of the sealing. Or when compressing to the same thickness, since it compresses with a weaker force, the load concerning the machine tool which performs curl processing can be small, and the maintenance cost of manufacturing equipment can also be reduced.
===セパレータ===
 従来のボビン形リチウム電池のセパレータ素材であるPEは、120℃が融点であり、それ以上の温度では使用できない。一方、本実施例のボビン形リチウム電池のセパレータに採用されているセルロースは、周知のごとく、高温になると融解するのではなく、炭化する。したがって、120℃程度の温度では、問題なくセパレータとしての機能を維持できる。
=== Separator ===
PE, which is a separator material for a conventional bobbin-type lithium battery, has a melting point of 120 ° C. and cannot be used at higher temperatures. On the other hand, as is well known, the cellulose employed in the separator of the bobbin type lithium battery of this example does not melt but becomes carbonized at a high temperature. Therefore, at a temperature of about 120 ° C., the function as a separator can be maintained without any problem.
===耐熱性試験===
 本発明の実施例に係るボビン形リチウム電池の耐熱性を検討するため、図1に示した構造で、ガスケットとセパレータをそれぞれPPとPEとした電池(従来品)と、それぞれPFAとセルロースとした電池(発明品)をそれぞれ作成した。作成した電池は、正極缶の径が14mmで、高さが50mmのCR6-L(AAサイズ)タイプであり、従来品と発明品について、それぞれ30個の電池を作成した。そして、各電池を120℃の温度下に1000時間放置して耐熱試験を行い、漏液の有無を確認するとともに、試験後に電池を分解してガスケットの劣化状態を観察した。
=== Heat resistance test ===
In order to examine the heat resistance of the bobbin-type lithium battery according to the example of the present invention, a battery (conventional product) having PP and PE as the gasket and separator, respectively, and PFA and cellulose as the structure shown in FIG. Each battery (invention) was created. The produced battery was a CR6-L (AA size) type with a positive electrode can diameter of 14 mm and a height of 50 mm, and 30 batteries were produced for each of the conventional product and the invention product. Each battery was allowed to stand at a temperature of 120 ° C. for 1000 hours to conduct a heat resistance test to confirm the presence or absence of leakage, and after the test, the battery was disassembled to observe the deterioration state of the gasket.
 その結果、従来品では、全数に漏液が発生し、しかも全数においてガスケットが脆化していた。すなわち、弾性を失い、脆くて破れやすい状態になっていた。一方、発明品は、全数において漏液やガスケットの劣化が発生しなかった。したがって、本発明のボビン形リチウム電池は耐熱性に優れていることが立証できた。 As a result, all the conventional products had leaks, and the gaskets were brittle in all. In other words, it lost elasticity and was brittle and easily broken. On the other hand, in all the products of the invention, no leakage or deterioration of the gasket occurred. Therefore, it was proved that the bobbin type lithium battery of the present invention was excellent in heat resistance.

Claims (1)

  1.  周囲にビーディング部を有する有底円筒状の正極缶内に、中空円筒状に成形された二酸化マンガンを主体とする正極合剤と、この正極合剤にセパレータを介して対向する円筒状の負極リチウムとを装填するとともに、正極缶内に突出する前記ビーディング部を座として負極端子をガスケットを介して載置しつつ開口をかしめることで当該開口を封口してなるボビン形リチウム電池であって、前記ガスケットの材質はPFAであり、前記セパレータの材質はセルロースであることを特徴とするボビン形リチウム電池。 A positive electrode mixture mainly composed of manganese dioxide formed in a hollow cylindrical shape in a bottomed cylindrical positive electrode can having a beading portion around it, and a cylindrical negative electrode facing the positive electrode mixture via a separator This is a bobbin-type lithium battery in which lithium is charged and the opening is sealed by caulking the opening while placing the negative electrode terminal through a gasket with the beading portion protruding into the positive electrode can as a seat. The bobbin-type lithium battery is characterized in that the gasket is made of PFA and the separator is made of cellulose.
PCT/JP2009/054149 2008-03-06 2009-03-05 Bobbin type lithium battery WO2009110540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008056650A JP2009212051A (en) 2008-03-06 2008-03-06 Bobbin type lithium bettry
JP2008-056650 2008-03-06

Publications (1)

Publication Number Publication Date
WO2009110540A1 true WO2009110540A1 (en) 2009-09-11

Family

ID=41056092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054149 WO2009110540A1 (en) 2008-03-06 2009-03-05 Bobbin type lithium battery

Country Status (2)

Country Link
JP (1) JP2009212051A (en)
WO (1) WO2009110540A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381369B2 (en) 2014-02-06 2016-07-05 Cardiac Pacemakers, Inc. Battery for use with medical devices
JP6011657B2 (en) * 2014-02-28 2016-10-19 ダイキン工業株式会社 Sealing member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138686A (en) * 1994-11-10 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH09274901A (en) * 1996-04-05 1997-10-21 Nippon Koudoshi Kogyo Kk Nonaqueous battery
JPH1154134A (en) * 1997-07-30 1999-02-26 Fuji Elelctrochem Co Ltd Bobbin type lithium battery and manufacture thereof
JP2004296447A (en) * 1995-03-20 2004-10-21 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2005276492A (en) * 2004-03-23 2005-10-06 Bridgestone Corp Additive for non-aqueous electrololyte of primary battery, non-aqueous electrolyte liquid for primary battery, and non-aqueous electrolyte primary battery
WO2006049027A1 (en) * 2004-11-04 2006-05-11 Matsushita Electric Industrial Co., Ltd. Secondary battery with terminal for surface mounting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138686A (en) * 1994-11-10 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2004296447A (en) * 1995-03-20 2004-10-21 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH09274901A (en) * 1996-04-05 1997-10-21 Nippon Koudoshi Kogyo Kk Nonaqueous battery
JPH1154134A (en) * 1997-07-30 1999-02-26 Fuji Elelctrochem Co Ltd Bobbin type lithium battery and manufacture thereof
JP2005276492A (en) * 2004-03-23 2005-10-06 Bridgestone Corp Additive for non-aqueous electrololyte of primary battery, non-aqueous electrolyte liquid for primary battery, and non-aqueous electrolyte primary battery
WO2006049027A1 (en) * 2004-11-04 2006-05-11 Matsushita Electric Industrial Co., Ltd. Secondary battery with terminal for surface mounting

Also Published As

Publication number Publication date
JP2009212051A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4756392B2 (en) battery
JP6005172B2 (en) Prismatic secondary battery
JP5669369B2 (en) Sealed battery
US20090297927A1 (en) Cap assembly and secondary battery having the same
KR101839271B1 (en) Cylindrical-type secondary battery
US11495833B2 (en) Cylindrical battery
CN104781946A (en) Rectangular secondary battery
JP2009087729A (en) Closed battery
JPWO2020149350A1 (en) Sealed battery
KR20090027316A (en) Cap assembly for secondary battery
JP2017510959A (en) Lithium electrochemical accumulator having terminals directly coupled to an electrochemical assembly and associated manufacturing method
JP5110958B2 (en) Sealed battery
US20180301672A1 (en) Sealing body for cylindrical batteries, and cylindrical battery using same
CN106887563B (en) Secondary battery
EP1914819A1 (en) Alkaline battery
KR101464964B1 (en) Cylindrical Battery
WO2009110540A1 (en) Bobbin type lithium battery
JP4951207B2 (en) Cylindrical sealed battery
WO2020066050A1 (en) Fastening structure
KR20160022137A (en) Cylindrical lithium secondary battery having improved stability
WO2022107712A1 (en) Cylindrical battery
WO2022107716A1 (en) Cylindrical battery
JP2009135008A (en) Gasket for alkaline cell, and alkaline cell
JP2008108603A (en) Cylindrical alkaline battery
JP2011243381A (en) Manufacturing method of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716624

Country of ref document: EP

Kind code of ref document: A1