JPH081372A - Composite soldering material and its manufacture - Google Patents

Composite soldering material and its manufacture

Info

Publication number
JPH081372A
JPH081372A JP12905494A JP12905494A JPH081372A JP H081372 A JPH081372 A JP H081372A JP 12905494 A JP12905494 A JP 12905494A JP 12905494 A JP12905494 A JP 12905494A JP H081372 A JPH081372 A JP H081372A
Authority
JP
Japan
Prior art keywords
solder material
weight
solder
composite
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12905494A
Other languages
Japanese (ja)
Inventor
Koichi Kishimoto
浩一 岸本
Atsushi Kubokawa
厚志 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP12905494A priority Critical patent/JPH081372A/en
Publication of JPH081372A publication Critical patent/JPH081372A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite soldering material excellent in the ductility at high temperature and excellent in the cold machinability as the soldering material to join the parts of a semi-conductor device accompanying the heat generation. CONSTITUTION:The soldering material having the composition consisting of, by weight, 5-15% Sb, 2-15% Ag, and the balance substantially Sn with inevitable impurities is melted in the inert atmosphere, and cast to manufacture the ingot. This ingot is extruded, and rolled or cold machined by the drawing to manufacture the tape or wire of the prescribed shape and dimension.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合半田材料及びその製
造方法に関し、更に詳しくは高温で使用される部品を接
合する複合半田材料、とりわけ、発熱を伴うため高温で
使用される半導体装置の部品を接合するに適した複合半
田材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite solder material and a method for manufacturing the same, and more particularly, to a composite solder material for joining components used at high temperatures, and in particular, semiconductor device components used at high temperatures due to heat generation. TECHNICAL FIELD The present invention relates to a composite solder material suitable for joining solder and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、半導体チップを基板に固着す
る際の接続材料として半田に粉末を混入させた複合半田
が知られている。特開平2−151389号公報には、
チップ部品を回路基板に接続する際の半田の凝集分離を
防止するために、半田に微細導電性物質を混入した半田
クリームが開示されている。特開昭63−58945号
公報には、半導体チップとリードフレームを接続する際
の半田のクリープ寿命、疲労寿命向上のために、固体粒
子が分散した溶融半田を接触させた半田バンプ形成方法
が開示されている。一方、半導体チップを基板に固着す
る際、粉末を混入させない通常の合金半田をワイヤー又
はテープ状に加工して半導体実装用に供し、所定量に溶
断しながら半導体チップと基板の接続に用いている。し
かし乍らこの場合、ワイヤー又はテープの所定量をチッ
プと基板の間に供給して固化させた時、チップの水平度
が悪いという欠点を有する。
2. Description of the Related Art Conventionally, a composite solder in which powder is mixed in solder has been known as a connecting material for fixing a semiconductor chip to a substrate. Japanese Patent Application Laid-Open No. 2-151389 discloses that
There is disclosed a solder cream in which a fine conductive material is mixed with solder in order to prevent cohesive separation of solder when connecting a chip component to a circuit board. Japanese Unexamined Patent Publication No. 63-58945 discloses a solder bump forming method in which molten solder in which solid particles are dispersed is brought into contact with each other in order to improve creep life and fatigue life of solder when connecting a semiconductor chip and a lead frame. Has been done. On the other hand, when fixing a semiconductor chip to a substrate, a normal alloy solder that does not mix powder is processed into a wire or tape shape and provided for semiconductor mounting, and is used for connecting the semiconductor chip and the substrate while fusing to a predetermined amount. . However, in this case, when a predetermined amount of wire or tape is supplied between the chip and the substrate and solidified, the levelness of the chip is poor.

【0003】ここで、溶融半田の固化後の厚みを一定に
保つことによりチップの水平度を保つことは、その接続
部分において所定の耐熱サイクル性が保持され、半導体
の発熱に伴う温度変化による半導体チップの剥離やそれ
に伴う導通不良を防ぐ点で有用である。この対応として
半導体チップと基板を接続する際、半導体チップを水平
に維持するため、半田に粉末を混入させて冷間加工を行
い必要な形状寸法に仕上げたワイヤー又はテープ状複合
半田を用いる事が検討されている。このような複合半田
材料を半導体チップと基板の接続に用いた場合、半導体
チップの発熱に伴い半田材料にクラックが生じるという
問題が生じる。このため高温に耐え冷間加工が可能な半
田材料を用いた複合半田材料が望まれている。
Here, maintaining the levelness of the chip by keeping the thickness of the molten solder after solidification constant means that a predetermined heat cycle property is maintained at the connection portion of the chip, and the semiconductor changes due to temperature change due to heat generation of the semiconductor. This is useful in preventing chip peeling and accompanying poor conduction. As a countermeasure, when connecting the semiconductor chip and the substrate, in order to keep the semiconductor chip horizontal, it is possible to use wire or tape-shaped composite solder that mixes powder into the solder and performs cold processing to finish it to the required shape and dimensions. Is being considered. When such a composite solder material is used for connecting a semiconductor chip and a substrate, there is a problem that the solder material is cracked due to heat generation of the semiconductor chip. Therefore, there is a demand for a composite solder material that uses a solder material that can withstand high temperatures and can be cold worked.

【0004】一般に高温用半田とは固相線温度がPb−
Snの共晶温度(183℃)以上のものをいい、通常は
Snを主成分として、これにPb、In、Ag、Sb、
Cu、Ni等を含有したものである。この中で、Snを
主成分としてSbを含有したものは、高温強度とクリー
プ特性が向上するため高温用半田として好ましい。一
方、半導体素子をリードフレーム上にボンディングする
際に、Snを主成分としてSbだけを含有した半田を用
いて接合すると、半導体チップの発熱に伴いSn−Sb
半田部材にクラックが発生し易いという問題がある。従
来、Sn−Sb系半田にNi、Cu、Bi等を含有させ
る試みがなされているが、半導体チップの発熱に伴う高
温でのクラックの防止に対して効果が十分でないことに
加えて冷間加工が困難になるという欠点を有する。従っ
て、Sn−Sb系半田において、高温でのクラック防止
に有効であり且つ冷間加工性の良い半田材料は得られて
いないため、溶湯の直接急冷によるリボン状半田やクリ
ーム半田の用途に限定して試みがなされ、その優れた高
温強度とクリープ特性が十分に生かされていない。
Generally, high temperature solder has a solidus temperature of Pb-
A material having a eutectic temperature of Sn (183 ° C.) or higher. Usually, Sn is the main component, and Pb, In, Ag, Sb,
It contains Cu, Ni and the like. Among them, those containing Sn as the main component and Sb are preferable as the high temperature solder because the high temperature strength and the creep characteristics are improved. On the other hand, when a semiconductor element is bonded onto a lead frame by using a solder containing Sn as a main component and containing only Sb, Sn-Sb is generated due to heat generation of the semiconductor chip.
There is a problem that cracks are likely to occur in the solder member. Conventionally, attempts have been made to contain Sn, Sb-based solders containing Ni, Cu, Bi, etc., but the effect is not sufficient for preventing cracks at high temperatures due to heat generation of semiconductor chips, and cold working Has the drawback of becoming difficult. Therefore, in Sn-Sb type solder, a solder material that is effective in preventing cracks at high temperatures and has good cold workability has not been obtained, so it is limited to applications such as ribbon solder and cream solder by direct rapid cooling of molten metal. However, its excellent high temperature strength and creep properties have not been fully utilized.

【0005】ここで高温でのクラック防止について詳述
すると、半導体装置が実用上晒される環境から考えて、
温度170℃において優れた延性を有することが求めら
れている。また冷間加工性について詳述すると、所定の
形状、寸法に整えるため溶解、鋳造工程を経て冷間加工
を施す場合鋳造時に偏析が生じ易く、これも一因となっ
て材質のもろさと相まって冷間加工が困難になる現象が
ある。特開昭61−86091号公報は、Sn−Sb系
半田にNi、Pを添加することにより、150℃での高
温接合強度を改善した溶溜から直接リボン状に凝固させ
たリボン状半田を開示している。しかし乍ら、半導体装
置が実用上晒される環境は更に厳しく、より高温(17
0℃)において優れた延性を有する半田材料としては不
十分である。またNi、Pを含有しているため冷間加工
用としては鋳造時の偏析が生じ易く、冷間加工が困難に
なるという欠点を有する。
Here, the crack prevention at high temperature will be described in detail. Considering from the environment where the semiconductor device is practically exposed,
It is required to have excellent ductility at a temperature of 170 ° C. In addition, when describing cold workability in detail, segregation is likely to occur during casting when performing cold working through melting and casting processes to adjust to a predetermined shape and size, which also contributes to the fragility of the material. There is a phenomenon that hot working becomes difficult. Japanese Unexamined Patent Publication No. 61-86091 discloses a ribbon-like solder which is obtained by adding Ni and P to Sn-Sb-based solder to directly solidify it in a ribbon-like shape from a melt having improved high temperature bonding strength at 150 ° C. are doing. However, the environment to which semiconductor devices are exposed in practice is more severe, and the higher temperature (17
It is insufficient as a solder material having excellent ductility at 0 ° C. Further, since it contains Ni and P, it has a drawback that segregation during casting is likely to occur for cold working, which makes cold working difficult.

【0006】特開平5−50286号公報は、Sn−A
g−Cu系の組成が、BiやPbを含む場合に比べ−5
5℃〜125℃における熱衝撃試験に優れた半田を提供
する半田クリームを開示している。そしてこの中で2重
量%のSbを添加した例を示している。しかしながらこ
の組成系においても、より高温である170℃において
優れた延性を有する半田材料としては不十分である。ま
たCuを含有しているため冷間加工用としては鋳造時の
偏析が生じ易く、これに起因して冷間加工が困難になる
という欠点を有する。
Japanese Unexamined Patent Publication No. 5-502286 discloses Sn-A.
Compared with the case where the composition of the g-Cu system contains Bi or Pb, it is -5.
Disclosed is a solder cream that provides a solder excellent in a thermal shock test at 5 ° C to 125 ° C. An example in which 2% by weight of Sb is added is shown. However, even this composition system is insufficient as a solder material having excellent ductility at a higher temperature of 170 ° C. Further, since it contains Cu, it has a drawback that segregation during casting is apt to occur during cold working, which makes cold working difficult.

【0007】[0007]

【発明が解決しようとする課題】ここに本発明は、下記
(1)及び(2)に記載される課題を同時に達成しうる
複合半田材料を提供することを目的とする。 (1)半導体チップの発熱に伴う高温でのクラックの防
止に対して有効な半田材料として、170℃で測定した
延性の高いものであること。 (2)半導体チップを基板上に水平に保持するために、
複合半田材料であり、これを所定の形状寸法に仕上げる
ための冷間加工性に優れていること。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a composite solder material which can simultaneously achieve the problems described in (1) and (2) below. (1) A solder material having a high ductility measured at 170 ° C. as a solder material effective for preventing cracks at a high temperature due to heat generation of a semiconductor chip. (2) In order to hold the semiconductor chip horizontally on the substrate,
It is a composite solder material and has excellent cold workability to finish it into the specified shape and dimensions.

【0008】[0008]

【課題を解決するための手段】本発明者が鋭意研究を重
ねた結果、Sn−Sb系においてSbが増加するにつれ
て強度が大きくなる傾向にあるため延性が低下すると考
えられていたが、意外にもSbが5〜15重量%と比較
的高い領域でAgが2〜15重量%含有されると、その
相乗効果により170℃における優れた延性を示すこと
を見出した。またこの範囲で冷間加工も良好に実施出来
るため目的とする複合材料を得ることが出来、本発明を
完成させた。ここに本発明は次の通りである。 (第1発明)半田材料中に粉末を含有した複合半田材料
において半田材料がSb5〜15重量%、Ag2〜15
重量%を含み、残部が不可避不純物を除いて実質的にS
nからなることを特徴とする複合半田材料。 (第2発明)半田材料中に粉末を含有した複合半田材料
の製造方法においてSb5〜15重量%、Ag2〜15
重量%を含み、残部が不可避不純物を除いて実質的にS
nからなる半田材料を冷間加工してなることを特徴とす
る複合半田材料の製造方法。 (第3発明)第1発明において、複合半田材料の粉末含
有量が0.001〜1.0重量%であることを特徴とす
る複合半田材料。 (第4発明)第2発明において、複合半田材料の粉末含
有量が0.001〜1.0重量%であることを特徴とす
る複合半田材料の製造方法。
As a result of intensive studies by the present inventor, it was thought that the ductility decreases because the strength tends to increase as Sb in the Sn--Sb system increases, but unexpectedly. It was also found that when Sb is contained in a relatively high region of 5 to 15% by weight and Ag is contained in the range of 2 to 15% by weight, excellent ductility at 170 ° C is exhibited due to the synergistic effect. Further, since cold working can be satisfactorily performed in this range, the intended composite material can be obtained, and the present invention has been completed. The present invention is as follows. (First invention) In a composite solder material containing powder in the solder material, the solder material is Sb 5 to 15% by weight, Ag 2 to 15
% By weight, the balance being substantially S except for unavoidable impurities.
A composite solder material comprising n. (Second invention) In a method for producing a composite solder material containing powder in a solder material, Sb 5 to 15% by weight, Ag 2 to 15
% By weight, the balance being substantially S except for unavoidable impurities.
A method of manufacturing a composite solder material, comprising cold working a solder material consisting of n. (Third invention) A composite solder material according to the first invention, wherein the powder content of the composite solder material is 0.001 to 1.0% by weight. (4th invention) In the 2nd invention, the powder content of the composite solder material is 0.001 to 1.0% by weight.

【0009】[0009]

【作用】以下、本発明の作用とさらに詳しい構成につい
て述べる。半田材料の組成を上述の様に限定した理由に
ついて説明すれば、Snを主成分とする半田に関し、S
bはAgとの相乗効果において170℃での延性改善に
効果がある。Sbの含有量は5〜15重量%であること
が必要であり、この範囲で170℃での延性改善効果が
生じる。より好ましくは6〜11重量%であり、この範
囲で170℃での延性改善は一段と優れた効果を示す。
そしてこれらの範囲で冷間加工性は良好である。Sbの
含有量が5重量%未満であると170℃での延性改善効
果が不十分である。一方、Sbの含有量が15重量%を
超えると延性改善効果が不十分であると共に冷間加工が
不可能となる。
The operation and more detailed constitution of the present invention will be described below. Explaining the reason why the composition of the solder material is limited as described above, regarding the solder containing Sn as a main component, S
b has the effect of improving the ductility at 170 ° C. in the synergistic effect with Ag. The Sb content needs to be 5 to 15% by weight, and within this range, an effect of improving ductility at 170 ° C is produced. The content is more preferably 6 to 11% by weight, and in this range, the improvement of ductility at 170 ° C. shows a more excellent effect.
And cold workability is favorable in these ranges. If the Sb content is less than 5% by weight, the effect of improving ductility at 170 ° C is insufficient. On the other hand, if the Sb content exceeds 15% by weight, the ductility improving effect is insufficient and cold working becomes impossible.

【0010】AgはSbとの相乗効果において170℃
での延性改善に効果がある。Agの含有量は2〜15重
量%であることが必要であり、この範囲で170℃での
延性改善効果が生じる。より好ましくは6〜12重量%
であり、この範囲で170℃での延性改善は一段と優れ
た効果を示す。そしてこれらの範囲で冷間加工は可能で
ある。Agの含有量が2重量%未満であると170℃で
の延性改善効果が不十分である。一方、Agの含有量が
15重量%を超えると延性改善効果が不十分であると共
に冷間加工が不可能となる。
Ag has a synergistic effect with Sb at 170 ° C.
It is effective in improving ductility. The content of Ag needs to be 2 to 15% by weight, and within this range, an effect of improving ductility at 170 ° C. occurs. More preferably 6 to 12% by weight
In this range, the improvement of ductility at 170 ° C. shows a more excellent effect. Cold working is possible within these ranges. If the Ag content is less than 2% by weight, the effect of improving ductility at 170 ° C is insufficient. On the other hand, if the Ag content exceeds 15% by weight, the ductility improving effect is insufficient and cold working becomes impossible.

【0011】Sn−Sb系半田において、Sb含有量が
低い程通常強度は低くなり、延性が高くなる傾向にある
ため、Sb含有量が3重量%と小さい場合の方が170
℃での延性も大きいと予想されたものの、本発明の通り
Sb含有量が5〜15重量%と高い方が170℃での優
れた延性改善効果を有する理由は明らかではないが、S
nとSbとAgとの相乗効果によるものと考えられる。
In the Sn—Sb type solder, the lower the Sb content, the lower the normal strength and the higher the ductility. Therefore, when the Sb content is as small as 3% by weight, 170 is more preferable.
Although it is expected that the ductility at C is also large, the reason why the higher Sb content of 5 to 15% by weight as in the present invention has an excellent effect of improving ductility at 170 ° C. is not clear.
It is considered to be due to the synergistic effect of n, Sb, and Ag.

【0012】次に本発明の製造方法について説明する。
本発明品の半田材料はSn、Sb、Agを所定量配合し
て不活性雰囲気中で溶解し、これを鋳造して圧延用イン
ゴット又は押出し用インゴットを作成する。圧延用イン
ゴットは圧延に供し半田テープとし、次に垂直又は水平
に並べた2本の圧延ロール間に2枚の半田テープを挿通
し、2枚の半田テープの接合手前で2枚の半田テープの
間に所定の粉末を供給し、圧延ロールのかみこみ力によ
って半田材料の内部に前記粉末を充填せしめる方法によ
り本発明になる複合半田材料テープの冷間加工素材を得
る。押出し用インゴットはインゴットに空洞部を設け、
該空洞部に粉末を充填し押出加工する方法により本発明
になる複合半田材料テープ又はワイヤーの冷間加工素材
を得る。これらの冷間加工素材を圧延又は伸線加工によ
り厚み又は外径が30〜300μmの冷間加工された複
合半田材料テープ又はワイヤーを製造する。さらに、冷
間加工された複合半田材料テープをプレス加工してペレ
ット状に加工して使用することも出来る。
Next, the manufacturing method of the present invention will be described.
The solder material of the present invention comprises Sn, Sb and Ag in a predetermined amount, melts them in an inert atmosphere, and casts them to prepare a rolling ingot or an extruding ingot. The rolling ingot is used as a solder tape by rolling, and then two solder tapes are inserted between two rolling rolls arranged vertically or horizontally, and two solder tapes are joined before joining the two solder tapes. A cold work material of the composite solder material tape according to the present invention is obtained by a method of supplying a predetermined powder in the meantime and filling the powder into the inside of the solder material by the biting force of a rolling roll. The extrusion ingot is provided with a cavity in the ingot,
A cold work material for a composite solder material tape or wire according to the present invention is obtained by a method of filling powder in the cavity and extruding. These cold-worked materials are rolled or drawn to produce cold-worked composite solder material tapes or wires having a thickness or outer diameter of 30 to 300 μm. Further, the cold-worked composite solder material tape may be pressed into a pellet form for use.

【0013】ここで粉末として次のものが用いられる。 (1)使用する半田材料より少なくとも50℃以上高融
点のものである。 (2)材質の例示 金属粒子:Cu、Ni、Mo、W 酸化物:Al2 3 、TiO2 、Cr2 3 、ZrO
2 その他:炭化物、窒化物、ホウ化物等があげられる。 尚、半田との濡れ性の点から金属粒子、酸化物が好まし
く用いられる。 (3)形状、寸法 寸法:5〜100μmのものが好ましく使用される。 形状:不定型及び球状のものが使用出来るが球状の方が
好ましい。 (4)複合半田材料中の粉末含有量 0.001〜1.0重量%のものが好ましく用いられ
る。また、0.001〜0.6重量%のものがより好ま
しく用いられる。
The following powders are used here. (1) It has a melting point of at least 50 ° C. higher than the solder material used. (2) Examples of materials Metal particles: Cu, Ni, Mo, W Oxides: Al 2 O 3 , TiO 2 , Cr 2 O 3 , ZrO
2 Others: Carbides, nitrides, borides and the like. From the viewpoint of wettability with solder, metal particles and oxides are preferably used. (3) Shape and dimensions Dimensions: 5 to 100 μm are preferably used. Shape: An irregular shape and a spherical shape can be used, but a spherical shape is preferable. (4) A powder having a powder content of 0.001 to 1.0% by weight in the composite solder material is preferably used. Further, 0.001 to 0.6% by weight is more preferably used.

【0014】[0014]

【実施例】【Example】

(実施例1)冷間加工した複合半田ワイヤーの半田中の
各金属元素が表1に示す組成となるように配合して窒素
雰囲気中で溶解,鋳造し,直径70mm×長さ100mmの
半田インゴットを作成した。この半田インゴットに空洞
部を設けて該空洞部にNi粉末を加圧して充填し、空洞
部に同じ半田材料の栓をした後150℃に加熱して、直
径1mmのワイヤーに押出した。更に伸線加工を行い直径
0.3mmの細線に仕上げた。その際の冷間加工性を表2
に示す。次にこの伸線加工材を170℃に加熱した状態
で引張試験を行い、伸び率を測定した。その結果を表2
に示す。
(Example 1) A solder ingot having a diameter of 70 mm and a length of 100 mm was prepared by blending each metal element in the solder of the cold-worked composite solder wire so as to have the composition shown in Table 1, melting and casting in a nitrogen atmosphere. It was created. This solder ingot was provided with a cavity, and Ni powder was pressurized and filled in the cavity, the cavity was capped with the same solder material, heated to 150 ° C., and extruded into a wire having a diameter of 1 mm. Furthermore, wire drawing was carried out to finish the thin wire with a diameter of 0.3 mm. The cold workability in that case is shown in Table 2.
Shown in Next, the wire drawing material was subjected to a tensile test in a state of being heated at 170 ° C., and the elongation was measured. The results are shown in Table 2.
Shown in

【0015】(実施例2〜14、実施例16〜19、比
較例1〜6)半田ワイヤー中の各金属元素が表1に示す
組成となるように配合して窒素雰囲気中で溶解,鋳造
し,直径70mm×長さ100mmのインゴットを作成し
た。これを150℃に加熱して直径1mmのワイヤーに押
出した。更に伸線加工を行い直径0.3mmの細線に仕上
げた。その際の冷間加工性を表2に示す。次にこの伸線
加工材を170℃に加熱した状態で引張試験を行い、伸
び率を測定した。その結果を表2に示す。
(Examples 2 to 14, Examples 16 to 19 and Comparative Examples 1 to 6) Each metal element in the solder wire was blended so as to have the composition shown in Table 1 and melted and cast in a nitrogen atmosphere. , An ingot with a diameter of 70 mm and a length of 100 mm was prepared. This was heated to 150 ° C. and extruded into a wire having a diameter of 1 mm. Furthermore, wire drawing was carried out to finish the thin wire with a diameter of 0.3 mm. Table 2 shows the cold workability at that time. Next, the wire drawing material was subjected to a tensile test in a state of being heated at 170 ° C., and the elongation was measured. The results are shown in Table 2.

【0016】(実施例15)半田リボン中の各金属元素
が表1に示す組成となるように配合して窒素雰囲気中で
溶解,鋳造し,直径30mm×長さ100mmのインゴット
を作成した。これを150℃に加熱して厚さ1mm×幅2
0mmに押出した。更に圧延加工を行い厚さ0.3mm×幅
20mmのテープ状に仕上げた。その際の冷間加工性を表
2に示す。次にこの圧延加工材を170℃に加熱した状
態で引張試験を行い、伸び率を測定した。その結果を表
2に示す。
Example 15 Each metal element in the solder ribbon was blended so as to have the composition shown in Table 1, melted and cast in a nitrogen atmosphere to prepare an ingot having a diameter of 30 mm and a length of 100 mm. This is heated to 150 ℃, thickness 1mm × width 2
Extruded to 0 mm. Further, it was rolled into a tape having a thickness of 0.3 mm and a width of 20 mm. Table 2 shows the cold workability at that time. Next, this rolled material was subjected to a tensile test in a state where it was heated to 170 ° C., and the elongation was measured. The results are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】ここで冷間加工性とは、ワイヤーの場合、
直径1mmから0.3mm迄伸線加工する際の重量1kg当
りの断線回数を測定し、以下のように評価した。 ○:断線回数2回以下の時 △:断線回数3〜4回の時 ×:断線回数5回以上の時 不可:伸線不可能な時 テープの場合、厚さ1mmから0.3mm迄圧延加工する際
のテープ幅方向の最大耳割れの大きさを測定し、テープ
幅に対する比率を耳割れ率として、以下のように評価し
た。 ○:耳割れ率5%以下の時 △:耳割れ率5%を超え25%未満の時 ×:耳割れ率25%以下の時 不可:圧延不可能な時
Here, cold workability means, in the case of a wire,
The number of wire breakages per kg of weight when wire drawing from a diameter of 1 mm to 0.3 mm was measured and evaluated as follows. ◯: When the number of wire breaks is 2 or less Δ: When the number of wire breaks is 3 to 4 ×: When the number of wire breaks is 5 or more Not possible: When wire drawing is not possible In the case of tape, rolling from 1 mm to 0.3 mm in thickness The size of the maximum edge crack in the tape width direction was measured, and the ratio to the tape width was taken as the edge crack rate and evaluated as follows. ◯: When the cracking rate is 5% or less Δ: When the cracking rate is more than 5% and less than 25% ×: When the cracking rate is 25% or less No: When rolling is not possible

【0020】表1,2から明らかなように、Sb5〜1
5重量%、Ag2〜15重量%を含み、残部が不可避不
純物を除いて実質的にSnからなる半田材料を冷間加工
してなる本発明実施例1〜19は何れも冷間加工性に優
れると共に、170℃での伸び率も25%以上と良好で
あることがわかる。さらに、Sbの含有量を6〜11重
量%、Agの含有量を6〜12重量%とした実施例2〜
6、10〜12、15〜19において、170℃での伸
び率が38%以上とより良好であることが判る。
As is clear from Tables 1 and 2, Sb5-1
Each of Examples 1 to 19 of the present invention, which is obtained by cold working a solder material containing 5 wt% and Ag 2 to 15 wt% and the balance being substantially Sn except the inevitable impurities, is excellent in cold workability. At the same time, it can be seen that the elongation at 170 ° C. is also good at 25% or more. Further, Example 2 in which the Sb content was 6 to 11% by weight and the Ag content was 6 to 12% by weight
It can be seen that in Nos. 6, 10 to 12, and 15 to 19, the elongation at 170 ° C is 38% or more, which is more favorable.

【0021】また、複合半田材料中の粉末含有量を0.
001〜0.6重量%とした実施例1〜18は、同含有
量が1.0重量%である実施例19に比して、冷間加工
性がさらに良好であることがわかる。
The powder content in the composite solder material is set to 0.
It can be seen that Examples 1 to 18 with 001 to 0.6% by weight have even better cold workability than Example 19 with the same content of 1.0% by weight.

【0022】これに対し、Sn−Sb−Ag系の組成で
あってもSb、Agの含有量が本発明の範囲外である比
較例2,4は冷間加工が不可能であり、またSb、Ag
の含有量が本発明の範囲内であってもどちらか一方のみ
を単独で含有する比較例1,3は冷間加工性は良好であ
るものの170℃状態での伸び率が15%以下であり、
さらに、Sn−Sb−Ni系組成とした比較例5、Sn
−Sb−Ag−Cu系組成とした比較例6においては1
70℃での伸び率が21%以下であり、且つ冷間加工が
不可能であることがわかる。
On the other hand, even if the composition is of Sn-Sb-Ag system, Comparative Examples 2 and 4 in which the contents of Sb and Ag are out of the range of the present invention cannot be cold worked, and Sb , Ag
Comparative Examples 1 and 3 which contain only one of the above even if the content is within the range of the present invention have good cold workability, but the elongation at 170 ° C. is 15% or less. ,
Furthermore, the comparative example 5 and Sn which made Sn-Sb-Ni system composition
1 in Comparative Example 6 in which the —Sb—Ag—Cu system composition was used.
It can be seen that the elongation at 70 ° C. is 21% or less and cold working is impossible.

【0023】次に、図1及び図2に示す実験例について
説明する。図1はSb含有量8.5重量%、Ag含有量
を0〜25重量%、残部が不可避不純物を除いて実質的
にSnからなる半田材料を冷間加工してなる複合半田材
料の170℃での伸び率を測定したグラフである。図2
はAg含有量7.5重量%、Sb含有量を0〜15重量
%、残部が不可避不純物を除いて実質的にSnからなる
半田材料を冷間加工してなる複合半田材料の170℃で
の伸び率を測定したグラフである。
Next, the experimental examples shown in FIGS. 1 and 2 will be described. FIG. 1 shows a composite solder material having a Sb content of 8.5% by weight, an Ag content of 0 to 25% by weight, and the balance being substantially Sn except the inevitable impurities, which is obtained by cold working at 170 ° C. It is a graph which measured the elongation rate in. Figure 2
Is a composite solder material obtained by cold working a solder material consisting of Ag content of 7.5% by weight, Sb content of 0 to 15% by weight, and the balance being substantially Sn except for unavoidable impurities. It is a graph which measured the elongation rate.

【0024】図1から明らかなように、Ag含有量が2
〜15重量%の範囲内において伸び率が25%以上と良
好であり、且つAg含有量が6〜12重量%の範囲内に
おいて伸び率がさらに良好であることが判る。また図2
から明らかなように、Sb含有量が5〜15重量%の範
囲内において伸び率が25%以上と良好であり、且つS
b含有量が6〜11重量%の範囲内において伸び率がさ
らに良好であることが判る。
As is clear from FIG. 1, the Ag content is 2
It can be seen that the elongation rate is as good as 25% or more in the range of ˜15% by weight, and the elongation rate is even better in the range of Ag content of 6 to 12% by weight. FIG. 2
As is clear from the above, the elongation percentage is as good as 25% or more in the Sb content range of 5 to 15% by weight, and the S
It can be seen that the elongation is even better when the b content is in the range of 6 to 11% by weight.

【0025】[0025]

【発明の効果】以上説明したように、本発明よりなる複
合半田材料は、冷間加工性に優れていると共に170℃
の状態における引張試験での伸び率が著しく優れてい
る。従って、粉末を含有した複合半田素材を所定寸法に
冷間加工して接続材料として使用した場合、半導体チッ
プの水平度を良好に保つ事が出来ると共に半導体チップ
の発熱に伴うSn−Sb半田部材にクラックの発生を抑
制出来るという優れた効果を有する。よって、例えば半
導体チップとリードフレーム基板間の接続等に用いて極
めて好適なものである。
As described above, the composite solder material according to the present invention has excellent cold workability and 170 ° C.
The elongation percentage in the tensile test in the above state is remarkably excellent. Therefore, when the powder-containing composite solder material is cold-worked to a predetermined size and used as a connecting material, it is possible to maintain the levelness of the semiconductor chip at a good level, and to use the Sn-Sb solder member with the heat generation of the semiconductor chip. It has an excellent effect of suppressing the generation of cracks. Therefore, it is extremely suitable for use in connection between a semiconductor chip and a lead frame substrate, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sb含有量8.5重量%、Ag含有量を0〜2
5重量%、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなる複合半田材料の17
0℃での伸び率を測定したグラフである。
FIG. 1 Sb content is 8.5% by weight, Ag content is 0 to 2
17% of a composite solder material obtained by cold working a solder material which is 5 wt% and the balance is substantially Sn except for unavoidable impurities.
It is a graph which measured the elongation at 0 ° C.

【図2】Ag含有量7.5重量%、Sb含有量を0〜1
5重量%、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなる複合半田材料の17
0℃での伸び率を測定したグラフである。
FIG. 2 Ag content of 7.5% by weight, Sb content of 0 to 1
17% of a composite solder material obtained by cold working a solder material which is 5 wt% and the balance is substantially Sn except for unavoidable impurities.
It is a graph which measured the elongation at 0 ° C.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半田材料中に粉末を含有した複合半田材
料において、半田材料がSb5〜15重量%、Ag2〜
15重量%を含み、残部が不可避不純物を除いて実質的
にSnからなることを特徴とする複合半田材料。
1. A composite solder material containing a powder in a solder material, wherein the solder material is 5 to 15% by weight of Sb and 2 to Ag.
A composite solder material comprising 15% by weight and the balance being substantially Sn except for unavoidable impurities.
【請求項2】 半田材料中に粉末を含有した複合半田材
料の製造方法において、Sb5〜15重量%、Ag2〜
15重量%を含み、残部が不可避不純物を除いて実質的
にSnからなる半田材料を冷間加工してなることを特徴
とする複合半田材料の製造方法。
2. A method for producing a composite solder material containing a powder in a solder material, comprising 5 to 15% by weight of Sb and 2 to Ag.
A method for manufacturing a composite solder material, comprising a cold-working solder material containing 15% by weight and the balance being substantially Sn except for unavoidable impurities.
【請求項3】 複合半田材料の粉末含有量が0.001
〜1.0重量%であることを特徴とする請求項1記載の
複合半田材料。
3. The powder content of the composite solder material is 0.001.
The composite solder material according to claim 1, wherein the composite solder material is about 1.0% by weight.
【請求項4】 複合半田材料の粉末含有量が0.001
〜1.0重量%であることを特徴とする請求項2記載の
複合半田材料の製造方法。
4. The powder content of the composite solder material is 0.001.
The method for producing a composite solder material according to claim 2, wherein the content is from 1.0 to 1.0% by weight.
JP12905494A 1994-06-10 1994-06-10 Composite soldering material and its manufacture Pending JPH081372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12905494A JPH081372A (en) 1994-06-10 1994-06-10 Composite soldering material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12905494A JPH081372A (en) 1994-06-10 1994-06-10 Composite soldering material and its manufacture

Publications (1)

Publication Number Publication Date
JPH081372A true JPH081372A (en) 1996-01-09

Family

ID=14999951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12905494A Pending JPH081372A (en) 1994-06-10 1994-06-10 Composite soldering material and its manufacture

Country Status (1)

Country Link
JP (1) JPH081372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
KR20160006667A (en) 2013-05-10 2016-01-19 후지 덴키 가부시키가이샤 Semiconductor device and method for manufacturing semiconductor device
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
WO2018168858A1 (en) * 2017-03-17 2018-09-20 富士電機株式会社 Solder material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
KR20160006667A (en) 2013-05-10 2016-01-19 후지 덴키 가부시키가이샤 Semiconductor device and method for manufacturing semiconductor device
US10157877B2 (en) 2013-05-10 2018-12-18 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
CN107427968A (en) * 2015-09-17 2017-12-01 富士电机株式会社 Semiconductor device solderable material
JPWO2017047289A1 (en) * 2015-09-17 2018-01-25 富士電機株式会社 Solder materials for semiconductor devices
US10727194B2 (en) 2015-09-17 2020-07-28 Fuji Electric Co., Ltd. Solder material for semiconductor device
CN112338387A (en) * 2015-09-17 2021-02-09 富士电机株式会社 Solder material for semiconductor device
JP2021142568A (en) * 2015-09-17 2021-09-24 富士電機株式会社 Solder material for semiconductor device
US11145615B2 (en) 2015-09-17 2021-10-12 Fuji Electric Co., Ltd. Solder material for semiconductor device
WO2018168858A1 (en) * 2017-03-17 2018-09-20 富士電機株式会社 Solder material
US11850685B2 (en) 2017-03-17 2023-12-26 Fuji Electric Co., Ltd. Solder material

Similar Documents

Publication Publication Date Title
US6689488B2 (en) Lead-free solder and solder joint
KR100829465B1 (en) Lead-free solder, solder joint product and electronic component
US20060113683A1 (en) Doped alloys for electrical interconnects, methods of production and uses thereof
KR20140050728A (en) Lead-free solder compositions
JP5861559B2 (en) Pb-free In solder alloy
EP1429884B1 (en) Improved compositions, methods and devices for high temperature lead-free solder
TWI765570B (en) Lead-free and antimony-free solder alloys, solder balls, and solder joints
EP0224068B1 (en) Improved storage life of pb-in-ag solder foil by sn addition
US20160234945A1 (en) Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD
US11772204B2 (en) Preform solder and method of manufacturing the same, and method of manufacturing solder joint
TW202206615A (en) Lead-free and antimony-free solder alloy, solder ball, and solder joint
CN109848606B (en) Sn-Ag-Cu lead-free solder with high interface bonding strength and preparation method thereof
JPH081372A (en) Composite soldering material and its manufacture
JPH07284983A (en) Solder material and production thereof
EP0242525B1 (en) Improved wetting of low melting temperature solders by surface active additions
JP7386826B2 (en) Molded solder and method for manufacturing molded solder
EP1591191B1 (en) Joining method by Au-Sn brazing material, its thickness being i.a. dependent on the Sn-content
JPH08174276A (en) Composite solder material and its manufacture
JP2910527B2 (en) High temperature solder
JPH08215881A (en) Composite solder material and its production
JPH0422595A (en) Cream solder
JPS586793A (en) Brazing filter metal
JP3147601B2 (en) Pb alloy solder for semiconductor device assembly with excellent high temperature strength
JPH08174266A (en) Composite solder material and its production
JP2018149554A (en) Pb-FREE Bi SOLDER ALLOY, ELECTRONIC COMPONENT PREPARED WITH THE SAME, AND ELECTRONIC COMPONENT-MOUNTING SUBSTRATE