JPH07284983A - Solder material and production thereof - Google Patents

Solder material and production thereof

Info

Publication number
JPH07284983A
JPH07284983A JP8185394A JP8185394A JPH07284983A JP H07284983 A JPH07284983 A JP H07284983A JP 8185394 A JP8185394 A JP 8185394A JP 8185394 A JP8185394 A JP 8185394A JP H07284983 A JPH07284983 A JP H07284983A
Authority
JP
Japan
Prior art keywords
wire
solder material
weight
tape
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185394A
Other languages
Japanese (ja)
Inventor
Koichi Kishimoto
浩一 岸本
Atsushi Kubokawa
厚志 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP8185394A priority Critical patent/JPH07284983A/en
Publication of JPH07284983A publication Critical patent/JPH07284983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To provide a tape- or wire-shaped solder material of an Sn-Sb system having excellent ductility at a high temp. and excellent cold workability as a solder material for joining parts of a semiconductor device which entails heat generation. CONSTITUTION:The solder material which contains 5 to 15wt.% Sb and 2 to 15wt.% Ag and consists of the balance substantially Sn exclusive of inevitable impurities is melted in an inert atmosphere and the molten solder material is cast to form an ingot. This ingot is subjected to extruding and is further to cold working by rolling or drawing, by which the ingot is finished to a tape or wire of a specified shape and size. The surface roughness of such tape or wire is confined to <=Ra=10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテープ又はワイヤー状半
田材料及びその製造方法に関し、更に詳しくは、高温で
使用される部品を接合するSn−Sb系合金半田材料、
とりわけ、発熱を伴うため高温で使用される半導体装置
の部品を接合する表面粗度の小さいテープ又はワイヤー
状の半田材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tape or wire-shaped solder material and a method for producing the same, and more specifically, a Sn-Sb alloy solder material for joining components used at high temperatures,
In particular, the present invention relates to a tape-like or wire-like solder material having a small surface roughness for joining components of a semiconductor device which is used at high temperature because it is accompanied by heat generation.

【0002】[0002]

【従来の技術】一般に高温用半田とは固相線温度がPb
−Snの共晶温度(183℃)以上のものをいい、通常
はSnを主成分として、これにPb、In、Ag、S
b、Cu、Ni等を含有したものである。この中で、S
nを主成分としてSbを含有したものは、高温強度とク
リープ特性が向上するため高温用半田として好ましい。
一方、半導体素子をリードフレーム上にボンディングす
る際に、Snを主成分としてSbだけを含有した半田を
用いて接合すると、半導体チップの発熱に伴いSn−S
b半田部材にクラックが発生し易いという問題がある。
また半導体実装時に操作上のトラブルを防止するため
に、表面粗度に優れたテープ又はワイヤー状半田材料が
要求されている。この発熱に伴うクラックを防止するこ
と及び表面粗度に優れたテープ又はワイヤーを得るため
には、圧延加工又は伸線加工による冷間加工を施すこと
が一般に行われている。
2. Description of the Related Art Generally, high temperature solder has a solidus temperature of Pb.
-Sn is a eutectic temperature (183 ° C) or higher. Usually, Sn is the main component, and Pb, In, Ag, S
It contains b, Cu, Ni and the like. In this, S
A solder containing Sb as the main component of n is preferable as a solder for high temperature because the high temperature strength and the creep characteristics are improved.
On the other hand, when a semiconductor element is bonded to a lead frame by using a solder containing Sn as a main component and containing only Sb, the heat generated by the semiconductor chip causes Sn-S.
There is a problem that cracks easily occur in the solder member.
Further, a tape or wire-shaped solder material having excellent surface roughness is required in order to prevent operational troubles during semiconductor mounting. In order to prevent cracks due to this heat generation and to obtain a tape or wire having excellent surface roughness, cold working such as rolling or wire drawing is generally performed.

【0003】従来、Sn−Sb系半田にNi、Cu、B
i等を含有させる試みがなされているが、半導体チップ
の発熱に伴う高温でのクラックの防止に対して効果が十
分でないことに加えて冷間加工が困難になるという欠点
を有する。従って、Sn−Sb系半田において、高温で
のクラック防止に有効であり且つ冷間加工性の良い半田
材料は得られていないため、溶湯の直接急冷によるリボ
ン状半田やクリーム半田の用途に限定して試みがなさ
れ、その優れた高温強度とクリープ特性が十分に生かさ
れていない。
Conventionally, Sn, Sb type solder is used for Ni, Cu, B.
Attempts have been made to incorporate i and the like, but they have the drawbacks of not being sufficiently effective in preventing cracks at high temperatures due to heat generation of semiconductor chips and making cold working difficult. Therefore, in Sn-Sb type solder, a solder material that is effective in preventing cracks at high temperatures and has good cold workability has not been obtained, so it is limited to applications such as ribbon solder and cream solder by direct rapid cooling of molten metal. However, its excellent high temperature strength and creep properties have not been fully utilized.

【0004】ここで高温でのクラック防止について詳述
すると、半導体装置が実用上晒される環境から考えて、
温度170℃において優れた延性を有することが求めら
れている。また冷間加工性について詳述すると、所定の
形状、寸法に整えるため溶解、鋳造工程を経て冷間加工
を施す場合鋳造時に偏析が生じ易く、これも一因となっ
て材質のもろさと相まって冷間加工が困難になる現象が
ある。
Here, the crack prevention at high temperature will be described in detail. Considering from the environment where the semiconductor device is practically exposed,
It is required to have excellent ductility at a temperature of 170 ° C. In addition, when describing cold workability in detail, segregation is likely to occur during casting when performing cold working through melting and casting processes to adjust to a predetermined shape and size, which also contributes to the fragility of the material. There is a phenomenon that hot working becomes difficult.

【0005】特開昭61−86091号はSn−Sb系
半田にNi、Pを添加することにより、150℃での高
温接合強度を改善した溶湯から直接リボン状に凝固させ
たリボン状半田を開示している。しかしながら、半導体
装置が実用上晒される環境は更に厳しく、より高温(1
70℃)において優れた延性を有する半田材料としては
不十分である。またNi、Pを含有しているため冷間加
工用としては鋳造時の偏析が生じ易く、冷間加工が困難
になるという欠点を有する。
Japanese Unexamined Patent Publication No. 61-86091 discloses a ribbon solder in which Ni and P are added to Sn-Sb type solder to directly solidify it in a ribbon shape from a molten metal having improved high temperature bonding strength at 150 ° C. is doing. However, the environment to which semiconductor devices are exposed in practice is more severe, and higher temperatures (1
It is insufficient as a solder material having excellent ductility at 70 ° C. Further, since it contains Ni and P, it has a drawback that segregation during casting is likely to occur for cold working, which makes cold working difficult.

【0006】特開平5−50286号はSn−Ag−C
u系の組成が、BiやPbを含む場合に比べ−5℃〜1
25℃に於ける熱衝撃試験に優れた半田を提供する半田
クリームを開示している。そしてこの中で2重量%のS
bを添加した例を示している。しかしながらこの組成系
においても、より高温である170℃において優れた延
性を有する半田材料としては不十分である。またCuを
含有しているため冷間加工用としては鋳造時の偏析が生
じ易く、これに起因して冷間加工が困難になるという欠
点を有する。
Japanese Unexamined Patent Publication (Kokai) No. 5-50286 discloses Sn-Ag-C.
Compared to the case where the u-based composition contains Bi or Pb, the temperature is -5 ° C to 1
Disclosed is a solder cream that provides a solder excellent in a thermal shock test at 25 ° C. And in this, 2% by weight of S
The example which added b is shown. However, even this composition system is insufficient as a solder material having excellent ductility at a higher temperature of 170 ° C. Further, since it contains Cu, it has a drawback that segregation during casting is apt to occur during cold working, which makes cold working difficult.

【0007】[0007]

【発明が解決しようとする課題】近年、半導体チップの
発熱に伴う高温でのクラックの防止に対して有効な半田
材料として170℃で測定した延性の高いものが要求さ
れている。また半導体実装時に操作上のトラブルを防止
するために表面粗度に優れたテープ又はワイヤー状半田
材料が要求されている。この表面粗度に優れたテープ又
はワイヤー状半田材料を得るためには冷間加工性に優れ
ている事が要求される。ここに本発明の目的は、温度1
70℃において優れた延性を有すると共に冷間加工性に
優れたSn−Sb系のテープ又はワイヤー状半田材料を
提供することにある。
In recent years, a solder material having a high ductility measured at 170 ° C. is required as an effective solder material for preventing cracks at a high temperature due to heat generation of a semiconductor chip. Further, a tape or wire-shaped solder material having excellent surface roughness is required in order to prevent operational troubles during semiconductor mounting. In order to obtain this tape or wire-shaped solder material having excellent surface roughness, it is required to have excellent cold workability. Here, the object of the present invention is to obtain a temperature 1
An object of the present invention is to provide a Sn-Sb-based tape or wire-shaped solder material having excellent ductility at 70 ° C and excellent cold workability.

【0008】[0008]

【課題を解決するための手段】本発明者が鋭意研究を重
ねた結果、Sn−Sb系においてSbが増加するにつれ
て強度が大きくなる傾向にあるため延性が低下すると考
えられていたが、意外にもSbが5〜15重量%と比較
的高い領域でAgが2〜15重量%含有されると、その
相乗効果により170℃に於ける優れた延性を示すこと
を見出した。またこの範囲で冷間加工も良好に実施出来
るため表面粗度を十分満足させることが出来、本発明を
完成させた。ここに本発明は次の通りである。 (1)Sb5〜15重量%、Ag2〜15重量%を含
み、残部が不可避不純物を除いて実質的にSnからな
り、表面粗度Ra=10μm以下であることを特徴とす
るテープ又はワイヤー状半田材料。 (2)Sb6〜11重量%、Ag6〜12重量%を含
み、残部が不可避不純物を除いて実質的にSnからな
り、表面粗度Ra=10μm以下であることを特徴とす
るテープ又はワイヤー状半田材料。 (3)Sb5〜15重量%、Ag2〜15重量%を含
み、残部が不可避不純物を除いて実質的にSnからなる
半田材料を冷間加工してなることを特徴とするテープ又
はワイヤー状半田材料の製造方法。 (4)Sb6〜11重量%、Ag6〜12重量%を含
み、残部が不可避不純物を除いて実質的にSnからなる
半田材料を冷間加工してなることを特徴とするテープ又
はワイヤー状半田材料の製造方法。
As a result of intensive studies by the present inventor, it was thought that the ductility decreases because the strength tends to increase as Sb in the Sn--Sb system increases, but unexpectedly. It was also found that when Sb is contained in a relatively high region of 5 to 15% by weight and 2 to 15% by weight of Ag is contained, excellent ductility at 170 ° C. is exhibited due to the synergistic effect. Further, since the cold working can be satisfactorily performed within this range, the surface roughness can be sufficiently satisfied, and the present invention has been completed. The present invention is as follows. (1) A tape or wire-shaped solder containing 5 to 15% by weight of Sb and 2 to 15% by weight of Ag, the balance being substantially Sn except for unavoidable impurities, and having a surface roughness Ra of 10 μm or less. material. (2) A tape or wire-like solder, which contains 6 to 11% by weight of Sb and 6 to 12% by weight of Ag, and the balance is substantially Sn except for unavoidable impurities and has a surface roughness Ra of 10 μm or less. material. (3) A tape or wire-shaped solder material comprising 5 to 15% by weight of Sb and 2 to 15% by weight of Ag, the balance being a solder material substantially composed of Sn except for unavoidable impurities and cold-worked. Manufacturing method. (4) A tape or wire-shaped solder material, which is obtained by cold-processing a solder material containing 6 to 11% by weight of Sb and 6 to 12% by weight of Ag, with the balance being substantially Sn except for unavoidable impurities. Manufacturing method.

【0009】[0009]

【作用】本発明において、半田材料の組成を上述の様に
限定した理由について説明する。Snを主成分とする半
田に関し、SbはAgとの相乗効果において170℃で
の延性改善に効果がある。Sbの含有量は5〜15重量
%であることが必要であり、この範囲で170℃での延
性改善効果が生じる。より好ましくは6〜11重量%で
あり、この範囲で170℃での延性改善は一段と優れた
効果を示す。そしてこれらの範囲で冷間加工性は良好で
ある。Sbの含有量が5重量%未満であると170℃で
の延性改善効果が不十分である。一方Sbの含有量15
重量%を超えると延性改善効果が不十分であるとともに
冷間加工が不可能となる。
In the present invention, the reason why the composition of the solder material is limited as described above will be explained. Regarding solder containing Sn as a main component, Sb is effective in improving ductility at 170 ° C. in synergistic effect with Ag. The Sb content needs to be 5 to 15% by weight, and within this range, an effect of improving ductility at 170 ° C is produced. The content is more preferably 6 to 11% by weight, and in this range, the improvement of ductility at 170 ° C. shows a more excellent effect. And cold workability is favorable in these ranges. If the Sb content is less than 5% by weight, the effect of improving ductility at 170 ° C is insufficient. On the other hand, the Sb content is 15
If the content exceeds 10% by weight, the effect of improving ductility is insufficient and cold working becomes impossible.

【0010】AgはSbとの相乗効果において170℃
での延性改善に効果がある。Agの含有量は2〜15重
量%であることが必要であり、この範囲で170℃での
延性改善効果が生じる。より好ましくは6〜12重量%
であり、この範囲で170℃での延性改善は一段と優れ
た効果を示す。そしてこれらの範囲で冷間加工は可能で
ある。Agの含有量が2重量%未満であると170℃で
の延性改善効果が不十分である。一方Agの含有量が1
5重量%を超えると冷間加工が不可能となる。
Ag has a synergistic effect with Sb at 170 ° C.
It is effective in improving ductility. The content of Ag needs to be 2 to 15% by weight, and within this range, an effect of improving ductility at 170 ° C. occurs. More preferably 6 to 12% by weight
In this range, the improvement of ductility at 170 ° C. shows a more excellent effect. Cold working is possible within these ranges. If the Ag content is less than 2% by weight, the effect of improving ductility at 170 ° C is insufficient. On the other hand, the Ag content is 1
If it exceeds 5% by weight, cold working becomes impossible.

【0011】Sn−Sb系半田において、Sb含有量が
低い程通常強度は低くなり延性が高くなる傾向にあるた
め、Sb含有量が3重量%と小さい場合の方が170℃
での延性も大きいと予想されたものの、本発明の通りS
b含有量が5〜15重量%と高い方が170℃での優れ
た延性改善効果を有する理由は明らかではないが、S
n、Sb、Agとの相乗効果によるものと考えられる。
In the Sn-Sb type solder, the lower the Sb content, the lower the normal strength and the higher the ductility. Therefore, when the Sb content is as small as 3% by weight, the temperature is 170 ° C.
Although it is expected that the ductility in
It is not clear why a higher b content of 5 to 15% by weight has an excellent effect of improving ductility at 170 ° C.
It is considered to be due to a synergistic effect with n, Sb, and Ag.

【0012】次に本発明の製造方法について説明する。
本発明品の半田材料はSn、Sb、Agを所定量配合し
て不活性雰囲気中で溶解し、これを鋳造してインゴット
を作成する。このインゴットを押出に供し、更に圧延加
工又は伸線加工による冷間加工を行い所定形状、寸法の
テープ又はワイヤに仕上げる。この様に圧延加工又は伸
線加工した材料の表面粗度はRa=1μm程度でありR
a=10μmより十分に小さいものとなるが、超急冷法
により得たワイヤーは表面粗度Ra=70μm程度であ
り冷間加工性の悪いものであった。尚、本発明の製造方
法において、必要によりテープ又はワイヤーの中に粒状
物を混入させて冷間加工を施したいわゆる粒入り半田の
状態で使用したり、この様にして作成したテープからペ
レットを打ち抜いて使用する事も出来る。
Next, the manufacturing method of the present invention will be described.
The solder material of the present invention is prepared by mixing a predetermined amount of Sn, Sb, and Ag, melting it in an inert atmosphere, and casting this to form an ingot. The ingot is extruded and then cold-worked by rolling or wire drawing to finish a tape or wire having a predetermined shape and size. The surface roughness of the material thus rolled or drawn is Ra = 1 μm.
Although it was sufficiently smaller than a = 10 μm, the wire obtained by the ultra-quenching method had a surface roughness Ra of about 70 μm and had poor cold workability. Incidentally, in the production method of the present invention, if necessary, it is used in the state of so-called grain-containing solder that has been subjected to cold working by mixing particles in the tape or wire, or pellets from the tape thus produced. It can be punched out and used.

【0013】[0013]

【実施例】【Example】

(実施例1〜14、比較例1〜8)半田ワイヤー中の各
金属元素が表1、表2に示す組成となるように配合して
窒素雰囲気中で溶解、鋳造し、直径70mm×長さ10
0mmのインゴットを作成した。これを150℃に加熱
して直径1mmのワイヤーに押出した。更に伸線加工を
行い直径0.3mmのワイヤーに仕上げた。その際の冷
間加工性を表中に示す。次にこの伸線加工材を170℃
に加熱した状態で引張試験を行い、伸び率(%)及び表
面粗度を測定した。その結果を表中に示す。
(Examples 1 to 14, Comparative Examples 1 to 8) Each metal element in the solder wire was blended so as to have the composition shown in Table 1 and Table 2, melted and cast in a nitrogen atmosphere, and the diameter was 70 mm x length. 10
A 0 mm ingot was created. This was heated to 150 ° C. and extruded into a wire having a diameter of 1 mm. Further, wire drawing was performed to finish a wire having a diameter of 0.3 mm. The cold workability at that time is shown in the table. Next, this wire drawn material is heated to 170 ° C.
A tensile test was carried out in the state of being heated to measure elongation (%) and surface roughness. The results are shown in the table.

【0014】(実施例15)半田テープ中の各金属元素
が表1に示す組成となるように配合して窒素雰囲気中で
溶解、鋳造し直径30mm×長さ100mmのインゴッ
トを作成した。これを150℃に加熱して厚さ1mm×
幅20mmに押出した。更に圧延加工を行い厚さ0.3
mm×幅20mmのテープに仕上げた。その際の冷間加
工性を表中に示す。次にこの圧延加工材を170℃に加
熱した状態で引張試験を行い、伸び率(%)及び表面粗
度を測定した。その結果を表中に示す。
Example 15 Each metal element in the solder tape was blended so as to have the composition shown in Table 1, melted and cast in a nitrogen atmosphere to prepare an ingot having a diameter of 30 mm and a length of 100 mm. This is heated to 150 ° C and the thickness is 1mm x
It was extruded to a width of 20 mm. Further rolling is performed to a thickness of 0.3
The tape was finished to have a size of mm × width 20 mm. The cold workability at that time is shown in the table. Next, this rolled material was subjected to a tensile test while being heated to 170 ° C., and the elongation rate (%) and the surface roughness were measured. The results are shown in the table.

【0015】(比較例9)半田ワイヤー中の各金属元素
が表2に示す組成となるように配合して窒素雰囲気中で
溶解した。250rpmで回転している円筒ドラム内に
水を7リットル注入して水層を形成し、上記溶解した溶
湯をアルゴンガス圧で孔径1mmの石英製ノズルより回
転する円筒ドラム内の水層へ上向きに噴出させ急冷凝固
させた。得られたワイヤーに伸線加工を試みたが、表2
に示す通り伸線加工性は極めて悪いものであった。従っ
て比較例9については、直径1mmの素線状態での伸び
率(%)及び表面粗度を測定し表中に示した。
Comparative Example 9 Each metal element in the solder wire was blended so as to have the composition shown in Table 2 and melted in a nitrogen atmosphere. 7 liters of water was injected into a cylindrical drum rotating at 250 rpm to form a water layer, and the molten metal was upwardly directed to a water layer in the rotating cylindrical drum from a quartz nozzle having a hole diameter of 1 mm by argon gas pressure. It was jetted and rapidly solidified. The wire obtained was tried to be drawn, but Table 2
As shown in, the wire drawing workability was extremely poor. Therefore, for Comparative Example 9, the elongation percentage (%) and the surface roughness in the state of a wire having a diameter of 1 mm were measured and shown in the table.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】ここで冷間加工性とは、ワイヤーの場合、
直径1mmから0.3mm迄伸線加工する際の重量1k
g当りの断線回数を測定し、以下のように評価した。 ○:断線回数2回以下の時 △:断線回数3〜4回の時 ×:断線回数5回以上の時 不可:伸線不可能な時 またテープの場合、厚さ1mmから0.3mm迄圧延加
工する際の、テープ幅方向の最大耳割れの大きさを測定
しテープ幅に対する比率を耳割れ率とし、以下のように
評価した。 ○:耳割れ率5%以下の時 △:耳割れ率5%を超え25%未満の時 ×:耳割れ率25%以下の時 不可:圧延不可能な時
Here, cold workability means, in the case of a wire,
Weight 1k when drawing wire from diameter 1mm to 0.3mm
The number of wire breakages per g was measured and evaluated as follows. ◯: When the number of wire breaks is 2 or less Δ: When the number of wire breaks is 3 to 4 ×: When the number of wire breaks is 5 or more Not possible: When wire drawing is not possible Also, in the case of tape, rolled from 1 mm to 0.3 mm in thickness The size of the maximum edge crack in the tape width direction at the time of processing was measured, and the ratio to the tape width was defined as the edge crack rate, and evaluated as follows. ◯: When the cracking rate is 5% or less Δ: When the cracking rate is more than 5% and less than 25% ×: When the cracking rate is 25% or less No: When rolling is not possible

【0019】表1から明らかなように、Sb5〜15重
量%、Ag2〜15重量%を含み、残部が不可避不純物
を除いて実質的にSnからなる半田材料を冷間加工して
なる本発明実施例1〜15は何れも冷間加工性に優れる
と共に、170℃での伸び率も25%以上と良好であ
り、且つSbの含有量を6〜11重量%、Agの含有量
を6〜12重量%とした実施例2〜6、10〜12、1
5において170℃での伸び率が38%以上とさらに良
好であることが判る。
As is apparent from Table 1, a solder material containing 5 to 15% by weight of Sb and 2 to 15% by weight of Ag, the balance being substantially Sn except for unavoidable impurities, is subjected to cold working. All of Examples 1 to 15 are excellent in cold workability, the elongation rate at 170 ° C is 25% or more, and the Sb content is 6 to 11% by weight and the Ag content is 6 to 12%. Examples 2 to 6, 10 to 12, 1% by weight
It can be seen that in No. 5, the elongation at 170 ° C. is 38% or more, which is even better.

【0020】これに対し、Sb、Agの含有量が本発明
の範囲外である比較例1〜6、Sn−Sb−Ni系組成
とした比較例7、Sn−Sb−Ag−Cu系組成とした
比較例8においては170℃での伸び率が何れも21%
以下であり、且つ比較例3、5、6においては伸線加工
が不可能であること、比較例7、8においては伸線加工
時の断線が頻繁に起こることが判る。
On the other hand, Comparative Examples 1 to 6 in which the contents of Sb and Ag are out of the range of the present invention, Comparative Example 7 in which the composition of Sn—Sb—Ni system, and Sn—Sb—Ag—Cu composition were used. In Comparative Example 8 in which the elongation rate at 170 ° C. is 21%
It is understood that the following is true, and in Comparative Examples 3, 5 and 6, wire drawing is impossible, and in Comparative Examples 7 and 8, wire breakage frequently occurs during wire drawing.

【0021】さらに比較例9のように、Sn、Sb、A
gの配合量が本発明の範囲内であっても、急冷凝固法に
より作製したワイヤーにおいては伸線加工性が極めて悪
く、素線状態での表面粗度もRa=70μm程度である
ことが判る。
Further, as in Comparative Example 9, Sn, Sb, A
It can be seen that even if the blending amount of g is within the range of the present invention, the wire produced by the rapid solidification method has extremely poor wire drawing workability and the surface roughness in the wire state is about Ra = 70 μm. .

【0022】次に、図1及び図2に示す実験例について
説明する。図1はSb含有量8.5重量%、Ag含有量
を0〜25重量%、残部が不可避不純物を除いて実質的
にSnからなる半田材料を冷間加工してなるテープ又は
ワイヤー状半田材料の170℃での伸び率を測定したグ
ラフである。図2はAg含有量7.5重量%、Sb含有
量を0〜15重量%、残部が不可避不純物を除いて実質
的にSnからなる半田材料を冷間加工してなるテープ又
はワイヤー状半田材料の170℃での伸び率を測定した
グラフである。
Next, the experimental example shown in FIGS. 1 and 2 will be described. FIG. 1 shows a tape or wire-shaped solder material obtained by cold-processing a solder material having an Sb content of 8.5% by weight, an Ag content of 0 to 25% by weight, and the balance being substantially Sn except for unavoidable impurities. It is the graph which measured the elongation rate in 170 degreeC of. FIG. 2 is a tape or wire-shaped solder material obtained by cold-processing a solder material that has an Ag content of 7.5% by weight, an Sb content of 0 to 15% by weight, and the balance is substantially Sn except unavoidable impurities. It is the graph which measured the elongation rate in 170 degreeC of.

【0023】図1から明らかなように、Ag含有量が2
〜15重量%の範囲内において伸び率が25%以上と良
好であり、且つAg含有量が6〜12重量%の範囲内に
おいて伸び率がさらに良好であることが判る。また図2
から明らかなように、Sb含有量が5〜15重量%の範
囲内において伸び率が25%以上と良好であり、且つS
b含有量が6〜11重量%の範囲内において伸び率がさ
らに良好であることが判る。
As is clear from FIG. 1, the Ag content is 2
It can be seen that the elongation rate is as good as 25% or more in the range of ˜15% by weight, and the elongation rate is even better in the range of Ag content of 6 to 12% by weight. See also FIG.
As is clear from the above, the elongation percentage is as good as 25% or more in the Sb content range of 5 to 15% by weight, and the S
It can be seen that the elongation is even better when the b content is in the range of 6 to 11% by weight.

【0024】[0024]

【発明の効果】以上説明したように、本発明よりなるテ
ープ又はワイヤー状半田材料は、170℃の状態に於け
る引張試験での伸び率が著しく優れていると共に冷間加
工性が良好であるため表面粗度にも優れている。従っ
て、半導体チップの発熱に伴うSn−Sb半田部材のク
ラックの発生を抑制すると共に、表面粗度にも優れたS
n−Sb系のテープ状又はワイヤー状の半田材料を提供
し得、例えば半導体チップとリードフレーム基板間の接
続等に用いて極めて好適な効果を奏するものである。
As described above, the tape or wire-shaped solder material according to the present invention has a remarkably excellent elongation in a tensile test at 170 ° C. and good cold workability. Therefore, it has excellent surface roughness. Therefore, it is possible to suppress the occurrence of cracks in the Sn—Sb solder member due to the heat generation of the semiconductor chip and to improve the surface roughness of the S-Sb solder member.
An n-Sb-based tape-shaped or wire-shaped solder material can be provided, and exhibits extremely suitable effects when used for connection between a semiconductor chip and a lead frame substrate, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sb含有量8.5重量%、Ag含有量を0〜2
5重量%、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなるテープ又はワイヤー
状半田材料の170℃での伸び率を測定したグラフであ
る。
FIG. 1 Sb content is 8.5% by weight, Ag content is 0 to 2
It is a graph which measured the elongation rate in 170 ° C of the tape or wire-like solder material which carried out cold processing of the solder material which consists of 5 weight% and the balance except Sn inevitable impurities, and consists essentially of Sn.

【図2】Ag含有量7.5重量%、Sb含有量を0〜1
5重量%、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなるテープ又はワイヤー
状半田材料の170℃での伸び率を測定したグラフであ
る。
FIG. 2 Ag content of 7.5% by weight, Sb content of 0 to 1
It is a graph which measured the elongation rate in 170 ° C of the tape or wire-like solder material which carried out cold processing of the solder material which consists of 5 weight% and the balance except Sn inevitable impurities, and consists essentially of Sn.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Sb5〜15重量%、Ag2〜15重量
%を含み、残部が不可避不純物を除いて実質的にSnか
らなり、表面粗度Ra=10μm以下であることを特徴
とするテープ又はワイヤー状半田材料。
1. A tape or wire containing 5 to 15% by weight of Sb and 2 to 15% by weight of Ag, the balance being substantially Sn except for unavoidable impurities, and having a surface roughness Ra of 10 μm or less. Solder material.
【請求項2】 Sb6〜11重量%、Ag6〜12重量
%を含み、残部が不可避不純物を除いて実質的にSnか
らなり、表面粗度Ra=10μm以下であることを特徴
とするテープ又はワイヤー状半田材料。
2. A tape or wire comprising 6 to 11% by weight of Sb and 6 to 12% by weight of Ag, the balance being substantially Sn except for unavoidable impurities, and having a surface roughness Ra of 10 μm or less. Solder material.
【請求項3】 Sb5〜15重量%、Ag2〜15重量
%を含み、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなることを特徴とするテ
ープ又はワイヤー状半田材料の製造方法。
3. A tape or wire shape, which is obtained by cold working a solder material containing 5 to 15% by weight of Sb and 2 to 15% by weight of Ag, the balance being substantially Sn except for unavoidable impurities. Solder material manufacturing method.
【請求項4】 Sb6〜11重量%、Ag6〜12重量
%を含み、残部が不可避不純物を除いて実質的にSnか
らなる半田材料を冷間加工してなることを特徴とするテ
ープ又はワイヤー状半田材料の製造方法。
4. A tape or wire shape, which is obtained by cold working a solder material containing 6 to 11% by weight of Sb and 6 to 12% by weight of Ag, the balance being substantially Sn except for unavoidable impurities. Solder material manufacturing method.
JP8185394A 1994-04-20 1994-04-20 Solder material and production thereof Pending JPH07284983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185394A JPH07284983A (en) 1994-04-20 1994-04-20 Solder material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185394A JPH07284983A (en) 1994-04-20 1994-04-20 Solder material and production thereof

Publications (1)

Publication Number Publication Date
JPH07284983A true JPH07284983A (en) 1995-10-31

Family

ID=13758053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185394A Pending JPH07284983A (en) 1994-04-20 1994-04-20 Solder material and production thereof

Country Status (1)

Country Link
JP (1) JPH07284983A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155268A (en) * 2008-12-27 2010-07-15 Senju Metal Ind Co Ltd Bi-Sn-BASED REEL-WOUND SOLDER WIRE, AND METHOD FOR MANUFACTURING SOLDER WIRE
WO2014017568A1 (en) * 2012-07-26 2014-01-30 住友金属鉱山株式会社 Solder alloy
KR20160006667A (en) 2013-05-10 2016-01-19 후지 덴키 가부시키가이샤 Semiconductor device and method for manufacturing semiconductor device
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
JPWO2015125855A1 (en) * 2014-02-24 2017-03-30 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
EP3492217A4 (en) * 2017-03-17 2019-06-05 Fuji Electric Co., Ltd. Solder material
US10504868B2 (en) 2016-06-16 2019-12-10 Fuji Electric Co., Ltd. Solder joining

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155268A (en) * 2008-12-27 2010-07-15 Senju Metal Ind Co Ltd Bi-Sn-BASED REEL-WOUND SOLDER WIRE, AND METHOD FOR MANUFACTURING SOLDER WIRE
WO2014017568A1 (en) * 2012-07-26 2014-01-30 住友金属鉱山株式会社 Solder alloy
GB2519276A (en) * 2012-07-26 2015-04-15 Sumitomo Metal Mining Co Solder alloy
KR20160006667A (en) 2013-05-10 2016-01-19 후지 덴키 가부시키가이샤 Semiconductor device and method for manufacturing semiconductor device
US10157877B2 (en) 2013-05-10 2018-12-18 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
JPWO2015125855A1 (en) * 2014-02-24 2017-03-30 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
CN107427968A (en) * 2015-09-17 2017-12-01 富士电机株式会社 Semiconductor device solderable material
JPWO2017047289A1 (en) * 2015-09-17 2018-01-25 富士電機株式会社 Solder materials for semiconductor devices
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
US10727194B2 (en) 2015-09-17 2020-07-28 Fuji Electric Co., Ltd. Solder material for semiconductor device
JP2021142568A (en) * 2015-09-17 2021-09-24 富士電機株式会社 Solder material for semiconductor device
US11145615B2 (en) 2015-09-17 2021-10-12 Fuji Electric Co., Ltd. Solder material for semiconductor device
US10504868B2 (en) 2016-06-16 2019-12-10 Fuji Electric Co., Ltd. Solder joining
EP3492217A4 (en) * 2017-03-17 2019-06-05 Fuji Electric Co., Ltd. Solder material
US11850685B2 (en) 2017-03-17 2023-12-26 Fuji Electric Co., Ltd. Solder material

Similar Documents

Publication Publication Date Title
JP2599890B2 (en) Lead-free solder material
US6179935B1 (en) Solder alloys
KR100829465B1 (en) Lead-free solder, solder joint product and electronic component
US6689488B2 (en) Lead-free solder and solder joint
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JPH10144718A (en) Tin group lead free solder wire and ball
CN114245765A (en) Lead-free and antimony-free solder alloy, solder ball, ball grid array and solder joint
JP5861559B2 (en) Pb-free In solder alloy
EP0761831B1 (en) Thin gold alloy wire for bonding
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
TWI765570B (en) Lead-free and antimony-free solder alloys, solder balls, and solder joints
JPH07284983A (en) Solder material and production thereof
EP0224068B1 (en) Improved storage life of pb-in-ag solder foil by sn addition
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
US4734256A (en) Wetting of low melting temperature solders by surface active additions
JP2000061585A (en) Method for casting solder material
JPH081372A (en) Composite soldering material and its manufacture
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2910527B2 (en) High temperature solder
JPS586793A (en) Brazing filter metal
JPH10134698A (en) Fuse material
JP2001009588A (en) Lead-tin solder material
JPS6188996A (en) Sn-sb alloy solder
JP3137358B2 (en) Electronic components
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device