JPH08136251A - 侵入物検出装置および侵入物検出方法 - Google Patents

侵入物検出装置および侵入物検出方法

Info

Publication number
JPH08136251A
JPH08136251A JP6297976A JP29797694A JPH08136251A JP H08136251 A JPH08136251 A JP H08136251A JP 6297976 A JP6297976 A JP 6297976A JP 29797694 A JP29797694 A JP 29797694A JP H08136251 A JPH08136251 A JP H08136251A
Authority
JP
Japan
Prior art keywords
image
image data
intruder
image pickup
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6297976A
Other languages
English (en)
Other versions
JP3153718B2 (ja
Inventor
Shintaro Nomura
慎太郎 野村
Satoshi Tsuchiya
悟志 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittan Co Ltd
Original Assignee
Nittan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittan Co Ltd filed Critical Nittan Co Ltd
Priority to JP29797694A priority Critical patent/JP3153718B2/ja
Publication of JPH08136251A publication Critical patent/JPH08136251A/ja
Application granted granted Critical
Publication of JP3153718B2 publication Critical patent/JP3153718B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Burglar Alarm Systems (AREA)
  • Image Analysis (AREA)

Abstract

(57)【要約】 【目的】 目盛棒などの特別な道具を別途設置したりせ
ずとも、侵入物に関する確実な情報を検出することが可
能である。 【構成】 この侵入物検出装置は、所定の視野角を有
し、該視野角の範囲の画像を撮像する撮像部1と、該撮
像部1の設置条件を入力する設置条件入力部2と、撮像
部1により撮像された画像データに基づき侵入物の検出
に関する画像処理演算を行なう演算部3と、侵入物の検
出結果を出力する出力部4と、電源を供給する電源部5
とを有しており、上記設置条件としては、撮像部1の設
置された高さと、撮像部1の設置角度とを入力するだけ
で良い。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、特定の監視領域内へ侵
入した侵入者などの侵入物を検出する侵入物検出装置お
よび侵入物検出方法に関する。
【0002】
【従来の技術】従来、侵入物を検知するのに、特開昭6
3−226799号に示されているような侵入物認識シ
ステムが知られている。この侵入物認識システムは、監
視区域を視野内に含むカメラと、このカメラに接続さ
れ、カメラからの画像を処理して図形認識を行なう画像
処理装置とを有し、前記監視区域内に侵入した侵入対象
物の位置と大きさとを認識する場合に、カメラの視野内
に配置された目盛棒と、監視区域;侵入対象物;カメラ
および前記目盛棒の幾何学的相対位置関係から前記侵入
対象物の位置と大きさとを算出するようになっている。
【0003】この侵入物認識システムでは、カメラから
一定距離に目盛棒を設け、目盛棒の画像と監視区域の画
像とを共に画像入力することにより、侵入物とカメラ;
目盛棒の目盛の幾何学的関係から侵入物の位置と大きさ
とを知ることができる。すなわち、発見物(侵入者等)の
占める目盛の目盛棒の上限および下限の目盛がわかれば
演算手段により発見物の位置と大きさとを算出すること
ができる。
【0004】
【発明が解決しようとする課題】しかしながら、上述し
た従来の侵入物認識システムでは、カメラから一定の距
離に目盛棒を設けなければならないという問題があっ
た。すなわち、建物内の部屋の構造によっては目盛棒を
配置することができない場合がある。また、目盛棒を配
置できる場合でも、目盛棒を監視領域内の所定位置に正
しく配置しなければならず、また、美観を損ねるなどの
問題があった。
【0005】本発明は、目盛棒などの特別な道具を別途
設置したりせずとも、侵入物に関する確実な情報を検出
することの可能な侵入物検出装置および侵入物検出方法
を提供することを目的としている。
【0006】
【課題を解決するための手段および作用】上記目的を達
成するために、本発明は、所定の視野角の範囲の画像を
所定の撮像手段により撮像した画像データに基づき、侵
入物の検出に関する画像処理演算を行なう際、この画像
処理演算において、撮像手段の視野角と撮像手段の設置
条件とを用いるようになっている。これにより、目盛棒
などの特別な道具を別途設置したりせずとも、撮像手段
の視野角と設置条件だけにより、侵入物(侵入者)に関す
る確実な情報を検出することができる。
【0007】
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明に係る侵入物検出装置の一実施例の
構成図である。図1を参照すると、本実施例の侵入物検
出装置は、所定の視野角を有し、該視野角の範囲の画像
を撮像する撮像部1と、該撮像部1の設置条件を入力す
る設置条件入力部2と、撮像部1により撮像された画像
データに基づき侵入物の検出に関する画像処理演算を行
なう演算部3と、侵入物の検出結果を出力する出力部4
と、電源を供給する電源部5とを有している。
【0008】図1の例では、撮像部1は、撮像素子(例
えばCCDセンサなど)11と、所定の視野角(画角)を
有する光学手段(例えば光学レンズ)12とを有してい
る。図2には、撮像素子11としてのCCDセンサに光
学レンズ12が組み込まれた撮像部1の具体例(平面図)
が示されている。なお、図2において、光学レンズ12
とCCDセンサ11とは重なり合った状態で示されてい
る。また、図2において、符号13は動作灯であり、C
CDセンサ11に電源部5から電源が供給され、CCD
センサ11が作動しているときに、作動灯13が点灯す
るようになっている。
【0009】図3は建物内の部屋の一例を示す透視図で
あって、撮像部1は、図3に示すように、例えば、建物
内の所定の部屋101の天井102あるいは壁面103
の高い位置などに設置されるようになっており、撮像素
子11によって撮像される画面は、光学レンズ12の視
野角(画角)と撮像部1の設置条件(部屋101の床10
4からの撮像部1の高さh,および撮像部1の設置角度
(傾き角度)θ)とによって定められる。従って、部屋1
01内の所望の監視区域を監視しようとする場合、光学
レンズ12に所定の視野角のものを用い、また、部屋1
01内の所定の位置に所定の角度θで撮像部1を予め設
置する必要がある。
【0010】図4(a),(b)はそれぞれ図3のx軸方
向,y軸方向の断面図であり、図4(a),(b)には、部
屋101内の所望の監視区域105を監視するように、
所定の視野角θ0x0,θy0)をもつ撮像部1が所定の
位置に所定の傾き角度(鉛直線zからの傾き角度)θ
x,θy)で設置された状態が示されている。なお、θ
x,θyはそれぞれ傾き角度θのx軸方向成分,y軸方向
成分であり、θx0,θy0はそれぞれ視野角θ0のx軸方
向成分,y軸方向成分である。
【0011】また、図5には、撮像部1が図4(a),
(b)に示すように設置されたときに、CCDセンサ11
によって撮像された画面の一例が示されている。図5の
例では、この画面は、例えば、CCDセンサの画素数
(素子数)N×Mに対応させて、x軸方向,y軸方向にそ
れぞれN個,M個(例えば60個,60個)の画素に分け
られている。すなわち、撮像された画面の1画素がCC
Dセンサの1画素に対応したものとなっている。
【0012】なお、CCDセンサには、数10万画素程
度の高解像度のものから、数10画素程度の低解像度の
ものがあり、これらのいずれのものをも用いることがで
きる。この場合、低解像度のCCDセンサを用いるとき
には、このCCDセンサの各画素の出力をそのまま処理
対象である画像データとすることができ、この場合、画
面の各画素は、上述のように、CCDセンサの各画素と
一対一対応となる。また、高解像度のCCDセンサを用
いるときには、このCCDセンサの各画素出力をそのま
ま処理対象である画像データとすることもできるが、以
後の画像処理を簡単なものとするため、撮像部1におい
てあるいは演算部3において、CCDセンサの複数の画
素出力をまとめて(例えばこれら複数の画素出力の平均
をとって)、1画素としたものを画像データとすること
もできる。例えば、CCDセンサが64×64画素,す
なわち4096画素のものである場合、4画素を1画素
に圧縮することで(例えば4画素のレベルの平均値をと
って、これを1画素のレベルにすることで)、16×1
6画素,すなわち256画素の画像データとすることが
でき、画像処理に要する時間を短縮することができる。
但し、その分、解像度は低下する。
【0013】演算部3は、このように撮像された画面を
例えば定期的に(一定の時間間隔Tで)監視し、基本的に
は、現時点の画面の画像データと前時点の画面の画像デ
ータとを比較し、現時点の画面の画像データと前時点の
画面の画像データとの間に変化した部分があるときに、
この変化した部分が侵入物によるものであるか否かの判
断処理等を行なうようになっている。
【0014】図1の例では、演算部3は、撮像部1から
のアナログ画像データ(すなわち例えばCCDセンサ1
1の各画素出力)に対し、アナログ−デジタル変換を行
なうA/D変換器20と、デジタル変換された画像デー
タに基づき上記監視処理,判断処理等を行なうプロセッ
サ(CPU)21と、プロセッサ21の処理プログラム等
が記憶されているROM22と、プロセッサ21のワー
クエリアとして機能するRAM23とを有し、上記処理
に用いられる現時点の画面の画像データ,前時点の画面
の画像データなどはRAM23に格納されるようになっ
ている。
【0015】なお、上記A/D変換器20は、プロセッ
サ21の処理能力等に応じ、アナログ画像データを所定
の閾値により2値のデジタル画像データに変換する機能
を有しているものであっても良いし、アナログ画像デー
タを例えば焦点座標位置の輝度(階調レベル)を閾値とし
て多値のデジタル画像データに変換する機能を有するも
のであっても良い。すなわち、プロセッサ21が多値の
デジタル画像データに対する処理能力を有している場合
には、多値のデジタル画像データに変換する機能を有す
るA/D変換器が用いられることで、より精度良く侵入
物(侵入者)に関する検知を行なうことができるが、プロ
セッサ21が2値のデジタル画像データに対する処理能
力しか有していない場合には、2値のデジタル画像デー
タに変換する機能を有するA/D変換器が用いられる
か、あるいは、多値のデジタル画像データに変換する機
能を有するA/D変換器が用いられる場合、さらに多値
のデジタル画像データを2値のデジタル画像データに変
換する必要がある。
【0016】以下の説明では、便宜上、撮像部1からの
アナログ画像データは、最終的に2値の画像データに変
換され、プロセッサ21は、2値の画像データに対して
所定の画像処理演算を行なうものとする。また、画像デ
ータが変化したか否かを判断するための現時点の画像デ
ータと前時点の画像データとの比較は、これらの差をと
って、差分画像データとすることによってなされるもの
とする。なお、この場合に、画像データが2値化されて
いることによって、この差分画像データは、変化がない
ときには全ての画素の値が“0”であり、変化がある部
分についてのみ“0”以外の値となることから、これに
より、変化した部分があるか否かを即座に判断すること
ができる。
【0017】ところで、演算部3において、画面の変化
した部分が侵入物によるものであるか否かの判断等を確
実に行なうために、演算部3では、撮像部1の設置条件
(撮像部1の高さhおよび撮像部1の傾き角度θ(θx
θy))が必要であり、このため、本実施例では、撮像部
1の設置条件を入力する設置条件入力部2が設けられて
いる。
【0018】設置条件入力部2は、例えば、撮像部1の
高さ(すなわち床104からの距離)hを自動測定する距
離計、および/または、撮像部1の鉛直方向zからの傾
き角度θ(θx,θy)を自動測定する傾斜計として構成す
ることができる。この場合、これらの測定器を撮像部1
に予め取り付け、これらの測定器からの出力を演算部3
に入力させることで、設置条件を自動入力することがで
きる。なお、この場合上記高さ(距離)hを測定する装置
すなわち距離計としては、超音波あるいはレーザ光を床
104に向けて出射した時点から、床104により反射
された超音波あるいはレーザ光を受信する時点までの時
間を計測することによって床104までの距離を測定す
る装置などを用いることができる。また、傾斜計として
は、例えば米国ルーカス社製の低価格・高性能小型化傾
斜角センサなどを用いることができる。
【0019】また、このような距離計,傾斜計のかわり
に、設置条件入力部2を、撮像部1の高さhおよび設置
角度θ(θx,θy)をアナログ電圧として入力させるため
のアナログ電圧調整器として構成することもできる。こ
の場合、オペレータがアナログ電圧調整器を操作して
(例えばボリュームを操作して)、撮像部1の高さhおよ
び設置角度θ(θx,θy)にそれぞれ対応したアナログ電
圧に調整することで、高さhおよび設置角度θ(θx,θ
y)をアナログ電圧として演算部3に入力させることがで
きる。
【0020】あるいは、設置条件入力部2を、撮像部1
の高さhおよび設置角度θ(θx,θy)をデジタル情報と
して入力させるための例えば8ビットのディップスイッ
チとして構成することもできる。この場合、オペレータ
がディップスイッチを操作して高さhおよび角度θ
x,θy)を設定することで、高さhおよび角度θ
x,θy)をデジタル情報として、演算部3に入力させ
ることができる。
【0021】演算部3は、設置条件入力部2から入力さ
れた設置条件に基づき、先ず、図5に示すような画面上
において、撮像部1の直下の位置(xC,yC)がどこにあ
るかを算出し、次いで、撮像部1の設置位置から画像デ
ータの変化した部分CHに対応する対象物OBJ(図1
参照)の位置までの角度ψに関する情報と、撮像部1の
設置位置から画像データの変化した部分に対応する対象
物OBJまでの距離LXYと、画像データの変化した部分
に対応する対象物OBJの大きさとを算出し、これらの
算出情報等に基づいて、画像データの変化した部分に対
応する対象物OBJが侵入物(侵入者)であるか否かを判
断するようになっている。
【0022】ここで、画面上における撮像部1の直下の
位置(xC,yC)の算出は、次のようになされる。すなわ
ち、いま例えば図4(a),(b)に示すように、撮像部1
がx軸方向,y軸方向にそれぞれ視野角θx0,θy0を有
し、x軸方向に傾き角θx,y軸方向に傾き角θyで傾い
て設置されているとするとき、図5に示すような画面の
x軸,y軸上での1画素(1区画)の角度dθx,dθ
yは、それぞれ次式で計算される。
【0023】
【数1】dθx=θx0/N dθy=θy0/M
【0024】なお、N,Mはそれぞれx軸方向,y軸方
向の画素数(区画数)である。x軸,y軸上での1画素
(1区画)の角度dθx,dθyが数1により計算される
と、画面上における撮像部1直下の位置(xC,yC)は次
式により求められる。
【0025】
【数2】xC=N/2−θx/dθxC=M/2−θy/dθy
【0026】図5には、このように求められた画面上で
の撮像部1直下の位置(xC,yC)が示されている。な
お、図5からもわかるように、傾き角θx,θyが0のと
き、すなわち、撮像部1が傾いていないときには、その
直下の位置(xC,yC)は画面の中央になり、傾き角θx
あるいはθyが大きい程、(xC,yC)は画面の縁に近く
なる。
【0027】このようにして、画面上における撮像部1
直下の位置(xC,yC)が算出されると、これを基準にし
て、撮像部1の設置位置から画像データの変化した部分
に対応する対象物OBJの位置までの角度ψ(鉛直線z
に対する角度)に関する情報を求めることができる。よ
り詳細には、いま例えば、前時点では対象物OBJが存
在せず前時点での画面が図6(a)に示すようなものであ
り、現時点において図1のように対象物OBJが出現し
現時点での画面が図6(b)に示すようなものとなって、
画面上で画像データの変化した部分が符号CHの部分で
あると検出されたとき、すなわち、例えば図6(b)の画
像データと図6(a)の画像データとの差をとって図6
(c)に示すような差分画像データが得られ、この差分画
像データにおいて“0”以外の画素値をもつ部分(図6
(c)の例では黒画素の部分)CHが画像データの変化し
た部分として検出されたとき、この変化した部分CHに
対応する実際の対象物OBJまでの角度ψに関する情報
を次のように求めることができる。
【0028】すなわち、画面上において画像データの変
化した部分CHが、図6(c)に示すように、(x1,y1)
〜(x2,y2)の範囲である場合、撮像部1の設置位置か
ら画像データの変化した部分CHに対応する実際の対象
物OBJまでのx軸方向の角度範囲ψx1〜ψx2,y軸方
向の角度範囲ψy1〜ψy2は、それぞれ次式のようにして
求まる。
【0029】
【数3】ψx1=dθx×(x1−xC) ψx2=dθx×(x2−xC) ψy1=dθy×(y1−yC) ψy2=dθy×(y2−yC)
【0030】これにより、撮像部1の設置位置から対象
物OBJまでの距離LXY(対象物OBJの最も遠い部分
までの距離)を次式のようにして求めることができる。
【0031】
【数4】LXY=(h/cosψx2)×(1/cosψy2)
【0032】また、これにより、対象物OBJのx軸方
向,y軸方向の実際の大きさ|X|,|Y|と、対象物
OBJの実際の大きさSとを、次式のように算出するこ
とができる。
【0033】
【数5】|X|=LXY×(ψx2−ψx1) |Y|=LXY×(ψy2−ψy1) S=|X|×|Y|
【0034】このように、対象物OBJの大きさに関す
る情報として、S,|X|,|Y|を得ることができ、
対象物OBJの位置に関する情報として、LXY,ψを得
ることができる。また、対象物OBJの概略的な形状に
関する情報として、例えば|X|と|Y|との比|Y|
/|X|を得ることができる。
【0035】なお、上述したような対象物OBJの各情
報は、部屋101の監視区域105となるべき床104
部分が平らな平面であり、対象物OBJが床104の平
らな平面に沿ったものであるとの前提の下で得られ、監
視区域105となるべき床104の部分に階段等の凹凸
がある場合には、これに応じた補正を対象物OBJの各
情報に施す必要がある。なお、以下では、説明の便宜
上、監視区域105となるべき床104部分は、平らな
平面であるとする。
【0036】また、上述の例では、撮像部1は、任意の
傾き角度θ(θx,θy)で取り付けることができるとした
が、必要に応じ、この傾き角度θ(θx,θy)に制約をも
たせることもできる。すなわち、撮像素子11にCCD
素子が用いられる場合、CCD素子は一般に長方形状の
ものであり、x軸方向あるいはy軸方向のいずれか一方
が他方に比べて長く、画素数の多いものとなっている。
いま例えばx軸方向の長さが長くなっている場合、x軸
方向の傾き角度θxが“0゜”でないとき(すなわち、こ
のCCD素子のx軸が床104と平行でないとき)に
は、x軸方向の実際の監視エリアに不足が生じたり、あ
るいは、対象物OBJの特徴パラメータ(大きさ等)の算
出が複雑となって、特徴パラメータに誤差が生じたりす
る恐れがあり、また、対象物OBJをモニタ表示した場
合、これを見ずらいなどの問題が生じることがある。従
って、撮像素子11にCCD素子が用いられる場合、上
記例ではCCD素子のx軸を床と平行になるよう(すな
わち、傾き角度θxが“0゜”となるよう)、撮像部1を
取り付けるのが良い。換言すれば、上記のような例の場
合、撮像素子1の鉛直線zからの傾き角度θのx軸方向
成分θx,y軸方向成分θyの少なくともいずれか一方を
“0゜”とするのが良い。このときには、xCの位置,
あるいはyCの位置は、撮像画面x軸上の中心,あるい
はy軸上の中心となる。
【0037】演算部3は、このように、画面の画像デー
タを定期的に(例えば一定の時間間隔で)収集する毎に、
画像データの変化をその都度監視し、画像データに変化
があったとき、この変化した場合に対応する対象物につ
いて上記のような情報を求め、さらにこの対象物の変化
の様子を調べてこの対象物が侵入物(例えば侵入者)か否
かを判断するようにしている。
【0038】この判断処理は、侵入物が侵入者(人間)で
ある場合には、画面(画像イメージ)上で、人間の画像が
例えば図7(a),(b)のように移動する(時間的に変化す
る)ことに着目してなされる。なお、図7(a)は、人間
がほぼx軸方向に沿って移動しているときの画面の変化
を説明するための図であり、図7(b)は、人間がほぼy
軸方向に沿って(y軸方向からいくらか斜め方向に)移動
しているときの画面の変化を説明するための図である。
【0039】図7(a),(b)から、監視領域内に人間が
侵入し移動する場合には、画像の変化は次のような特徴
を有していることがわかる。すなわち、移動中のある一
時点において画像の変化した部分の形状および大きさが
人間として妥当なものとなること(例えば、大きさ(高さ
HG)が1m〜2m程度であること、その形状がある程
度の複雑さを有していることなど)、また、撮像部1と
の距離LXYが小さくなると(撮像部1に近づくと)、画像
の変化した部分の大きさが大きくなり、撮像部1との距
離LXYが大きくなると(撮像部1から遠ざかると)、画像
の変化した部分の大きさが小さくなること、また、図7
(a)から明かなように、撮像部1の直下の位置(xC,y
C)を通るy軸線上に位置するとき、人間(直立状態)の画
像は垂直性(傾斜角度ξ=0)がみられ、位置(xC,yC)
を通るy軸線からずれて位置するとき、人間(直立状態)
の画像は傾斜すること(ξ≠0)、また、移動速度が、撮
像部1との距離LXYに対し妥当であること(例えば、距
離LXYに応じて0m/秒〜2m/秒の範囲内にあるこ
と)、等の特徴を有している。
【0040】この特徴に着目し、演算部3は、例えば、
画像データの変化した部分に対応した対象物OBJのx
軸方向,y軸方向の大きさ|X|,|Y|と全体の大きさS
とから、この部分の形状および大きさが人間として妥当
なものであるか否か(例えば高さHGが1m〜2m程度
であるか否か)、また、距離LXYが大きくなるとこの部
分の大きさが小さくなり(撮像部1よりも遠ざかると、
大きさが小さくなり)、距離LXYが小さくなると、この
部分の大きさが大きくなる(撮像部1に近づくと、大き
さが大きくなる)か否か、また、所定の位置で所定の垂
直性,傾斜角度ξを有しているか、また、変化速度が距
離LXYに対し妥当なものであるか否か、などを判断する
ようになっている。なお、垂直性の判断は、例えば人間
らしい垂直性を有している否か(すなわち、人間の直立
画像パターンとして不自然でない垂直性を有しているか
否か)によって行なうことができる。また、傾斜角度ξ
は、図7(b)に示すように、座標(xC,yC)を中心とし
た対処物OBJの傾斜角度ξとして検出することができ
る。
【0041】なお、上述の例では、画像データの変化し
た部分が1つの画素連結領域CHだけであり、従って、
1つの対象物OBJだけが検出される場合について述べ
たが、画像データの変化した部分が図8に示すように複
数の画素連結領域CH1〜CHnであって、複数の対象物
OBJ1〜OBJnが検出される場合には、各画素連結領
域CH1〜CHn,各対象物OBJ1〜OBJnのそれぞれ
について上述のような演算処理がなされ、各対象物OB
1〜OBJnについて形状,大きさの情報等が求められ
る。
【0042】また、画像データの変化した部分に対応す
る対象物の形状に関する情報の取得については、上記の
ような手法(|X|と|Y|との比を用いる手法)のかわり
に、あるいは上記のような手法と共に、例えばパターン
認識の手法を用いることができる。すなわち、例えば、
現時点の画像データと前時点の画像データとを比較した
結果の差分画像データから、画素の値が“0”以外の画
像データの変化した部分を抽出し、この部分について所
定の特徴パラメータを抽出することで、画像データの変
化した部分に対応する対象物の形状に関する情報を知得
することができる。
【0043】具体的には、ある時点において、画像デー
タの変化した部分が例えば図9(a)のようなものである
とき(なお、図9(a)の例は差分2値化画像となってお
り、図9(a)において白画素は変化していない部分、黒
画素が変化した部分である)、図9(b)に示すように、
この差分2値化画像において、所定画素が連結している
領域(図9(a)の例において黒画素が連結している領域)
CH1,CH2内の画素に同じラベル番号を付すラベリン
グ処理を行ない、次いで、同じラベル番号“1”を付さ
れた画素連結領域CH1に対して、その面積R1(画素連
結領域CH1内の画素の総数),周囲長L1を特徴パラメ
ータとして抽出し、同様に、同じラベル番号“2”の付
された画素連結領域CH2に対しても、その面積R2(画
素連結領域CH2内の画素の総数),周囲長L2を特徴パ
ラメータとして抽出する。
【0044】ここで、各画素連結領域CH1,CH2の面
積R1,R2は、2値化画像を図10(a)に示すように順
次に走査するときに、ラベル番号が“1”または“2”
の画素が生起する毎に、その画素連結領域CH1または
CH2に対応して設けられている例えばカウンタを1つ
ずつ歩進することで、計数することができる。すなわ
ち、画素連結領域CH1内のラベル番号が“1”の各画
素を走査する毎に、画素連結領域CH1に対応したカウ
ンタのカウント値が1つ歩進され、全ての走査が終了し
たときのこのカウンタのカウント値が連結領域CH1
面積R1となる。同様にして、画素連結領域CH2の面積
2も、連結領域CH2に対応したカウンタにより、上記
全ての走査が終了したときに得ることができる。
【0045】また、各画素連結領域CH1,CH2の周囲
長L1,L2は、例えば、以下のような手法により計数で
きる。すなわち、1つの手法として、2値化画像を図1
0(a)に示すように順次に走査するときに、いま着目し
ている画素を中心とする図10(b)に示すような例えば
3×3の大きさのマスクの各画素M11〜M33が輪郭とし
ての条件を満たしているか否か(例えば図11(a)乃至
(h)のいずれかに該当するか否か)をその都度調べ、輪
郭としての条件を満たすときに、その画素連結領域に対
応して設けられている例えばカウンタを1つ歩進するこ
とで、各連結領域CH1,CH2の輪郭画素数C1,C2
計数することができる。例えば、いま着目している画素
22が画素連結領域CH1に属し、マスク内の各画素M
ijが図11(a)乃至(h)のいずれかに示すような状態と
なるとき、画素M22は輪郭画素であると判断され、この
場合、画素連結領域CH1に対応したカウンタのカウン
ト値が1つ歩進され、全ての走査が終了したときのこの
カウンタのカウント値が連結領域CH1の輪郭画素数C1
となる。同様にして、連結領域CH2の輪郭画素数C
2も、連結領域CH2に対応したカウンタにより、上記全
ての走査が終了したときに得ることができる。なお、図
11(a)乃至(h)において、符号“×”は、“don'
t care”を表わしている。すなわち、この部分
は、白画素でも黒画素でも良いことを表している。この
ような走査および輪郭画素数の計数とともに、1つの連
結領域,例えばCH1において、全輪郭画素数C1のう
ち、いま注目している輪郭画素と次の輪郭画素とが真直
ぐにつながっている(例えば後述の図13(a)に示すよ
うな場合の)輪郭画素数がC1aとして計数され、いま注
目している画素と次の輪郭画素とが斜めにつながってい
る(例えば後述の図13(b)に示すような場合の)輪郭画
素数が(C1−C1a)として計数されるとき、この連結領
域CH1の周囲長L1は、[C1a+21/2・(C1−C1a)]
・αとして求められる。ここで、αは、隣接画素間距離
である。
【0046】また、周囲長Lを求めるのに、画素連結領
域の境界部を順次に追跡する手法を用いることも可能で
ある。すなわち、図12(a)に示すように、画像を走査
し、追跡済みでない境界点画素を探す。境界点画素が検
出されると、図12(b)に示すような3×3のマスクM
ijを用い、この境界点画素が孤立点でないか否かを調べ
る。すなわち、いま注目している境界点画素M22の近傍
の8個の画素が全て白画素(“0”)である場合には、こ
の境界点画素は孤立点であると判断され、追跡を終了す
る。これに対し、いま注目している境界点画素M22が孤
立点でないときには、図12(b)に示すように、この境
界点画素(いま注目している境界点画素)の近傍の8個の
画素を順次に(例えば反時計回りに)調べて、8個の近傍
画素のうち“0”から“1”に変わる画素を次の境界点
画素として探す。なお、図12(b)には、図12(a)の
符号Fで示す部分にマスクMijが設定されているときの
マスクMijの状態が示されており、この状態では、いま
注目している境界点画素M22の近傍の8個の画素を
13,M12,M11,M21,M31,M32,M33の順序で調
べるとき、画素M33が“0”から“1”に変わる画素と
して検出され、従って、M33が次の境界点画素として検
出される。このようにして次の境界点画素が検出される
と、マスクMijの中心M22が次の境界点画素に設定され
るように、マスクMijをシフトするという仕方で、次の
境界点画素を順次に追跡し、次の境界点画素が追跡を開
始した最初の境界点画素となったとき、画素連結領域の
境界を一周したことになるので、追跡を終了する。例え
ば、図12(a)に示すような走査によって、最初の境界
点画素Daが検出されると、この境界点画素Daから図1
2(b)のマスクMijを用いて境界点の追跡を開始し、境
界を一周して、境界点画素Daに戻ったときに追跡を終
了する。
【0047】このような追跡において、周囲長Lは、い
ま注目している境界点画素と次の境界点画素との距離を
追跡ごとに順次に加算することで求められる。なお、い
ま注目している境界点画素と次の境界点画素との間の距
離は、いま注目している境界点画素と次の境界点画素と
の間の関係が例えば図13(a)のようなものである場合
には、1倍して計算され、また、例えば図13(b)のよ
うなものである場合(すなわち、輪郭線(画素)のつなが
り方が斜め方向である場合)には、21/2倍して計算され
る。
【0048】また、図9(a),(b)のように、画素連結
領域が複数存在する場合には、例えば、1つの画素連結
領域について、これの境界点を一周した位置から、次の
画素連結領域を求めて右側に走査し、境界点を見出した
ときに、次の画素連結領域についても同様に追跡を行な
い、各画素連結領域CH1,CH2の周囲長L1,L2を求
めることができる。
【0049】このようにして、画素連結領域CH1,C
2について、それぞれ、面積,周囲長が得られると、
画素連結領域CH1,CH2,すなわち対象物OBJ1
OBJ2の形状に関する情報を次式によって取得するこ
とができる。
【0050】
【数6】e=4π(面積)/(周囲長)2
【0051】すなわち、対象物OBJ1,OBJ2の形状
に関する情報e1,e2を次式によって取得することがで
きる。
【0052】
【数7】e1=4πR1/(L1)22=4πR2/(L2)2
【0053】数6からわかるように、対象物OBJが円
形に近いほど、eの値は、“1.0”に近づき、対象物
OBJが複雑になるほど、eの値は、“0.0”に近く
なる。従って、eの値から対象物OBJの形状の複雑さ
に関する情報を得ることができ、この情報を、前述した
ような手法により得られた形状情報(高さ情報HG)のか
わりに形状に関する情報として用いるか、あるいは、前
述したような手法により得られた形状情報(高さ情報H
G)にさらに加味して用いることができる。
【0054】なお、上記例では、画像データを2値化し
たが、前述のように、プロセッサ21が多値のデジタル
画像データを処理する能力がある場合には、上記のよう
な処理を多値のデジタル画像データについて行なうこと
ができ、この場合には、形状に関する情報をより精度良
く得ることができる。
【0055】また、演算部2は、電源部5(図1参照)の
電源が投入された時点から、上述のような監視,演算処
理を行なうこともできるが、プロセッサ21の負荷を軽
減するため、例えばパッシブセンサや窓出入口用マグネ
ットセンサなどのセンサ6(図1参照)をさらに用い、通
常はパッシブセンサや窓出入口用マグネットセンサなど
のセンサ6に侵入検知(侵入監視)を行なわせ、該センサ
6により侵入が検知され、この検知情報が演算部2に通
知されたときに、これをトリガにして演算部2が上述の
ような監視,演算処理を行なうように構成されていても
良い。
【0056】この場合には、通常は、プロセッサ21が
画像処理に専有されてしまうことを回避し、その空き時
間を利用してプロセッサ21に他の処理を行なわせるこ
とができ、プロセッサ21の処理効率(スループット)を
向上させることができる。
【0057】いずれにしても、本実施例では、目盛棒な
どの特別な道具を別途設置したりせずとも、撮像部1の
設置条件だけにより、画像データの変化した部分に対応
する対象物OBJの大きさ,形状,撮像部1からの距
離,角度等の各種の情報を得ることができ、これら各種
の情報に基づき、対象物OBJが侵入物(侵入者)である
か否かの判断等を行なうことができる。
【0058】次にこのような構成の侵入物検出装置の処
理動作例を図14のフローチャートを用いて説明する。
なお、図14の処理動作例では、通常は、パッシブセン
サや窓出入口用マグネットセンサなどのセンサ6に侵入
を検知させ、センサ6が侵入を検知した場合に、この検
知情報をトリガとして、プロセッサ21は監視,演算処
理を開始するものとしている。
【0059】図14を参照すると、プロセッサ21は、
先ず、初期化処理を行なう。例えばワークエリアとして
機能するRAM23等の初期化を行なう(ステップS
1)。次いで、センサ6から侵入の検知情報が通知され
たか否かを判断し(ステップS2)、センサ6から侵入の
検知情報が通知された場合には、例えばプロセッサ21
に内蔵されているタイマ(図示せず)を駆動して侵入検知
情報が通知された時点からの時間を計時させるととも
に、画像監視処理を開始する(ステップS3)。
【0060】すなわち、プロセッサ21は、撮像部1か
らの画像データ(より詳しくはA/D変換器20からの
デジタル画像データ)を例えば所定の時間間隔Tごとに
取り込む(ステップS3)。例えば図15に示すように、
画像処理の開始時刻がt1であり、時刻t1,t2,t3
…の画像データがDij(t1),Dij(t2),Dij(t3),
…であるとき、プロセッサ21は、各時刻t1,t2,t
3,…に画像データDij(t1),Dij(t2),Dij(t3),
…を取り込み、RAM23に格納する。
【0061】このとき、RAM23の容量を節約するな
どのために、基本的には、時間的に隣接する2つの時刻
k,tk+1の画像データDij(tk),Dij(tk+1)がRA
M23に保持されるようにする。具体的に、プロセッサ
21は、時刻t1に画像データDij(t1)を取り込むと、
これをRAM23のエリアWK1に図16(a)に示すよ
うに格納し、次いで、時刻t2に画像データDij(t2)を
取り込むと、これをRAM23のエリアWK2に図16
(b)に示すように格納する。この時点で、RAM23に
は、2つの時刻t1,t2の画像データDij(t1),D
ij(t2)が保持される。次いで、時刻t3に画像データD
ij(t3)を取り込むと、RAM23のエリアWK1に保持
されている時刻t1の画像データDij(t1)を消去して、
これのかわりに時刻t3の画像データDij(t3)を図16
(c)に示すように格納する。このように、奇数番目の時
刻の画像データをRAM23のエリアWK1に格納し、
偶数番目の時刻の画像データをRAM23のエリアWK
2に格納する。
【0062】このようにして、2つの時刻tk,tk+1
画像データDij(tk),Dij(tk+1)を取得すると、プロ
セッサ21は、これら2つの画像データDij(tk),D
ij(tk+1)を比較し、画像データDij(tk+1)が画像デー
タDij(tk)に対し変化したか否かを判断する(ステップ
S4)。例えば、2つの2値化画像データDij(tk+1),
ij(tk)の差をとり、その差分画像データ(D
ij(tk+1)−Dij(tk))の全ての画素値が“0”のとき
は変化がないと判断し、“0”以外の画素値をもつ部分
があるときは変化したと判断する。
【0063】このような判断の結果、変化していない場
合には、侵入検知情報が通知されてから所定の時間がタ
イマにより計時されたかを調べ(ステップS5)、所定の
時間経過していないときには、再びステップS3に戻
り、次の時刻について同様の処理を行なう。なお、上記
所定の時間は、例えば、センサ6が監視区域105内に
設置されていない場合に、人間がセンサ6の位置のとこ
ろから監視区域105に到達するのに必要とされる時
間,あるいは人間が静止状態を維持可能な時間などを考
慮して、設定される。従って、この所定の時間が経過し
ても、画像データに変化がないときには、人間が侵入し
ていないと判断し、再びステップS2に戻り、改めてセ
ンサ6からの侵入検知情報を待つ。
【0064】具体的に、いま、図15の例において、所
定の時間が例えば(t7−t1)に設定されているとする場
合、画像処理を開始後、時刻t1,t2の画像データDij
(t1),Dij(t2)間に変化がないときには、時刻t2
3の画像データDij(t2),Dij(t3)を比較し、画像
データDij(t2),Dij(t3)にも変化がないときには、
時刻t3,t4の画像データDij(t3),Dij(t4)を比較
するというように、2つの時刻tk,tk+1の画像データ
ij(tk),Dij(tk+1)の比較を、所定の時間(t7−t
1)が経過するまで繰り返し行なう(ステップS3,S
4,S5)。
【0065】このような繰り返し処理において、いま例
えば、時刻t4,t5の画像データDij(t4),Dij(t5)
を比較した結果、変化が認められると、プロセッサ21
は、さらに、この画像データの変化が侵入物(侵入者)に
よるものであるか否かの判断を行なう。すなわち、前述
のように、この変化した部分に対応する対象物OBJの
形状および大きさが侵入物(侵入者)の形状および大きさ
として妥当であるか否かを判断し、また、この対象物O
BJの移動速度が侵入物(侵入者)の移動速度として妥当
であるか否かを判断する。
【0066】この判断を行なうため、プロセッサ21
は、変化が認められたときは、単に2つの時刻t4,t5
の画像データDij(t4),Dij(t5)のみならず、それ以
後の時刻t6,…,tmの画像データDij(t6),…,D
ij(tm)を用いて処理を行なう。
【0067】すなわち、侵入物(侵入者)によるものであ
るか否かの判断処理を行なうのに、変化が認められた時
点での2つの時刻t4,t5の画像データDij(t4),D
ij(t5)だけを用いて(その差分画像データによって)、
変化した部分に対応する対象物の形状および大きさを求
め、これが侵入物(侵入者)の形状および大きさとして妥
当であるか否かを判断し、侵入物(侵入者)であるか否か
を判断することもできる。しかしながら、単に2つの画
像データDij(t4),Dij(t5)の比較結果だけでは(す
なわち、一時点での比較結果だけでは)、侵入物(侵入
者)がこれを検出するのに適した位置にいるとは限ら
ず、対象物が侵入物(侵入者)であるにもかかわらず、上
記形状および大きさが侵入物(侵入者)として妥当でない
と判断される恐れがある。また、単に2つの画像データ
ij(t4),Dij(t5)の比較結果だけからでは、対象物
の動き(移動速度)に関する情報を得ることができない。
さらには、1つの差分画像データだけでは、一瞬のライ
トなどの光の作用等により誤報が生じたりする場合があ
る。従って、より正確な判断を行なうため、ステップS
4において変化有りの判断がなされたときは、時刻
4,t5の画像データDij(t4),Dij(t5)の比較結果
のみならず、さらに、以後の時刻t6,…,tmの画像デ
ータをも取得し、時刻t5の画像データDij(t5)をも含
めた複数の時刻の画像データに基づいて判断を行なうの
が良い。例えば、時刻t4,t5の画像データD
ij(t4),Dij(t5)の比較結果のみならず、以後の時刻
5,t6の画像データDij(t5),Dij(t6)の比較結
果,…,時刻tm-1,tmの画像データDij(tm-1),D
ij(tm)の比較結果をも用いて、対象物の時間的変化を
監視することで、対象物が侵入物(侵入者)であるか否か
の判断を行なうのが良い。
【0068】このため、図14の例では、ステップS4
において変化有りの判断がなされたときには、プロセッ
サ21は、さらに、以後の時刻の画像データを取得する
(ステップS6)。そして、プロセッサ21は、例えば上
記のようにして対象物の時間的変化を監視し、対象物の
時間的変化の少なくともある1つの時点においてその形
状および大きさが侵入物(侵入者)の形状および大きさと
して妥当なものであるか否かを判断し(ステップS7)、
また、対象物の位置の時間的変化から対象物の動き(移
動速度)が侵入者として不自然なものでないか否かを判
断する(ステップS8)。ここで、対象物OBJの位置の
時間的変化は、対象物OBJまでの距離LXY,角度ψの
時間的変化を監視することで検出でき、例えば、対象物
OBJが画面から突然消えたり、あるいは、画面内で急
に位置が変わったり、あるいは画面内で行ったり来たり
したり、あるいは、全く動かなかったりする場合には、
対象物の動きが侵入物(侵入者)として不自然であると判
断し、上記以外の場合には、対象物の動きが侵入物(侵
入者)として自然であると判断する。
【0069】これらの判断の結果、侵入物(侵入者)の形
状および大きさとして妥当であり、かつ、侵入物(侵入
者)の動き(移動速度)として妥当であるときには、出力
部4から侵入警報を出力させる(ステップS9)。例え
ば、警告ランプを点灯したり、警報音を発生させたりす
る。また、侵入物(侵入者)の形状および大きさとして妥
当でないか、あるいは侵入物(侵入者)の動き(移動速度)
として妥当でないときには、再びステップS2に戻り、
改めてセンサ6からの侵入検知情報を待つ。
【0070】なお、画像データに変化が確認された以後
の処理,すなわち、画像データDij(t4),Dij(t5)の
比較処理,…,画像データDij(tm-1),Dij(tm)の比
較処理では、2つの画像データ,例えばDij(tm-1),
ij(tm)間の単純な差をとって、変化した部分の形
状,大きさ,動きを監視することもできるが、画像デー
タに変化が確認された以後は、前時点の画像データに対
象物が存在するため、単純な差をとると、その差分画像
データには、図17に示すように、現時点での対象物の
部分CH(tk)の他に、前時点での対象物の部分CH(t
k-1)が現われてしまい、処理が煩雑になる恐れがある。
【0071】この問題を回避するため、例えば、変化が
認められる直前(時刻t4)の画像データDij(t4)を標準
画像データとし、時刻t5以後の画像データDij(t5),
ij(t6),…,Dij(tm)が順次に得られたときに、各
画像データDij(t5),Dij(t6)…,Dij(tm)と標準
画像データDij(t4)との差をとり、各差分画像データ
(Dij(t5)−Dij(t4)),(Dij(t6)−Dij(t4)),
…,(Dij(tm)−Dij(t4))において、それぞれ、変化
している部分の形状,大きさ,位置等を算出し、その時
間的経過からこの部分に対応する対象物が侵入物(侵入
者)であるか否かを判断するようなこともできる。
【0072】あるいは、上述したような画像処理以外の
任意所望の画像処理によって、侵入物(侵入者)であるか
否かの判断を行なうこともできる。
【0073】また、上述の例では、画像データに変化が
認められたとき、画像データの変化した部分に対応する
対象物が、侵入物(侵入者)の形状および大きさとして妥
当であり、かつ、侵入物(侵入者)の動きとして妥当であ
るとき、侵入警報を出力するとしたが、その前段階とし
て、画像データに変化が認められた時点以後の各時刻の
画像データをディスプレイ等に表示することもできる。
すなわち、画像データの変化した部分を動画像としてデ
ィスプレイ等に可視表示することもできる。
【0074】さらに、侵入物(侵入者)であるか否かの判
断に加えて、侵入物(侵入者)の個数をも算出し、この情
報をも出力することも可能である。例えば、図8に示す
ように、複数の対象物OBJ1〜OBJnが検出され、各
対象物OBJ1〜OBJnが侵入物(侵入者)として妥当で
あると判断されたときに、侵入物(侵入者)の個数として
“n”を出力(例えば表示)することも可能である。
【0075】以上のように、本実施例によれば、目盛棒
などの特別な道具を別途設置したりせずとも、撮像部1
の設置条件だけにより、侵入物(侵入者)に関する確実な
情報を検出することができる。
【0076】
【発明の効果】以上に説明したように、本発明によれ
ば、所定の視野角の範囲の画像を所定の撮像手段により
撮像した画像データに基づき、侵入物の検出に関する画
像処理演算を行なう際、この画像処理演算において、撮
像手段の視野角と撮像手段の設置条件とを用いるように
なっている。これにより、目盛棒などの特別な道具を別
途設置したりせずとも、撮像手段の視野角と設置条件だ
けにより、侵入物(侵入者)に関する確実な情報を検出す
ることができる。
【図面の簡単な説明】
【図1】本発明に係る侵入物検出装置の一実施例の構成
図である。
【図2】撮像部の具体例を示す図である。
【図3】建物内の部屋の一例を示す透視図である。
【図4】(a),(b)はそれぞれ図3のx軸方向,y軸方
向の断面図である。
【図5】撮像された画面の一例を示す図である。
【図6】(a)乃至(c)は画像データの変化した部分を検
出する仕方を説明するための図である。
【図7】(a),(b)は人間の画像の移動の様子を説明す
るための図である。
【図8】画像データの変化した部分が複数の画素連結領
域からなる場合を示す図である。
【図9】(a),(b)は画素連結領域を抽出し、これにラ
ベルを付す処理を説明するための図である。
【図10】(a),(b)は画素連結領域の面積および輪郭
画素数を計数する仕方を説明するための図である。
【図11】(a)乃至(h)は輪郭としての条件を満たすマ
スク内画素を示す図である。
【図12】(a),(b)は画素連結領域の周囲長を計数す
る仕方を説明するための図である。
【図13】(a),(b)は画素連結領域の周囲長を計数す
る仕方を説明するための図である。
【図14】図1の侵入物検出装置の処理動作例を示すフ
ローチャートである。
【図15】画像データの取り込みタイミングを示すタイ
ムチャートである。
【図16】(a)乃至(c)は画像データのRAMへの格納
の仕方を説明するための図である。
【図17】差分画像データの一例を示す図である。
【符号の説明】
1 撮像部 2 設置条件入力部 3 演算部 4 出力部 5 電源部 6 センサ 11 撮像素子 12 光学手段 20 A/D変換器 21 プロセッサ 22 ROM 23 RAM 101 部屋 102 天井 103 壁面 104 床 105 監視区域 h 撮像部の高さ θ(θx,θy) 撮像部の設置角度(傾き角度)

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 所定の視野角を有し、該視野角の範囲の
    画像を撮像する撮像手段と、該撮像手段の設置条件を入
    力する設置条件入力手段と、前記撮像手段により撮像さ
    れた画像データに基づき侵入物の検出に関する画像処理
    演算を行なう演算手段とを有し、前記演算手段は、侵入
    物の検出に関する画像処理演算において、前記撮像手段
    の視野角と前記設置条件入力手段から入力された設置条
    件とを用いることを特徴とする侵入物検出装置。
  2. 【請求項2】 請求項1記載の侵入物検出装置におい
    て、前記設置条件入力手段は、前記撮像手段の設置され
    た高さと前記撮像手段の設置角度とを設置条件として入
    力することを特徴とする侵入物検出装置。
  3. 【請求項3】 請求項2記載の侵入物検出装置におい
    て、前記設置条件入力手段は、前記撮像手段に取り付け
    られた距離計と傾斜計とを有し、距離計により前記撮像
    手段の床からの高さを測定し、傾斜計により前記撮像手
    段の設置角度を測定して、演算手段に入力することを特
    徴とする侵入物検出装置。
  4. 【請求項4】 請求項2記載の侵入物検出装置におい
    て、前記設置条件入力手段は、前記撮像手段の高さおよ
    び設置角度をアナログ電圧として入力するための電圧調
    整手段を有していることを特徴とする侵入物検出装置。
  5. 【請求項5】 請求項2記載の侵入物検出装置におい
    て、前記設置条件入力手段は、前記撮像手段の高さおよ
    び設置角度を所定ビット数のコードとして入力するため
    のデジタル入力手段を有していることを特徴とする侵入
    物検出装置。
  6. 【請求項6】 請求項1記載の侵入物検出装置におい
    て、前記画像データは、前記撮像手段の解像度に依らず
    に、必要に応じて、撮像手段の1画素を1画素として処
    理され、あるいは、撮像手段の複数の画素をまとめて1
    画素として処理されるようになっていることを特徴とす
    る侵入物検出装置。
  7. 【請求項7】 所定の視野角の範囲の画像を所定の撮像
    手段により撮像した画像データに基づき、侵入物の検出
    に関する画像処理演算を行なう侵入物検出方法であっ
    て、侵入物の検出に関する画像処理演算において、前記
    撮像手段の視野角と前記撮像手段の設置条件とを用いる
    ことを特徴とする侵入物検出方法。
  8. 【請求項8】 通常は、パッシブセンサや窓出入口用マ
    グネットセンサなどのセンサに侵入検知を行なわせ、該
    センサにより侵入が検知された場合に、請求項7記載の
    侵入物検出方法による侵入物検出を行なうことを特徴と
    する侵入物検出方法。
JP29797694A 1994-11-07 1994-11-07 侵入物検出装置および侵入物検出方法 Expired - Fee Related JP3153718B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29797694A JP3153718B2 (ja) 1994-11-07 1994-11-07 侵入物検出装置および侵入物検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29797694A JP3153718B2 (ja) 1994-11-07 1994-11-07 侵入物検出装置および侵入物検出方法

Publications (2)

Publication Number Publication Date
JPH08136251A true JPH08136251A (ja) 1996-05-31
JP3153718B2 JP3153718B2 (ja) 2001-04-09

Family

ID=17853536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29797694A Expired - Fee Related JP3153718B2 (ja) 1994-11-07 1994-11-07 侵入物検出装置および侵入物検出方法

Country Status (1)

Country Link
JP (1) JP3153718B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042142A (ja) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd 距離計測装置、それを用いた監視装置
JP2006318064A (ja) * 2005-05-10 2006-11-24 Secom Co Ltd 画像センサ
US9020261B2 (en) 2001-03-23 2015-04-28 Avigilon Fortress Corporation Video segmentation using statistical pixel modeling
US9378632B2 (en) 2000-10-24 2016-06-28 Avigilon Fortress Corporation Video surveillance system employing video primitives
US9892606B2 (en) 2001-11-15 2018-02-13 Avigilon Fortress Corporation Video surveillance system employing video primitives
US10645350B2 (en) 2000-10-24 2020-05-05 Avigilon Fortress Corporation Video analytic rule detection system and method
JP2020523717A (ja) * 2017-05-26 2020-08-06 エムピー・ハイ・テック・ソリューションズ・ピーティワイ・リミテッドMp High Tech Solutions Pty Ltd サーマルイメージングシステムにおける位置判断の装置および方法
US11032451B2 (en) 2016-10-14 2021-06-08 MP High Tech Solutions Pty Ltd Imaging apparatuses and enclosures
JPWO2021130913A1 (ja) * 2019-12-25 2021-07-01

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042142A (ja) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd 距離計測装置、それを用いた監視装置
US10347101B2 (en) 2000-10-24 2019-07-09 Avigilon Fortress Corporation Video surveillance system employing video primitives
US9378632B2 (en) 2000-10-24 2016-06-28 Avigilon Fortress Corporation Video surveillance system employing video primitives
US10026285B2 (en) 2000-10-24 2018-07-17 Avigilon Fortress Corporation Video surveillance system employing video primitives
US10645350B2 (en) 2000-10-24 2020-05-05 Avigilon Fortress Corporation Video analytic rule detection system and method
US9020261B2 (en) 2001-03-23 2015-04-28 Avigilon Fortress Corporation Video segmentation using statistical pixel modeling
US9892606B2 (en) 2001-11-15 2018-02-13 Avigilon Fortress Corporation Video surveillance system employing video primitives
JP2006318064A (ja) * 2005-05-10 2006-11-24 Secom Co Ltd 画像センサ
US11533414B2 (en) 2016-10-14 2022-12-20 Calumino Pty Ltd. Imaging apparatuses and enclosures
US11032451B2 (en) 2016-10-14 2021-06-08 MP High Tech Solutions Pty Ltd Imaging apparatuses and enclosures
US11991427B2 (en) 2016-10-14 2024-05-21 Calumino Pty Ltd. Imaging apparatuses and enclosures
JP2020523717A (ja) * 2017-05-26 2020-08-06 エムピー・ハイ・テック・ソリューションズ・ピーティワイ・リミテッドMp High Tech Solutions Pty Ltd サーマルイメージングシステムにおける位置判断の装置および方法
US11765323B2 (en) 2017-05-26 2023-09-19 Calumino Pty Ltd. Apparatus and method of location determination in a thermal imaging system
WO2021130913A1 (ja) * 2019-12-25 2021-07-01 三菱電機株式会社 相対位置検出装置、相対位置検出方法、及び相対位置検出プログラム
JPWO2021130913A1 (ja) * 2019-12-25 2021-07-01

Also Published As

Publication number Publication date
JP3153718B2 (ja) 2001-04-09

Similar Documents

Publication Publication Date Title
US7116246B2 (en) Apparatus and method for sensing the occupancy status of parking spaces in a parking lot
KR100820261B1 (ko) 화상 처리 장치
US20040085449A1 (en) Directional motion estimator
US6816184B1 (en) Method and apparatus for mapping a location from a video image to a map
JP4460782B2 (ja) 侵入監視装置
US6205242B1 (en) Image monitor apparatus and a method
KR20000071087A (ko) 옥외용 거리 계측 장치
JP6548686B2 (ja) 画像比較装置
JP3153718B2 (ja) 侵入物検出装置および侵入物検出方法
KR100939079B1 (ko) 적설량 관측 시스템 및 적설량 원격 측정 방법
JP2003149032A (ja) レベル計測装置
JP2019036213A (ja) 画像処理装置
CN109879170B (zh) 一种起重机吊臂旁弯位移实时检测系统
JPH1153547A (ja) 認識対象物体の物体領域抽出装置および物体領域抽出方法
JP3115786B2 (ja) 炎検出装置および炎検出方法
JPH0793558A (ja) 画像監視装置
JP2002032759A (ja) 監視装置
JP3053159B2 (ja) 炎検出装置および炎検出方法
JP6482589B2 (ja) カメラ校正装置
JP6591647B2 (ja) 画像処理装置
JP6155106B2 (ja) 画像センサ
JPH10283478A (ja) 特徴抽出方法およびその方法を用いた物体認識装置
JP3519296B2 (ja) 熱画像の自動測定方法及び自動測定装置
JPH11283010A (ja) 動体数検出装置
EP4386315A1 (en) Surveying device for improved target identification using atr difference image data

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees