JPH0813178A - Cathode for electrochemical cell - Google Patents

Cathode for electrochemical cell

Info

Publication number
JPH0813178A
JPH0813178A JP6146138A JP14613894A JPH0813178A JP H0813178 A JPH0813178 A JP H0813178A JP 6146138 A JP6146138 A JP 6146138A JP 14613894 A JP14613894 A JP 14613894A JP H0813178 A JPH0813178 A JP H0813178A
Authority
JP
Japan
Prior art keywords
layer
cathode
oxide
porous electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6146138A
Other languages
Japanese (ja)
Inventor
Akihiro Yamashita
晃弘 山下
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6146138A priority Critical patent/JPH0813178A/en
Publication of JPH0813178A publication Critical patent/JPH0813178A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cathode for an electrochemical cell with decreased cell resistance by coating Y2O3-stabilized ZrO2 with a porous electrode material comprising fine particles and coarse particles of transition metal oxide and Y2O3-stabilized ZrO2 or MgAl2O4. CONSTITUTION:A cathode material having a two-layer structure is formed on Y2O3-stabilized ZrO2 which is an oxygen ion conductive solid electrolyte. The first layer which is directly in contact with the solid electrolyte of the cathode material is a porous electrolyte material comprising oxide fine particles. The second layer on the first layer is a porous electrode material comprising an oxide coarse particle material having a larger particle size than the particles in the first layer. Further, both of the porous electrode materials above described are a mixture of transition metal oxides and Y2O3-stabilized ZrO2 or MgAl2O4. Thereby, a high-performance cathode for an electrochemical cell is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温水蒸気電解セルや固
体電解質型燃料電池などの電気化学セルの陰極に関す
る。
TECHNICAL FIELD The present invention relates to a cathode of an electrochemical cell such as a high temperature steam electrolysis cell or a solid oxide fuel cell.

【0002】[0002]

【従来の技術】電気化学セルの一例として高温水蒸気電
解セルの作動原理を図3によって説明する。電極を設け
た酸素イオン導電性固体電解質管1を900℃から10
00℃の高温にして、この固体電解質1を隔壁としてそ
の内側に水蒸気、外側に空気を供給し、水蒸気側電極
(陰極)2が負電位となるように電極間に電圧を印加す
ると、陰極2で水蒸気が電解されて水素ガスと酸素ガス
が発生する。生成したガスのうち、酸素ガスは電子によ
り還元されて酸素イオンとなり固体電解質1を空気側電
極(陽極)3へ拡散して、陽極3では酸素イオンが電子
を放出し酸素ガスとなる。陰極2で発生した水素ガスは
製品水素として利用される。このような高温水蒸気電解
セルを用いて効率よく水素を得るためには、供給する電
気エネルギを可能な限り少なくする必要があるが、その
ためには単位セルの抵抗を下げることが必要である。な
お、図3中4は酸化物インターコネクタである。
2. Description of the Related Art The operation principle of a high temperature steam electrolysis cell as an example of an electrochemical cell will be described with reference to FIG. The oxygen-ion conductive solid electrolyte tube 1 provided with electrodes was heated from 900 ° C to 10
When the temperature is raised to 00 ° C., the solid electrolyte 1 is used as a partition wall, steam is supplied to the inside and air is supplied to the outside, and a voltage is applied between the electrodes so that the water vapor side electrode (cathode) 2 has a negative potential. The steam is electrolyzed to generate hydrogen gas and oxygen gas. Of the generated gas, oxygen gas is reduced by electrons to become oxygen ions and diffuses the solid electrolyte 1 to the air-side electrode (anode) 3, and at the anode 3, the oxygen ions release electrons to become oxygen gas. The hydrogen gas generated at the cathode 2 is used as product hydrogen. In order to efficiently obtain hydrogen using such a high temperature steam electrolysis cell, it is necessary to reduce the supplied electric energy as much as possible, but for that purpose, it is necessary to reduce the resistance of the unit cell. In addition, 4 in FIG. 3 is an oxide interconnector.

【0003】[0003]

【発明が解決しようとする課題】高温水蒸気電解セルの
特徴は上述したとおりであるが、セル抵抗には電気的抵
抗と電極反応に費やされる電気化学的な抵抗があり、セ
ル抵抗低減のためには両抵抗を低くする必要がある。電
気抵抗低減の方法としては、比抵抗が小さなセル構成材
料を使用し、かつ膜厚を最適化することである。たとえ
ば、固体電解質である酸素イオン導電性固体電解質はZ
rO2 系酸化物を使用しているが、ZrO 2 にY2 3
やCaOなどをドープし、その量の最適化により比抵抗
の小さな酸素イオン導電性固体電解質を選定している。
固体電解質では電流方向が膜厚方向になるため、固体電
解質の膜厚を薄くすることが必要である。電極では陰
極、陽極ともに電流は横方向に流れるため高い電子導電
性を必要とする。さらに、電極では水蒸気還元や酸素発
生などの電気化学的反応に対しても低い抵抗であること
が要求される。本発明は上記要求に鑑み、電気化学セル
のセル抵抗低減のために、高性能な陰極材料を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The characteristics are as described above, but the cell resistance has an electrical resistance.
There is an electrochemical resistance that is spent in
In order to reduce the resistance, it is necessary to lower both resistances. Electric
As a method of reducing air resistance, cell components with low specific resistance
To optimize the film thickness. for example
For example, the oxygen ion conductive solid electrolyte that is a solid electrolyte is Z
rO2ZrO is used as the base oxide 2To Y2O3
Or CaO is doped, and the resistivity is optimized by optimizing the amount.
A small oxygen ion conductive solid electrolyte with a small size is selected.
In the solid electrolyte, the current direction is the film thickness direction, so
It is necessary to reduce the film thickness of the degrading. Yin at the electrode
High electron conductivity because current flows laterally in both pole and anode
Need sex. In addition, the electrodes reduce water vapor and generate oxygen.
Low resistance to electrochemical reactions such as life
Is required. In view of the above requirements, the present invention provides an electrochemical cell
Provide high performance cathode material to reduce the cell resistance of
It is the one to try.

【0004】[0004]

【課題を解決するための手段】本発明は上記要望に応じ
てなされたもので、本発明は酸素イオン導電性固体電解
質であるY2 3 安定化ZrO2 に直接接触する陰極材
料を酸化物微粒子材料で形成した多孔質電解質材料と
し、その上に前記酸化物微粒子材料より粒子径の大きい
酸化物粗粒子材料で形成した多孔質電極材料で被覆した
2層構造とし、前記酸化物微粒子材料で形成した多孔質
電極材料および酸化物粗粒子材料で形成した多孔質電極
材料が、遷移金属の酸化物と酸素イオン導電性固体電解
質であるY 2 3 安定化ZrO2 あるいはMgAl2
4 との混合体であることを特徴とする電気化学セルの陰
極である。
The present invention meets the above-mentioned needs.
The present invention is based on the oxygen ion conductive solid electrolysis.
Quality is Y2O3Stabilized ZrO2Cathode material in direct contact with
And a porous electrolyte material formed of an oxide fine particle material
And has a larger particle size than the above oxide fine particle material
Coated with porous electrode material formed of oxide grit material
Porous layer having a two-layer structure and formed of the oxide fine particle material
Porous electrode made of electrode material and oxide coarse particle material
Materials are transition metal oxide and oxygen ion conductive solid electrolysis.
Quality is Y 2O3Stabilized ZrO2Or MgAl2O
FourElectrochemical cell shade characterized by being a mixture with
It is a pole.

【0005】本発明において使用される酸素イオン導電
性固体電解質であるY2 3 安定化ZrO2 は一般的に
xZrO2 ・(1−x)Y2 3 で表示され、xは0.
06〜1好ましくはxは0.07〜0.8である。本発
明において使用される酸化物微粒子材料の被覆厚さは一
般的に1〜50μm、好ましくは5〜30μmである。
また、酸化物粗粒子材料の被覆厚さは一般的に50〜2
00μm、好ましくは50〜100μmである。
The oxygen ion conductive solid electrolyte Y 2 O 3 stabilized ZrO 2 used in the present invention is generally represented by xZrO 2. (1-x) Y 2 O 3 and x is 0.
06-1 Preferably x is 0.07-0.8. The coating thickness of the oxide fine particle material used in the present invention is generally 1 to 50 μm, preferably 5 to 30 μm.
The coating thickness of the oxide coarse particle material is generally 50 to 2
The thickness is 00 μm, preferably 50 to 100 μm.

【0006】本発明で使用される酸化物微粒子材料、酸
化物粗粒子材料の好ましい材料としては遷移金属の酸化
物とY2 3 安定化ZrO2 あるいはMgAl2 4
混合体である。陰極に要求される特性は高い導電率お
よび他の構成材料(固体電解質材料など)との線膨張
係数マッチングである。導電率向上には遷移金属の酸化
物の添加量の増加が必要であるが、これに伴って線膨張
係数も増加するため、最適な配合割合が必要であり、一
般的には混合体中の遷移金属の酸化物の重量割合は20
〜80wt%が好ましい。遷移金属の酸化物として使用
される遷移金属としてはFe,Co,Ni,Cu,Z
n,Moなどがあげられる。
A preferred material for the oxide fine particle material and the oxide coarse particle material used in the present invention is a mixture of a transition metal oxide and Y 2 O 3 -stabilized ZrO 2 or MgAl 2 O 4 . The properties required for the cathode are high conductivity and linear expansion coefficient matching with other constituent materials (such as solid electrolyte materials). In order to improve the conductivity, it is necessary to increase the addition amount of the oxide of the transition metal, but since the linear expansion coefficient also increases with this, an optimum blending ratio is necessary, and generally, The weight ratio of the transition metal oxide is 20.
-80 wt% is preferable. The transition metals used as oxides of transition metals include Fe, Co, Ni, Cu and Z.
n, Mo and the like.

【0007】[0007]

【作用】本発明の電気化学セルは上述のように構成され
るため、セルの低抵抗化が可能となる。
Since the electrochemical cell of the present invention is constructed as described above, the resistance of the cell can be lowered.

【0008】[0008]

【実施例】本発明の陰極構成例の一実施例を図1によっ
て説明する。酸素イオン導電性固体電解質(YSZ)の
表面に第1層目としてNiOと0.86ZrO2 −0.
14Y2 3 の微粒子材料の混合体からなる多孔質電極
を形成し、その表面に第2層目としてNiOとMgAl
2 4 の粗粒子材料の混合体からなる多孔質電極を形成
して陰極の2層構造を構成する。NiOと0.86Zr
2 −0.14Y23 の混合体中の成分重量比はNi
Oが80wt%、0.86ZrO2 −0.14Y2 3
が20wt%である。NiOとMgAl2 4 の混合体
中の成分重量比はNiOが60wt%、MgAl2 4
が40wt%である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the cathode structure of the present invention will be described with reference to FIG. On the surface of the oxygen ion conductive solid electrolyte (YSZ), NiO and 0.86ZrO 2 −0.
A porous electrode made of a mixture of 14Y 2 O 3 fine particle materials is formed, and NiO and MgAl are formed as a second layer on the surface of the porous electrode.
A two-layer structure of a cathode is formed by forming a porous electrode composed of a mixture of coarse particle materials of 2 O 4 . NiO and 0.86Zr
The component weight ratio in the mixture of O 2 -0.14Y 2 O 3 is Ni.
O is 80 wt%, 0.86ZrO 2 -0.14Y 2 O 3
Is 20 wt%. The weight ratio of the components in the mixture of NiO and MgAl 2 O 4 is 60% by weight of NiO, MgAl 2 O 4
Is 40 wt%.

【0009】酸素イオン導電性固体電解質の表面のNi
Oと0.86ZrO2 −0.14Y 2 3 の混合体から
なる多孔質電極は以下の方法により合成して電極膜とし
た。硝酸ニッケル:80gを蒸留水:200g中に溶解
し、約80℃で蒸留水を蒸発させて乾燥物を得る。これ
を1000℃で5時間、空気中で焼成してNiOを得
る。酸化ジルコニウム:86gと酸化イットリウム:1
4gをボールミル中で混合し、これを1500℃で5時
間、空気中で焼成し、ジルコニア−イットリア固溶体
(YSZ)を得る。NiOとYSZを重量比で8:2と
したもの100gと、蒸留水:100gをボールミルで
10時間混合したものを、固体電解質表面に塗布し13
00℃、2時間、空気中で焼付けて反応用多孔質電極と
する。焼付け後の電極は、NiO粒子の平均粒子径が約
2μm、YSZ粒子の平均粒子径が約5μmである。こ
の電極膜の表面に形成するNiO−MgAl2 4 電極
は次の方法で合成し電極膜とした。NiOの合成は上述
した方法と同様である。MgAl2 4 は酸化マグネシ
ウムと酸化アルミニウムをMg:Al=1:2となるよ
うに混合し、空気中1650℃で20時間焼成する。焼
成したMgAl2 4 を40gとNiO:60g、及び
蒸留水中200gをボールミルで20時間混合したもの
を、NiO−YSZ電極膜の表面に塗布して1350℃
で5時間焼き付けた。第1層目の電極膜厚さは約50μ
mで第2層目は約60μmである。焼付け後の電極は、
NiO粒子が約5μm、MgAl2 4 粒子が約10μ
mである。これらの粒子径の測定は電極膜を成膜後、水
素中でNiOをNiに還元して断面を光顕微鏡で観察し
てそれぞれの粒子サイズを計測した。このような2層電
極構造の過電圧特性を、従来の80NiO−20YSZ
の1層電極と比較した結果を図2に示す。2層電極を有
する本発明電極は1層電極に比較して過電圧が低く、水
蒸気電解用電極として使用することでセル抵抗低減に有
効に作用することが判った。
Ni on the surface of the oxygen ion conductive solid electrolyte
O and 0.86 ZrO2-0.14Y 2O3From a mixture of
The porous electrode consisting of
Was. Nickel nitrate: 80 g dissolved in distilled water: 200 g
Then, the distilled water is evaporated at about 80 ° C. to obtain a dried product. this
Is baked at 1000 ° C. for 5 hours in air to obtain NiO.
You. Zirconium oxide: 86 g and yttrium oxide: 1
Mix 4g in a ball mill and mix at 1500 ° C for 5 hours
Zirconia-yttria solid solution
(YSZ) is obtained. NiO and YSZ in a weight ratio of 8: 2
Boiled 100g and distilled water: 100g in a ball mill
Apply the mixture for 10 hours on the surface of the solid electrolyte, and
Bake in air at 00 ° C for 2 hours to make a porous electrode for reaction.
I do. After baking, the average particle size of NiO particles in the electrode is about
The average particle diameter of the YSZ particles is 2 μm and is about 5 μm. This
NiO-MgAl formed on the surface of the electrode film of2OFourelectrode
Was synthesized by the following method to form an electrode film. NiO synthesis is described above
It is the same as the method. MgAl2OFourIs magnesia
Um and aluminum oxide become Mg: Al = 1: 2
And mixed in air and calcined in air at 1650 ° C. for 20 hours. Grilled
Made MgAl2OFour40 g and NiO: 60 g, and
200g of distilled water mixed in a ball mill for 20 hours
Is applied to the surface of the NiO-YSZ electrode film and 1350 ° C.
It was baked for 5 hours. The electrode thickness of the first layer is about 50μ
The second layer has a thickness of about 60 μm. The electrode after baking is
NiO particles about 5μm, MgAl2OFourParticle is about 10μ
m. These particle sizes can be measured by water
NiO is reduced to Ni in an element and the cross section is observed with an optical microscope.
The particle size of each was measured. Such a two-layer electric
The overvoltage characteristic of the pole structure is the same as that of the conventional 80NiO-20YSZ.
FIG. 2 shows the result of comparison with the single-layer electrode. Has a two-layer electrode
The electrode of the present invention has a lower overvoltage than the one-layer electrode and
Effective in reducing cell resistance by using as an electrode for steam electrolysis
It turned out to work.

【0010】この実施例では第1層がNiOとY2 3
安定化ZrO2 の混合物、第2層がNiOとMgAl2
4 の混合物を使用しているが、第1層に使用した混合
物は粒度を大きくすれば第2層としての機能を有し、同
様に第2層に使用した混合物も、粒径を小さくして第1
層として使用できる。しかし第2層に使用したNiOと
MgAl2 4 混合物の電気化学的反応特性は第1層混
合物のそれに比較して低いことから、NiOとMgAl
2 4 混合物は主に第2層の機能としてのみ使用するの
が好ましい。
In this embodiment, the first layer is NiO and Y 2 O 3
Stabilized ZrO 2 mixture, second layer is NiO and MgAl 2
Although a mixture of O 4 is used, the mixture used for the first layer has a function as a second layer if the particle size is increased, and similarly, the mixture used for the second layer also has a decreased particle size. First
Can be used as a layer. However, since the electrochemical reaction characteristics of the mixture of NiO and MgAl 2 O 4 used for the second layer are lower than that of the mixture of the first layer, NiO and MgAl 2
The 2 O 4 mixture is preferably used primarily as a function of the second layer.

【0011】[0011]

【発明の効果】上述したように、本発明によれば電気化
学セルの陰極として、第1層目に微粒子材料で形成した
多孔質電極で構成し、その上に比較的粒子径の大きい多
孔質電極を被覆させた2層構造を特徴とした陰極を用い
ることで電気化学セルの抵抗低減に有効に作用する。
As described above, according to the present invention, as the cathode of the electrochemical cell, the first layer is composed of the porous electrode formed of the fine particle material, and the porous electrode having a relatively large particle size is formed thereon. By using a cathode having a two-layer structure in which the electrodes are covered, it effectively acts to reduce the resistance of the electrochemical cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において製造した電極構造の模
式図。
FIG. 1 is a schematic diagram of an electrode structure manufactured in an example of the present invention.

【図2】本発明の実施例において製造した電極過電圧デ
ータの一例を示す図表。
FIG. 2 is a chart showing an example of electrode overvoltage data manufactured in Examples of the present invention.

【図3】一般の高温水蒸気電解の原理を示す模式図。FIG. 3 is a schematic diagram showing the principle of general high temperature steam electrolysis.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電性固体電解質であるY2
3 安定化ZrO2に直接接触する陰極材料を酸化物微
粒子材料で形成した多孔質電解質材料とし、その上に前
記酸化物微粒子材料より粒子径の大きい酸化物粗粒子材
料で形成した多孔質電極材料で被覆した2層構造とし、
前記酸化物微粒子材料で形成した多孔質電極材料および
酸化物粗粒子材料で形成した多孔質電極材料が、遷移金
属の酸化物と酸素イオン導電性固体電解質であるY2
3 安定化ZrO2 あるいはMgAl2 4 との混合体で
あることを特徴とする電気化学セルの陰極。
1. A Y 2 which is an oxygen ion conductive solid electrolyte.
A cathode material that is in direct contact with O 3 -stabilized ZrO 2 is a porous electrolyte material formed of an oxide fine particle material, and a porous electrode formed of an oxide coarse particle material having a larger particle size than the oxide fine particle material Two-layer structure coated with material,
The porous electrode material formed of the oxide fine particle material and the porous electrode material formed of the oxide coarse particle material are Y 2 O which is an oxide of a transition metal and an oxygen ion conductive solid electrolyte.
3 Cathode for electrochemical cell, characterized in that it is a mixture with stabilized ZrO 2 or MgAl 2 O 4 .
JP6146138A 1994-06-28 1994-06-28 Cathode for electrochemical cell Pending JPH0813178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6146138A JPH0813178A (en) 1994-06-28 1994-06-28 Cathode for electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6146138A JPH0813178A (en) 1994-06-28 1994-06-28 Cathode for electrochemical cell

Publications (1)

Publication Number Publication Date
JPH0813178A true JPH0813178A (en) 1996-01-16

Family

ID=15401008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6146138A Pending JPH0813178A (en) 1994-06-28 1994-06-28 Cathode for electrochemical cell

Country Status (1)

Country Link
JP (1) JPH0813178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023542A (en) * 2017-01-26 2019-07-16 旭化成株式会社 Bipolar electrolyzer, buck electrolysis bipolar electrolyzer and hydrogen manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023542A (en) * 2017-01-26 2019-07-16 旭化成株式会社 Bipolar electrolyzer, buck electrolysis bipolar electrolyzer and hydrogen manufacturing method
CN110023542B (en) * 2017-01-26 2021-12-14 旭化成株式会社 Multi-pole electrolytic cell for alkaline water electrolysis and hydrogen production method

Similar Documents

Publication Publication Date Title
RU2521874C2 (en) Solid oxide cell and battery containing same
JP2927339B2 (en) High temperature electrochemical battery
US4767518A (en) Cermet electrode
KR20010024177A (en) Sintered electrode for solid oxide fuel cells
WO2014050148A1 (en) Half cell for solid oxide fuel cells, and solid oxide fuel cell
JPH09274921A (en) Fuel electrode for solid electrolyte fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JP2003123773A (en) Air electrode for solid electrolyte fuel cell and fuel cell using the same
JPH1021931A (en) Solid electrolyte type fuel cell
JPH08162120A (en) Solid electrolyte type electrochemical cell
JP2636157B2 (en) Electrode materials for solid electrolyte fuel cells and electrodes using the same
JP3259756B2 (en) Multilayer solid electrolyte for solid fuel cells
JPH0813178A (en) Cathode for electrochemical cell
JPH1021929A (en) Solid electrolyte type fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP2000348736A (en) Solid electrolytic fuel cell
JP3128099B2 (en) Air electrode material for low temperature operation type solid fuel cell
JPH10255832A (en) Composite air electrode material for solid fuel cell for low temperature operation
JP3403055B2 (en) Oxygen side electrode
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH0689723A (en) Fuel electrde fabrication method for fuel cell with solid electrolyte
JP3285708B2 (en) Oxygen generating electrode
JP3165493B2 (en) Method for manufacturing cathode of solid electrolyte type high temperature steam electrolysis cell
JP3285714B2 (en) Oxygen generating electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702