JPH08130005A - Negative electrode and lithium secondary battery - Google Patents

Negative electrode and lithium secondary battery

Info

Publication number
JPH08130005A
JPH08130005A JP6287311A JP28731194A JPH08130005A JP H08130005 A JPH08130005 A JP H08130005A JP 6287311 A JP6287311 A JP 6287311A JP 28731194 A JP28731194 A JP 28731194A JP H08130005 A JPH08130005 A JP H08130005A
Authority
JP
Japan
Prior art keywords
negative electrode
tape
alloy
layer
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287311A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Mitsuhiro Marumoto
光弘 丸本
Kenichi Kizu
賢一 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6287311A priority Critical patent/JPH08130005A/en
Publication of JPH08130005A publication Critical patent/JPH08130005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a negative electrode capable of utilizing the advantage brought by the wide area of an electrode and provide a lithium secondary battery with high charge/discharge capacity and long cycle life even when used as a large area body such as a tape-shaped body. CONSTITUTION: A molten plating layer 2 made of a lithium alloy is formed on a current collecting tape 1 through a diffusion barrier layer made of a conductor hardly reacting with a liquid lithium alloy and a wetting accelerating material layer made of a conductor with affinity to the liquid lithium alloy. A negative electrode for a lithium secondary battery does not have the molten plating layer at both edges of the current collecting tape, the negative electrode is arranged on one side of a separator containing an electrolyte, and a positive electrode is arranged on the other side. The negative electrode hardly producing cracks in the molten plating layer made of the lithium alloy is obtained, and a lithium secondary battery with high reliability based on the lithium alloy negative electrode in which dispersion of quality caused by the molten plating layer and deformation such as irregularity are decreased and adhesion is increased can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、起電力や充放電容量、
充放電のサイクル寿命に優れるLi二次電池を形成しう
るLi合金系の負極に関する。
The present invention relates to electromotive force, charge / discharge capacity,
The present invention relates to a Li alloy-based negative electrode that can form a Li secondary battery having excellent charge / discharge cycle life.

【0002】[0002]

【従来の技術】非水電解液を用いたLi二次電池におい
て大面積の電極が充放電容量やエネルギー密度等の点よ
り有利であることからテープ状の電極が提案されてい
る。かかるテープ状の電極は、例えばセパレータを介し
た正・負極の捲回物などとして電池形成に用いられる。
2. Description of the Related Art Tape-like electrodes have been proposed in Li secondary batteries using non-aqueous electrolytes because large-area electrodes are advantageous in terms of charge / discharge capacity and energy density. Such a tape-shaped electrode is used for forming a battery, for example, as a positive and negative electrode wound product via a separator.

【0003】従来、前記におけるテープ状の負極として
は、集電体テープの上にLi−Al等のLi合金の粉末
をバインダー樹脂に分散させて塗布したもの、Li−A
gやLi−Mg等の固溶体型Li合金の板を圧延してテ
ープ状としたものが知られていた。
Conventionally, as the tape-shaped negative electrode in the above, Li-A, which is obtained by dispersing a powder of Li alloy such as Li-Al in a binder resin and coating it on a collector tape, Li-A
It has been known that a solid solution type Li alloy plate such as g or Li-Mg is rolled into a tape shape.

【0004】しかしながら、長さ方向における品質のバ
ラツキや凹凸化等の変形及び捲回時の活物質等の脱落等
に起因する不具合により、いずれの場合にも得られるL
i二次電池が充放電容量や充放電のサイクル寿命に乏し
く負極の大面積化による利点が充分に発揮されない問題
点があった。
However, L can be obtained in any case due to defects due to variations in quality in the length direction, deformation such as unevenness, and dropping of the active material and the like during winding.
There is a problem in that the secondary battery has poor charge / discharge capacity and charge / discharge cycle life, and the advantages of increasing the area of the negative electrode cannot be fully exerted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、テープ状物
などの大面積体として用いた場合にも充放電容量や充放
電のサイクル寿命に優れるLi二次電池を形成でき、従
って電極の大面積化による利点を充分に活かしうるLi
合金系の負極の開発を課題とする。
The present invention can form a Li secondary battery which is excellent in charge / discharge capacity and charge / discharge cycle life even when used as a large-area body such as a tape-like object, and therefore has a large electrode size. Li that can fully take advantage of the area
The task is to develop an alloy-based negative electrode.

【0006】[0006]

【課題を解決するための手段】本発明は、集電体テープ
の上に、液体Li合金と反応しにくい導体からなる拡散
バリア層と、その上の液体Li合金と親和性の導体から
なる濡れ促進材層を介して、Li合金からなる溶融メッ
キ層を有し、かつその溶融メッキ層を集電体テープの両
側端部には有しないことを特徴とするLi二次電池用の
負極、及び電解質を含むセパレータの片側に前記の負極
を有し、他方側に正極を有することを特徴とするLi二
次電池を提供するものである。
According to the present invention, a diffusion barrier layer made of a conductor that does not easily react with a liquid Li alloy and a wetting layer made of a conductor having an affinity with the liquid Li alloy are formed on a current collector tape. A negative electrode for a Li secondary battery, characterized in that it has a hot-dip plating layer made of a Li alloy via an accelerator layer, and does not have the hot-dip plating layer at both ends of a current collector tape, and It is intended to provide a Li secondary battery having the above-mentioned negative electrode on one side of a separator containing an electrolyte and having a positive electrode on the other side.

【0007】[0007]

【実施態様の例示】集電体テープが銅、アルミニウム又
は銀のテープからなり、拡散バリア層がニッケル、コバ
ルト又は鉄からなり、濡れ促進材層が銀、銅、亜鉛、マ
グネシウム、アルミニウム、カルシウム、バリウム、ビ
スマス、インジウム、鉛、白金、パラジウム又はスズか
らなり、溶融メッキ層が300℃/秒以上の冷却速度で
急冷処理されたものであり、拡散バリア層及び濡れ促進
材層の各厚さが0.01〜5μmであると共に、集電体
テープ及び溶融メッキ層の各厚さが10〜30μm及び
10〜50μmであり、溶融メッキ層を形成するLi合
金のリチウム含有量が原子比率に基づいて80%以上で
あり、集電体テープの両側端部における溶融メッキ層を
有しない部分の幅が1〜4mmであるLi二次電池用の負
極。
Examples of Embodiments The current collector tape is made of copper, aluminum or silver, the diffusion barrier layer is made of nickel, cobalt or iron, and the wetting promoter layer is made of silver, copper, zinc, magnesium, aluminum or calcium. The hot-dip plated layer is made of barium, bismuth, indium, lead, platinum, palladium, or tin, and is subjected to rapid cooling at a cooling rate of 300 ° C./sec or more. The thickness of each of the current collector tape and the hot dip layer is 10 to 30 μm and 10 to 50 μm, and the lithium content of the Li alloy forming the hot dip layer is based on the atomic ratio. A negative electrode for a Li secondary battery, which has a width of 80% or more and has a width of 1 to 4 mm at both end portions of the current collector tape having no hot-dip layer.

【0008】[0008]

【作用】本発明者らは上記の課題を克服するために鋭意
研究を重ねるなかで、高い放電容量のLi二次電池の形
成には、電池内における高い充放電容量の正極活物質の
増量をはかって正極を大面積化し、一方、負極活物質が
過少では放電容量の低下を招くことから少量で大きな充
放電容量を示す負極が有利であり、その負極としてLi
合金を薄層展開して大面積化したものが有利であること
を究明した。
In order to form a Li secondary battery having a high discharge capacity, the inventors of the present invention have made extensive studies to overcome the above problems, and increase the amount of the positive electrode active material having a high charge / discharge capacity in the battery. On the other hand, when the area of the positive electrode is increased, on the other hand, when the amount of the negative electrode active material is too small, the discharge capacity is lowered. Therefore, a negative electrode that exhibits a large charge / discharge capacity with a small amount is advantageous.
It was clarified that it is advantageous to expand the area of the alloy by expanding it into a thin layer.

【0009】しかし、上記した従来技術によるLi合金
の薄層化については、バインダー分散液ペーストの塗布
層の場合にはドクターブレード法にても目的の薄層を均
一性よく形成しにくく、また固溶体型Li合金の場合に
は機械強度が低くて薄いテープへの圧延が困難であっ
た。
However, regarding the thinning of the Li alloy according to the prior art described above, in the case of the coating layer of the binder dispersion paste, it is difficult to form the desired thin layer evenly by the doctor blade method, and the solid solution is formed. In the case of type Li alloy, the mechanical strength was low and it was difficult to roll it into a thin tape.

【0010】そのため本発明者らは更に鋭意研究を重ね
て、溶融メッキ方式によりLi合金を集電体テープ上に
50μm厚以下等に薄層展開でき、テープ状等の大面積
負極を容易に形成できて充放電容量の向上をはかりうる
ことを見出した。また集電体テープの両側端部には溶融
メッキ層を設けないことにより、クラックの発生等によ
る溶融メッキ層の損傷を防止できて充放電のサイクル寿
命を長期化できることを見出した。
Therefore, the inventors of the present invention have conducted further diligent research to develop a thin layer of Li alloy on the current collector tape to a thickness of 50 μm or less by the hot dipping method, and easily form a large area negative electrode such as a tape. It has been found that the charge capacity can be improved and the charge and discharge capacity can be improved. Further, it has been found that, by not providing the hot-dip plating layers on both ends of the current collector tape, damage of the hot-dip plating layer due to cracks can be prevented and the charge / discharge cycle life can be extended.

【0011】すなわち捲回式単3型等のLi二次電池の
形成に際しては、負極を正極やセパレータと共にコンパ
クトに捲回して電池缶に収納することとなるが、その場
合に負極には捲回による張力が負荷される。また負極
は、電池の充放電毎にLiの電析・放出等により厚さ変
化を繰返すが、これが硬くて脆い金属間化合物からなる
Li合金の溶融メッキ層に疲労現象を生じさせる。
That is, when forming a rechargeable AA type Li secondary battery, the negative electrode is compactly wound together with the positive electrode and the separator and housed in a battery can. In that case, the negative electrode is wound. Tension is applied. Further, the negative electrode undergoes a thickness change every time the battery is charged and discharged due to Li electrodeposition and release, which causes a fatigue phenomenon in the hot-dip plated layer of the Li alloy composed of a hard and brittle intermetallic compound.

【0012】そのため、前記負極の厚さ増大でより大き
な張力が負荷し、その張力が負極テープの両側端部に集
中しやすいこともあって、負極テープの両側端部にLi
合金の溶融メッキ層があるとそこにクラックが発生しや
すく、さらにそのクラックが負極テープの中央部へと成
長しやすい。前記のように負極テープの両側端部にLi
合金の溶融メッキ層を設けないことで、かかる両側端部
でのクラックの発生が防止され、溶融メッキ層全体にク
ラックが発生しにくくなる。その結果、長さ方向におけ
る品質のバラツキや凹凸化等の変形が少なく、溶融メッ
キ層としてのLi合金の密着性に優れて起電力、充放電
容量、充放電のサイクル寿命に優れるLi二次電池が得
られる。
Therefore, as the thickness of the negative electrode is increased, a larger tension is applied and the tension is likely to concentrate on both end portions of the negative electrode tape.
If the alloy hot-dip layer is present, cracks are likely to occur there, and the cracks are likely to grow in the central portion of the negative electrode tape. As described above, the Li
By not providing the hot-dip plated layer of alloy, the occurrence of cracks at both end portions is prevented, and cracks are less likely to occur in the entire hot-dip layer. As a result, there is little variation in quality in the length direction and deformation such as unevenness, and the Li alloy as a hot-dip plating layer has excellent adhesion and excellent electromotive force, charge / discharge capacity, and charge / discharge cycle life. Is obtained.

【0013】[0013]

【実施例】本発明の負極は、集電体テープの上に、液体
Li合金と反応しにくい導体からなる拡散バリア層と、
その上の液体Li合金と親和性の導体からなる濡れ促進
材層を介して、Li合金からなる溶融メッキ層を有し、
かつその溶融メッキ層を集電体テープの両側端部には有
しないものであり、Li二次電池の形成に用いるもので
ある。
EXAMPLE A negative electrode of the present invention comprises a current collector tape, a diffusion barrier layer made of a conductor which does not easily react with a liquid Li alloy, and
A wet-promoting material layer made of a conductor having an affinity for the liquid Li alloy and a hot-dip plated layer made of Li alloy,
In addition, the hot-dip plated layer is not provided on both end portions of the current collector tape, and is used for forming a Li secondary battery.

【0014】本発明の負極を図1、図2に例示した。1
が集電体テープ、11が拡散バリア層、12が濡れ促進
材層、2がLi合金の溶融メッキ層、3が当該溶融メッ
キ層を有しない側端部である。本発明において前記の溶
融メッキ層等は、集電体テープの両面に設けられていて
もよいし、片面に設けられていてもよい。
The negative electrode of the present invention is illustrated in FIGS. 1 and 2. 1
Is a current collector tape, 11 is a diffusion barrier layer, 12 is a wetting promoting material layer, 2 is a Li alloy hot-dip layer, and 3 is a side end portion not having the hot-dip layer. In the present invention, the hot-dip plating layer and the like may be provided on both sides of the current collector tape, or may be provided on one side.

【0015】集電体テープとしては、例えば銅、アルミ
ニウム、銀などの導電性に優れるものが用いられる。集
電体テープの厚さは、電極の使用目的等に応じて適宜に
決定され、一般には100μm以下、就中、薄型化の点
より5〜50μm、特に10〜30μmとされる。
As the current collector tape, one having excellent conductivity such as copper, aluminum or silver is used. The thickness of the current collector tape is appropriately determined according to the purpose of use of the electrode and the like, and is generally 100 μm or less, and in particular, 5 to 50 μm, particularly 10 to 30 μm from the viewpoint of thinning.

【0016】集電体テープの上に設ける拡散バリア層
は、集電体テープが溶融メッキ時にリチウム等の液体L
i合金ないしその成分に侵食されるのを防止する機能を
果たす。拡散バリア層がない場合、前記の集電体材料は
液体Li合金と急速に反応して半溶融状態となり、集電
体テープは短時間のうちに破断しやすくなる。また溶融
メッキ層中のリチウム等のLi合金成分が徐々に浸透し
て集電体テープの電気抵抗を増大させ、電池の内部抵抗
を高くする。
The diffusion barrier layer provided on the current collector tape has a liquid L such as lithium when the current collector tape is hot-dipped.
It has the function of preventing corrosion by the i alloy or its components. In the absence of the diffusion barrier layer, the current collector material rapidly reacts with the liquid Li alloy to be in a semi-molten state, and the current collector tape easily breaks in a short time. Further, the Li alloy component such as lithium in the hot-dip layer gradually penetrates to increase the electric resistance of the current collector tape and increase the internal resistance of the battery.

【0017】従って拡散バリア層の形成には、例えばニ
ッケルやコバルト、鉄などの液体Li合金ないしその成
分と反応しにくい適宜な導体を用いることができる。そ
の形成は、例えば電気メッキ方式、無電解メッキ方式、
物理的ないし化学的蒸着方式などの適宜な方式で行うこ
とができる。拡散バリア層の厚さは、0.01〜5μ
m、就中0.05〜1μmが好ましい。その厚さが0.0
1μm未満ではボイドやピンホール等の欠陥が発生しや
すくなり、5μmを超えると集電体テープの電気抵抗が
高くなりやすい。
Therefore, for the formation of the diffusion barrier layer, for example, a liquid Li alloy such as nickel, cobalt, or iron, or an appropriate conductor that does not easily react with the component can be used. The formation is, for example, an electroplating method, an electroless plating method,
It can be performed by an appropriate method such as a physical or chemical vapor deposition method. The thickness of the diffusion barrier layer is 0.01 to 5 μm.
m, preferably 0.05 to 1 μm. Its thickness is 0.0
If it is less than 1 μm, defects such as voids and pinholes are likely to occur, and if it exceeds 5 μm, the electrical resistance of the current collector tape tends to be high.

【0018】拡散バリア層の上に設ける濡れ促進材層
は、溶融メッキ時における液体Li合金の濡れを促進
し、平坦かつ均一な膜厚の負極活物質層が形成されやす
くすることを目的とする。従って濡れ促進材層の形成に
は、液体Li合金ないしその成分と親和性の適宜な導
体、好ましくは液体Li合金ないしその成分と反応しや
すくてその化学親和性に優れるものを用いうる。その例
としては銀、銅、亜鉛、マグネシウム、アルミニウム、
カルシウム、バリウム、ビスマス、インジウム、鉛、白
金、パラジウム、スズなどがあげられる。
The wetting promoter layer provided on the diffusion barrier layer is intended to promote wetting of the liquid Li alloy during hot dipping and facilitate formation of a flat negative electrode active material layer having a uniform thickness. . Therefore, for the formation of the wetting promoting material layer, a conductor having an appropriate affinity with the liquid Li alloy or its component, preferably a liquid Li alloy or its component that easily reacts with excellent chemical affinity can be used. Examples are silver, copper, zinc, magnesium, aluminum,
Examples thereof include calcium, barium, bismuth, indium, lead, platinum, palladium and tin.

【0019】濡れ促進材層を設けない場合には、溶融メ
ッキによるコーティングが不能となるか、均一厚のLi
合金コーティング層が形成されにくく、凹凸化など電極
の表面性状が悪化しやすく、また50μm厚以下の薄層
を形成しにくくなる。濡れ促進材層の形成は、例えば電
気メッキ方式や物理的ないし化学的蒸着方式などの適宜
な方式で行うことができ、その厚さは、0.01〜5μ
m、就中0.1〜1μmが好ましい。濡れ促進材層の厚さ
が0.01μm未満では液体Li合金の濡れ促進効果に
乏しく、5μmを超えると負極活物質層の不純物として
作用して充放電容量や起電力等を低下させる場合があ
る。
When the wetting promoting material layer is not provided, the coating by hot dip coating becomes impossible, or Li of a uniform thickness is formed.
It is difficult to form the alloy coating layer, the surface properties of the electrode are easily deteriorated due to unevenness, and it is difficult to form a thin layer having a thickness of 50 μm or less. The wetting promoting material layer can be formed by an appropriate method such as an electroplating method or a physical or chemical vapor deposition method, and the thickness thereof is 0.01 to 5 μm.
m, especially 0.1 to 1 μm is preferable. When the thickness of the wetting promoting material layer is less than 0.01 μm, the wetting promoting effect of the liquid Li alloy is poor, and when it exceeds 5 μm, it may act as an impurity of the negative electrode active material layer to reduce charge / discharge capacity, electromotive force, etc. .

【0020】濡れ促進材層の上に設ける溶融メッキ層
は、Li合金で形成されて負極の活物質層となるもので
ある。本発明においては薄層化等の点より50μm以
下、就中5〜25μm、特に10〜20μmの厚さとする
ことが好ましい。
The hot-dip plated layer provided on the wetting promoter layer is made of a Li alloy and becomes the negative electrode active material layer. In the present invention, the thickness is preferably 50 μm or less, more preferably 5 to 25 μm, especially 10 to 20 μm from the viewpoint of thinning.

【0021】溶融メッキ層の形成、ひいては本発明の負
極の製造は、例えば拡散バリア層と濡れ促進材層を設け
た集電体テープをLi合金の溶融メッキ浴に導入してそ
のコーティング層を形成する方法などにより行うことが
できる。またコーティング層形成後にそのコーティング
層を急冷処理する方法なども採りうる。急冷処理した溶
融メッキ層は、結晶粒の粒界占積率や原子空孔が多くて
リチウムの拡散性に優れ、リチウムの吸放出が助長され
て充放電のサイクル寿命を向上させうる利点がある。
The formation of the hot-dip layer, and thus the production of the negative electrode of the present invention, is carried out by, for example, introducing a current collector tape provided with a diffusion barrier layer and a wetting promoter layer into a hot-dip bath of Li alloy to form the coating layer. It can be performed by a method of doing. Further, a method of quenching the coating layer after forming the coating layer may be adopted. The rapid-cooled hot-dip layer has a large grain boundary space factor of crystal grains and a large number of atomic vacancies, and is excellent in lithium diffusivity. It has the advantage that lithium absorption / desorption is promoted and the charge / discharge cycle life is improved. .

【0022】溶融メッキ層の形成に際しては図3、図4
に例示の如く、拡散バリア層と濡れ促進材層を有する長
尺の集電体テープ4を溶融メッキ浴5に連続的に導入し
通過させる連続方式や、所定長さの集電体テープ9を溶
融メッキ浴5に浸漬して取出すバッチ方式などの適宜な
製造方式を採用することができる。なお、図3又は図4
中の6は方向転換ロール、7はコーティング厚調節手
段、8は急冷処理する場合の冷却ガスノズル、10は錘
である。
In forming the hot-dip plated layer, FIGS.
As illustrated in FIG. 1, a continuous method in which a long current collector tape 4 having a diffusion barrier layer and a wetting promoting material layer is continuously introduced into a hot dip plating bath 5 and passed through, or a current collector tape 9 having a predetermined length is used. An appropriate manufacturing method such as a batch method in which the material is immersed in the hot dip plating bath 5 and taken out can be adopted. Note that FIG. 3 or FIG.
6 is a direction change roll, 7 is a coating thickness adjusting means, 8 is a cooling gas nozzle for rapid cooling, and 10 is a weight.

【0023】前記した溶融メッキ層を急冷する場合、そ
の処理は所定厚としたコーティング層に対して行われ
る。急冷処理には、例えば所定厚のコーティング層にア
ルゴンガスやヘリウムガス等の冷却不活性ガスを吹き付
ける方式などの適宜な方式を採ることができる。その場
合、結晶粒の微細化等による負極特性の向上などの点よ
り300℃/秒以上の速度で急冷させることが好まし
い。かかる急冷は、冷却ガス等の温度や供給量などの制
御で容易に達成することができる。また室温での溶融メ
ッキ層の凝固時間は通例2,3秒程度であることから、
300℃/秒以上の急冷処理を達成する点よりは、必要
に応じ厚さ調節手段を介して所定のコーティング厚とし
た後、1秒以内に急冷処理することが好ましい。
When the hot-dip plated layer is rapidly cooled, the treatment is performed on the coating layer having a predetermined thickness. For the rapid cooling treatment, an appropriate method such as a method of spraying a cooling inert gas such as argon gas or helium gas onto the coating layer having a predetermined thickness can be adopted. In that case, it is preferable to perform rapid cooling at a rate of 300 ° C./sec or more from the viewpoint of improving the negative electrode characteristics by making the crystal grains finer. Such rapid cooling can be easily achieved by controlling the temperature and supply amount of the cooling gas or the like. Moreover, since the solidification time of the hot-dip layer at room temperature is usually about a few seconds,
From the standpoint of achieving a quenching treatment of 300 ° C./sec or more, it is preferable to perform a quenching treatment within 1 second after the coating thickness is adjusted to a predetermined value through a thickness adjusting means if necessary.

【0024】なお前記において冷却ガス等の急冷処理雰
囲気が、コーティング厚調節手段に及ぶと当該手段に集
電体テープが固着して断線したり、また所定厚とする前
にコーティング層が冷却すると厚さのバラツキ等の原因
となることなどから、図3や図4に例示の如く、急冷処
理雰囲気が所定厚とする前のコーティング層に及ばない
ようにすることが望ましい。冷却ガス等ではその供給方
向を制御し、役割を終えたものを吸引除去する方式など
によりかかる目的を容易に達成することができる。
When the quenching treatment atmosphere such as the cooling gas reaches the coating thickness adjusting means in the above, the current collector tape is fixed to the means and the wire is broken, or when the coating layer is cooled before reaching a predetermined thickness, the thickness increases. It is desirable to prevent the quenching treatment atmosphere from reaching the coating layer before the predetermined thickness, as illustrated in FIGS. Such a purpose can be easily achieved by a method of controlling the supply direction of the cooling gas or the like and sucking and removing the gas that has finished its role.

【0025】上記した溶融メッキ層の形成に際して、集
電体テープの両側端部に当該溶融メッキ層を有しない状
態の形成は、集電体テープの全面に当該溶融メッキ層を
設けた後、両側端部のそれを除去する方式などの適宜な
方式で行いうる。製造効率等の点より好ましい方式は、
Ni等の拡散バリア層の上には当該溶融メッキ層が形成
されにくいことから、拡散バリア層上のAg等からなる
濡れ促進材層の形成を集電体テープの両側端部を残した
中間部分に対して行う方式である。
In forming the above-mentioned hot-dip plated layer, the current-collecting tape is not provided with the hot-dip-plated layer at both end portions thereof. It can be performed by an appropriate method such as a method of removing it at the end portion. The preferred method from the viewpoint of manufacturing efficiency is
Since the hot-dip plated layer is difficult to be formed on the diffusion barrier layer made of Ni or the like, the formation of the wetting promoting material layer made of Ag or the like on the diffusion barrier layer is performed in the middle portion of the current collector tape leaving both end portions. It is a method to do to.

【0026】前記方式の達成は、例えば拡散バリア層を
付設した集電体テープの両側端部に粘着テープやポリマ
ーコート等からなる適宜なマスキングを設け、その集電
体テープを濡れ促進材層の形成に供する方式などにより
行うことができる。これにより、集電体テープの両側端
部における当該マスキングを除去して拡散バリア層を露
出させて溶融メッキ層の形成に供することで、その濡れ
促進材層上のみに溶融メッキ層が形成されて目的の状態
が形成される。
To achieve the above method, for example, appropriate masking made of an adhesive tape, a polymer coat or the like is provided on both end portions of a current collector tape provided with a diffusion barrier layer, and the current collector tape is used as a wetting promoting material layer. It can be performed according to the method used for formation. Thus, by removing the masking at both end portions of the current collector tape and exposing the diffusion barrier layer to be used for forming the hot dip plated layer, the hot dip plated layer is formed only on the wettability promoting material layer. The desired state is formed.

【0027】なお集電体テープの両側端部における当該
溶融メッキ層を有しない部分の幅は、形成目的の電池形
態や大きさ等に応じて適宜に決定しうるが、一般には1
〜4mm、就中1〜2mmとされる。その幅が1mm未満では
充放電に伴う繰返し張力の緩和効果に乏しくて溶融メッ
キ層にクラックが発生しやすく、4mmを超えると溶融メ
ッキ層の幅が狭くなって放電容量の低下を招きやすくな
る。
The width of the portions not having the hot-dip plated layer on both end portions of the current collector tape can be appropriately determined according to the form and size of the battery to be formed, but is generally 1
~ 4mm, especially 1-2mm. If the width is less than 1 mm, the effect of relieving the repetitive tension associated with charge and discharge is poor, and cracks are likely to occur in the hot-dip plated layer. If the width exceeds 4 mm, the width of the hot-dip plated layer is narrowed and the discharge capacity is likely to decrease.

【0028】前記において溶融メッキ層の形成に用いる
Li合金としては、Liと、例えばAl、Pb、Sn、
In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、S
r、Teなどの金属との2元又は3元以上の合金に、必
要に応じてSi、Cd、Zn、La等を添加したものな
どがあげられ、公知物のいずれも用いうる。ちなみに、
前記Li合金の具体例としては、例えばAl、Bi、S
n又はIn等とLiとの金属間化合物などからなるLi
合金、LiとPbの合金にLa等を添加して機械的特性
を改善したもの、あるいはAg、Al、Mg、Zn又は
Caの少なくとも1種からなるX成分を含むLi−X−
Te系合金などがあげられる。
As the Li alloy used for forming the hot-dip plated layer in the above, Li and, for example, Al, Pb, Sn,
In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, S
Examples include alloys of binary or ternary or more with metals such as r and Te, to which Si, Cd, Zn, La, and the like are added, if necessary, and any known material can be used. By the way,
Specific examples of the Li alloy include Al, Bi, S
Li consisting of an intermetallic compound of n or In or the like and Li
Alloys, alloys of Li and Pb with added La or the like to improve mechanical properties, or Li-X- containing X component consisting of at least one of Ag, Al, Mg, Zn or Ca.
Examples include Te-based alloys.

【0029】Li合金におけるリチウム以外の成分の含
有量は、原子比に基づいて40%以下、就中5〜30
%、特に10〜20%が好ましい。その含有量が40%
を超えると負極活物質としてのエネルギー密度の低下が
著しい場合があり、20%を超えると起電力が低下する
場合がある。また5%未満では合金化による特性の改善
効果に乏しい場合がある。充放電のサイクル寿命、高起
電力性、高放電容量性、高エネルギー密度性などの点よ
り特に好ましく用いうるLi合金は、Li−Ag−Te
系合金からなるLi:Ag:Teの原子比が80〜15
0:1〜20:0.001〜30のものなどであり、L
iを80原子%以上含有するものである。
The content of components other than lithium in the Li alloy is 40% or less based on the atomic ratio, preferably 5 to 30.
%, Particularly 10 to 20% is preferable. Its content is 40%
If it exceeds 20%, the energy density of the negative electrode active material may significantly decrease, and if it exceeds 20%, the electromotive force may decrease. If it is less than 5%, the effect of improving the properties due to alloying may be poor. Li-Ag-Te is a Li alloy that can be particularly preferably used in terms of charge / discharge cycle life, high electromotive force, high discharge capacity, and high energy density.
The atomic ratio of Li: Ag: Te made of a system alloy is 80 to 15
0: 1 to 20: 0.001 to 30 and the like, L
The content of i is 80 atomic% or more.

【0030】なお本発明の負極については、その溶融メ
ッキ層の上に必要に応じて例えばLiF、Li3PO4
Li2S、LiCl、Li2CO3などからなるLiイオ
ン透過性の固体電解質膜を設けることもできる。固体電
解質膜は、負極と電解液の接触反応を防止して電池寿命
の向上を目的とするものであり、その付設は例えば溶液
浸漬方式、電解液添加物方式、気相反応方式、低温蒸着
方式などにより行うことができる。
Regarding the negative electrode of the present invention, if necessary, for example, LiF, Li 3 PO 4 , or
It is also possible to provide a Li ion permeable solid electrolyte membrane made of Li 2 S, LiCl, Li 2 CO 3, or the like. The solid electrolyte membrane is intended to improve the battery life by preventing the contact reaction between the negative electrode and the electrolytic solution, and its attachment is, for example, a solution immersion method, an electrolytic solution additive method, a gas phase reaction method, a low temperature vapor deposition method. It can be done by

【0031】本発明のLi二次電池は、当該負極と正極
を電解質を含むセパレータを介して配置した構造を有す
るものである。従って前記の点を除き、従来に準じた仕
様のLi二次電池を形成することができる。電池形態な
ども使用目的等に応じて適宜に決定してよく、例えばコ
イン型やボタン型、あるいは捲回体型などのような任意
な形態とすることができる。
The Li secondary battery of the present invention has a structure in which the negative electrode and the positive electrode are arranged via a separator containing an electrolyte. Therefore, except for the above points, it is possible to form a Li secondary battery having specifications according to the related art. The form of the battery may be appropriately determined according to the purpose of use, and may be any form such as coin type, button type, or wound type.

【0032】ちなみに図5にコイン型のLi二次電池を
例示した。13,18は電池缶、14はNi板からなる
集電体、15は正極、16は電解質含有のセパレータ、
17は負極、19は絶縁封止材である。シート状の正極
と負極をセパレータを介して積層したものを捲回したも
のなどからなる捲回型のLi二次電池などについても前
記コイン型電池に準じて形成することができる。
By the way, FIG. 5 illustrates a coin type Li secondary battery. 13, 18 are battery cans, 14 is a collector made of Ni plate, 15 is a positive electrode, 16 is an electrolyte-containing separator,
Reference numeral 17 is a negative electrode, and 19 is an insulating sealing material. A wound Li secondary battery, which is formed by winding a sheet-shaped positive electrode and a negative electrode laminated via a separator, and the like can also be formed according to the coin-type battery.

【0033】電解質としては、Liイオンの移動を可能
とした適宜なものを用いることができる。その例として
は、塩類電解性ポリマーにリチウム塩を混合してなるも
のの如きポリマー電解質、無機Li固体電解質、ないし
それを樹脂中に分散させてなるものの如き固体電解質、
エステルやエーテル等の有機溶媒にリチウム塩を溶解さ
せてなる非水電解液系のものなどがあげられる。
As the electrolyte, it is possible to use an appropriate electrolyte capable of moving Li ions. Examples thereof include polymer electrolytes such as those obtained by mixing a lithium electrolytic salt with a salt-electrolytic polymer, inorganic Li solid electrolytes, or solid electrolytes such as those obtained by dispersing it in a resin.
Examples include non-aqueous electrolyte-based electrolytes prepared by dissolving a lithium salt in an organic solvent such as ester or ether.

【0034】前記の塩類電解性ポリマーの代表例として
は、ポリエチレンオキシド、ポリホスファゼン、ポリア
ジリジン、ポリエチレンスルフィド、それらの誘導体や
混合物、複合体などがあげられる。従って前記したポリ
マー電解質や固体電解質の場合には、それを電解質含有
のセパレータとしてそのまま用いることもできる。
Typical examples of the above salt-electrolytic polymers include polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, their derivatives, mixtures and complexes. Therefore, in the case of the above-mentioned polymer electrolyte or solid electrolyte, it can be used as it is as a separator containing an electrolyte.

【0035】一方、前記有機溶媒の代表例としては、プ
ロピレンカーボネート、エチレンカーボネート、ジメチ
ルカーボネート、ジエチルカーボネート、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、ジメトキシエ
タン、ジメチルスルホキシド、スルホラン、γ−ブチロ
ラクトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
On the other hand, typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone and 1,2-dimethoxy. Ethane, diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0036】有機溶媒等に溶解させるリチウム塩の代表
例としては、LiI、LiCF3SO3、Li(CF2
22、LiBF4、LiClO4、LiAlCl4、L
iPF6、LiAsF6などがあげられる。電解液におけ
るリチウム塩の濃度は0.1〜3モル/リットルが一般
的であるが、これに限定されない。
Typical examples of the lithium salt dissolved in an organic solvent or the like include LiI, LiCF 3 SO 3 and Li (CF 2 S
O 2 ) 2 , LiBF 4 , LiClO 4 , LiAlCl 4 , L
iPF 6, such as LiAsF 6, and the like. The concentration of the lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this.

【0037】なお前記した非水電解液等の形成に際して
は、寿命や放電容量、起電力等の電池特性の向上などを
目的として、必要に応じて2−メチルフラン、チオフェ
ン、ピロール、クラウンエーテル、Li錯イオン形成剤
(大環状化合物等)などの有機添加物や、上記した負極
被覆用の固体電解質膜を形成する成分を添加することも
できる。
In forming the above-mentioned non-aqueous electrolyte, etc., 2-methylfuran, thiophene, pyrrole, crown ether, if necessary, for the purpose of improving battery characteristics such as life, discharge capacity, electromotive force, etc. It is also possible to add an organic additive such as a Li complex ion forming agent (macrocyclic compound or the like), or a component forming the above-described solid electrolyte membrane for coating the negative electrode.

【0038】前記の非水電解液等の場合、セパレータと
しては、電解液を保持するための多孔性絶縁膜、例えば
ポリプロピレンやポリエチレン等のポリオレフィンから
なる多孔性ポリマーフィルムやガラスフィルター、不織
布の如き多孔性素材などが用いられる。多孔性絶縁膜を
介した電解液の保持は、多孔性絶縁膜に電解液を含浸さ
せたり、充填する方式、あるいは電池缶内に電解液を充
填する方式などの適宜な方式で達成してよい。多孔性絶
縁膜の厚さは、形成目的の電池等に応じて適宜に決定す
ることができ、一般には500μm以下、就中1〜30
0μm、特に5〜100μmとされる。
In the case of the above-mentioned non-aqueous electrolytic solution or the like, the separator may be a porous insulating film for holding the electrolytic solution, for example, a porous polymer film made of polyolefin such as polypropylene or polyethylene, a glass filter, or a porous material such as nonwoven fabric. For example, a sex material is used. The holding of the electrolytic solution through the porous insulating film may be achieved by an appropriate method such as a method of impregnating or filling the porous insulating film with the electrolytic solution, or a method of filling the electrolytic solution into the battery can. . The thickness of the porous insulating film can be appropriately determined according to the battery for which it is formed, and is generally 500 μm or less, especially 1 to 30.
The thickness is 0 μm, particularly 5 to 100 μm.

【0039】なおセパレータを形成する多孔性絶縁膜
は、電解液の保持能に優れる例えばポリビニレンカーボ
ネートやポリビニルピロリドンなどからなるコーティン
グ膜を有していてもよい。またセパレータは、負極と電
解液の接触防止等を目的として、多孔性絶縁膜の間に例
えばAlやBi等からなるLiイオン透過性の金属膜を
介在させた構造や、多孔性絶縁膜にLiイオン透過性の
陽イオン交換膜を付設した構造などを有していてもよ
い。
The porous insulating film forming the separator may have a coating film made of, for example, polyvinylene carbonate or polyvinylpyrrolidone, which is excellent in the ability to retain the electrolytic solution. The separator has a structure in which a Li ion permeable metal film made of, for example, Al or Bi is interposed between the porous insulating films for the purpose of preventing contact between the negative electrode and the electrolytic solution, or the porous insulating film has a Li film. It may have a structure provided with an ion-permeable cation exchange membrane.

【0040】正極としては、カーボンや金属系のもの、
共役系ポリマー等の有機導電性物質系のものなどの適宜
なものを用いうる。前記金属系正極の例としては、Li
を含有する、Ti、Mo、Cu、Nb、V、Mn、C
r、Ni、Co、P等の金属の複合酸化物、硫化物、セ
レン化物、V25などがあげられ、より具体的には例え
ば、LiMnO2、LiMn24、LiMn2-xx4
LiNiO2、LiNi1-xx2、LiCoO2、Li
CrO2、LiFeO2、LiVO2、LiwCo1-x-yx
y2+z(ただし、Mは1種又は2種以上の遷移金属、
wは0<w≦2、xは0≦x<1、yは0<y<1、z
は−1≦z≦4である。)、あるいはLiないしLi・
Coのリン酸塩及び/又はCoないしLi・Coの酸化物
を成分として1モルのLiあたり0.1モル以上のCo
と0.2モル以上のPを含有するものなどを活物質とす
るものがあげられる。
As the positive electrode, carbon or metal type,
Appropriate materials such as organic conductive material materials such as conjugated polymers can be used. Examples of the metal-based positive electrode include Li
Containing Ti, Mo, Cu, Nb, V, Mn, C
Examples thereof include complex oxides of metals such as r, Ni, Co, P, sulfides, selenides, V 2 O 5, and the like. More specifically, for example, LiMnO 2 , LiMn 2 O 4 , LiMn 2-x M x O 4 ,
LiNiO 2 , LiNi 1-x M x O 2 , LiCoO 2 , Li
CrO 2 , LiFeO 2 , LiVO 2 , Li w Co 1-xy M x
P y O 2 + z (where M is one or more transition metals,
w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <1, z
Is −1 ≦ z ≦ 4. ), Or Li or Li
0.1 mol or more of Co per 1 mol of Li containing a phosphate of Co and / or an oxide of Co or Li · Co
And those containing 0.2 mol or more of P as an active material.

【0041】正極の形成は、例えば前記活物質等の極形
成材を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料、及びポリテトラフルオロエチレン
やポリエチレン、ポリフッ化ビニリデンやエチレン・プ
ロピレン・ジエン共重合体等の結着剤と共に、キャステ
ィング方式や圧縮成形方式、ロール成形方式やドクター
ブレード方式、圧延方式や熱間押出方式などの適宜な方
式で成形する方法や、各種の蒸着方式や溶融メッキ方式
などにより膜形成する方法などで行うことができる。な
お正極や負極の厚さは、500μm以下、就中300μm
以下、特に5〜200μmが一般的であるが1mmを超え
る厚さとするときもあり、その厚さは適宜に決定するこ
とができる。
The positive electrode is formed by using, for example, an electrode forming material such as the above-mentioned active material, if necessary, a conductive material such as acetylene black or Ketjen black, and polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, ethylene / propylene / diene. Along with binders such as copolymers, casting methods, compression molding methods, roll molding methods, doctor blade methods, rolling methods, hot extrusion methods, and other appropriate methods, as well as various vapor deposition methods and hot dipping It can be performed by a method of forming a film by a method or the like. The thickness of the positive and negative electrodes is 500 μm or less, especially 300 μm.
Hereinafter, a thickness of 5 to 200 μm is generally used, but the thickness may exceed 1 mm, and the thickness can be appropriately determined.

【0042】実施例1 幅41mm、厚さ10μmの銅テープの両面に、ニッケル
を厚さ2μmで電気メッキした後、その表裏の両側端部
に幅1mmのマスキングを設けてそれに銀を厚さ0.1μ
mで部分的(中間部)に電気メッキし、そのマスキング
を除去してなる集電体テープを高純度アルゴン雰囲気中
にて、Li:Ag:Teの原子比が90:10:0.1
のLi−Ag−Te系合金の溶融メッキ浴(350℃)
に連続的に導入して通過させ、絞り治具にて両面におけ
るコーティング厚をそれぞれ25μmに調節し、それよ
り長さ420mmの切り出し片を形成して負極テープを得
た。
EXAMPLE 1 Nickel was electroplated with a thickness of 2 μm on both sides of a copper tape having a width of 41 mm and a thickness of 10 μm, and then masking with a width of 1 mm was provided on both sides of the front and back sides of the copper tape to make silver thickness 0. .1μ
The current collector tape obtained by partially electroplating (middle part) with m and removing the masking was used in a high-purity argon atmosphere, and the atomic ratio of Li: Ag: Te was 90: 10: 0.1.
Li-Ag-Te system alloy hot dip bath (350 ℃)
Was continuously introduced and passed through, and the coating thickness on each side was adjusted to 25 μm by a drawing jig, and a cut piece having a length of 420 mm was formed therefrom to obtain a negative electrode tape.

【0043】一方、炭酸リチウムと塩基性炭酸コバルト
とリン酸含有率85%のリン酸水溶液をLi:Co:P
=2:1.5:0.5の原子比で混合し、それをアルミ
ナ製坩堝に入れて900℃で24時間加熱処理し、リチ
ウムのリン酸塩とリチウム・コバルトのリン酸塩とコバ
ルト酸化物の混合物(活物質)を形成し、それをボール
ミルで粉砕して粒径20μm以下の粉末とした。次に、
その粉末46重量部、アセチレンブラック4重量部、ポ
リフッ化ビニリデン2重量部、及びN−メチルピロリド
ン50重量部を混合し、それを幅39mm、厚さ25μm
のアルミニウムテープの両面に厚さ150μmで塗布
し、それを圧延処理して厚さ100μmとし、それより
長さ400mmの切り出し片を形成して正極テープを得
た。
On the other hand, lithium carbonate, basic cobalt carbonate, and a phosphoric acid aqueous solution having a phosphoric acid content of 85% were mixed with Li: Co: P.
= 2: 1.5: 0.5, mixed in an atomic ratio, placed in an alumina crucible and heat-treated at 900 ° C for 24 hours to obtain lithium phosphate, lithium-cobalt phosphate and cobalt oxide. A mixture of substances (active material) was formed and pulverized by a ball mill to obtain a powder having a particle size of 20 μm or less. next,
46 parts by weight of the powder, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride and 50 parts by weight of N-methylpyrrolidone are mixed, and the mixture is 39 mm wide and 25 μm thick.
The aluminum tape was coated on both sides with a thickness of 150 μm and rolled to a thickness of 100 μm, and a 400 mm long cut piece was formed from the aluminum tape to obtain a positive electrode tape.

【0044】次に、前記の負極テープと正極テープを、
厚さ25μmの多孔質ポリプロピレンフィルム(セパレ
ータ)を介在させた状態で捲回して電池缶に収納し3m
lの電解液を注入して単3型の二次電池を形成した。な
お、捲回物の断面積は電池缶内側の断面積の約90%と
し、電解液には1リットルのプロピレンカーボネート/
ジメトキシエタンの混合溶媒に1モルのLiClO4
溶解させたものを用いた。
Next, the above-mentioned negative electrode tape and positive electrode tape are
3m in a battery can, wound with a 25μm thick porous polypropylene film (separator) in between
1 A of the electrolytic solution was injected to form an AA type secondary battery. The cross-sectional area of the wound product is about 90% of the cross-sectional area inside the battery can, and 1 liter of propylene carbonate /
A solution obtained by dissolving 1 mol of LiClO 4 in a mixed solvent of dimethoxyethane was used.

【0045】実施例2 Niメッキした銅テープの両側端部におけるマスキング
幅を4mmとしたほかは実施例1に準じて負極テープを
得、それを用いてLi二次電池を得た。
Example 2 A negative electrode tape was obtained in the same manner as in Example 1 except that the masking width at both ends of the Ni-plated copper tape was 4 mm, and a Li secondary battery was obtained by using the negative electrode tape.

【0046】比較例 実施例1に準じて、テープの全面にLi−Ag−Te系
合金の溶融メッキ層を有する負極テープを得、それを用
いてLi二次電池を得た。
Comparative Example In accordance with Example 1, a negative electrode tape having a hot-dip layer of Li-Ag-Te alloy on the entire surface of the tape was obtained, and using this, a Li secondary battery was obtained.

【0047】評価試験 実施例、比較例で得たLi二次電池について、100m
Aの充電電流及び放電電流にて4.1V(充電)〜2.
75V(放電:充電後1時間放置)の間で充放電サイク
ルを10回繰返したのち、電池を分解して負極テープを
回収しそのLi−Ag−Te系合金の溶融メッキ層にお
けるクラックの有無を調べた。
Evaluation test 100 m of the Li secondary batteries obtained in the examples and comparative examples
4.1 V (charge) to 2.A at the charging current and discharging current of A.
After repeating the charge / discharge cycle 10 times at 75 V (discharge: left for 1 hour after charging), the battery was disassembled and the negative electrode tape was collected to check for cracks in the hot-dip layer of the Li-Ag-Te alloy. Examined.

【0048】前記の結果を次表に示した。 The above results are shown in the following table.

【0049】[0049]

【発明の効果】本発明によれば、Li合金からなる溶融
メッキ層にクラックが発生しにくい負極を得ることがで
き、その溶融メッキ層による品質のバラツキや凹凸化等
の変形が少なくて密着性に優れるLi合金負極に基づい
て充放電容量、充放電のサイクル寿命に優れる高信頼性
のLi二次電池を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a negative electrode in which a hot-dip plated layer made of a Li alloy is less prone to cracks, and the hot-dip plated layer has little variation in quality and unevenness such as unevenness, and adhesion. Based on the excellent Li alloy negative electrode, a highly reliable Li secondary battery having excellent charge / discharge capacity and charge / discharge cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極の実施例の平面図。FIG. 1 is a plan view of an example of a negative electrode.

【図2】負極の他の実施例の断面図。FIG. 2 is a sectional view of another embodiment of the negative electrode.

【図3】製造例の説明図。FIG. 3 is an explanatory diagram of a manufacturing example.

【図4】他の製造例の説明図。FIG. 4 is an explanatory view of another manufacturing example.

【図5】電池例の説明図。FIG. 5 is an explanatory diagram of a battery example.

【符号の説明】[Explanation of symbols]

1:集電体テープ 11:拡散バリア層 12:濡れ促進材層 2:Li合金の溶融メッキ層 3:溶融メッキ層を有しない側端部 15:正極 16:セパレータ 17:負極 1: Current collector tape 11: Diffusion barrier layer 12: Wetting promoter layer 2: Li alloy hot-dip layer 3: Side edge without hot-dip layer 15: Positive electrode 16: Separator 17: Negative electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 集電体テープの上に、液体Li合金と反
応しにくい導体からなる拡散バリア層と、その上の液体
Li合金と親和性の導体からなる濡れ促進材層を介し
て、Li合金からなる溶融メッキ層を有し、かつその溶
融メッキ層を集電体テープの両側端部には有しないこと
を特徴とするLi二次電池用の負極。
1. A lithium barrier layer is formed on a current collector tape via a diffusion barrier layer made of a conductor that does not easily react with a liquid Li alloy and a wetting promoter layer made of a conductor having an affinity for the liquid Li alloy on the diffusion barrier layer. A negative electrode for a Li secondary battery, which has a hot-dip layer made of an alloy, and does not have the hot-dip layer on both ends of the current collector tape.
【請求項2】 電解質を含むセパレータの片側に請求項
1に記載の負極を有し、他方側に正極を有することを特
徴とするLi二次電池。
2. A Li secondary battery having the negative electrode according to claim 1 on one side of a separator containing an electrolyte and the positive electrode on the other side.
JP6287311A 1994-10-27 1994-10-27 Negative electrode and lithium secondary battery Pending JPH08130005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287311A JPH08130005A (en) 1994-10-27 1994-10-27 Negative electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287311A JPH08130005A (en) 1994-10-27 1994-10-27 Negative electrode and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08130005A true JPH08130005A (en) 1996-05-21

Family

ID=17715733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287311A Pending JPH08130005A (en) 1994-10-27 1994-10-27 Negative electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08130005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218032A1 (en) * 2018-06-21 2021-07-15 Applied Materials, Inc. Diffusion barrier films enabling the stability of lithium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218032A1 (en) * 2018-06-21 2021-07-15 Applied Materials, Inc. Diffusion barrier films enabling the stability of lithium
US11876231B2 (en) * 2018-06-21 2024-01-16 Applied Materials, Inc. Diffusion barrier films enabling the stability of lithium

Similar Documents

Publication Publication Date Title
JPH08171938A (en) Li secondary battery and its positive electrode
US6794087B2 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
EP2606523B1 (en) Method for preparing negative active material, negative electrode material and lithium ion battery
EP3819962B1 (en) Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and preparation method thereof
EP4228047A1 (en) All-solid-state secondary battery and manufacturing method therefor
EP0794585A1 (en) Secondary lithium cell
EP4002517B1 (en) All-solid battery and method of preparing the same
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
EP3961759A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
US20020172862A1 (en) Electrode for lithium secondary battery and lithium secondary battery
JPH07240201A (en) Negative electrode and lithium secondary battery
EP4053938A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
KR20200134126A (en) All solid lithium secondary battery and charging method for the same
WO2008001539A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
JPH07296812A (en) Negative electrode and li secondary battery
EP0668621A1 (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH08180853A (en) Separator and lithium secondary battery
JPH0896792A (en) Lithium battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP2004111329A (en) Lithium secondary battery and negative electrode therefor
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery