JP2004111329A - Lithium secondary battery and negative electrode therefor - Google Patents

Lithium secondary battery and negative electrode therefor Download PDF

Info

Publication number
JP2004111329A
JP2004111329A JP2002275554A JP2002275554A JP2004111329A JP 2004111329 A JP2004111329 A JP 2004111329A JP 2002275554 A JP2002275554 A JP 2002275554A JP 2002275554 A JP2002275554 A JP 2002275554A JP 2004111329 A JP2004111329 A JP 2004111329A
Authority
JP
Japan
Prior art keywords
thin film
secondary battery
lithium secondary
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002275554A
Other languages
Japanese (ja)
Other versions
JP4162457B2 (en
Inventor
Nobuyuki Tamura
田村 宜之
Hiroyuki Fujimoto
藤本 洋行
Maruo Jinno
神野 丸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002275554A priority Critical patent/JP4162457B2/en
Publication of JP2004111329A publication Critical patent/JP2004111329A/en
Application granted granted Critical
Publication of JP4162457B2 publication Critical patent/JP4162457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve a charge/discharge characteristic of a lithium secondary battery having a thin film including tin formed on a collector substrate including copper. <P>SOLUTION: The thin film formed on the collector substrate has a layer containing Cu<SB>3</SB>Sn as a main component formed on the collector substrate and a layer containing Cu<SB>6</SB>Sn<SB>5</SB>as a main component formed on the former layer, and an X-ray diffraction pattern of the thin film by using CuKα ray shows a peak strength A corresponding to Cu<SB>3</SB>Sn appearing in the range of 41.5 to 42.5° and a peak strength B corresponding to Cu<SB>6</SB>Sn<SB>5</SB>appearing in the range of 29.9 to 30.5°, where a peak strength ratio (A/B) is ≥ 0.03 and ≤ 0.19. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用負極及びこれを用いたリチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、研究開発が盛んに行われているリチウム二次電池は、用いられる電極により充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
【0003】
負極活物質としてリチウム金属を用いると、重量当り及び体積当りともに高いエネルギー密度の電池を構成することができるが、充電時にリチウムがデンドライト状に析出し、内部短絡を引き起こすという問題があった。
【0004】
これに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が報告されている(非特許文献1)。
【0005】
銅からなる集電体基板の上に、電解めっき法により錫単体または錫合金の薄膜を形成した電極においては、薄膜形成後熱処理することにより充放電サイクル特性が向上することが知られている(特許文献1)。また、熱処理により、集電体基板の銅成分が薄膜中に拡散し、薄膜中において錫と銅の合金が形成されることが知られている。
【0006】
【非特許文献1】
Solid State Ionics,113−115,p57(1998)
【特許文献1】
国際公開WO01/84654号
【0007】
【発明が解決しようとする課題】
しかしながら、熱処理を施した電極であっても、充放電サイクル特性が良好なものとそうでないものが存在しており、薄膜中の合金組成と充放電サイクル特性の関係については詳細に検討されていない。
【0008】
本発明の目的は、銅を含む集電体基板の上に錫を含む薄膜が設けられたリチウム二次電池用負極において、充放電サイクル特性に優れたリチウム二次電池用負極並びにこれを用いたリチウム二次電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明のリチウム二次電池用負極は、銅を含む集電体基板の上に、錫を含む薄膜が設けられた負極であり、該薄膜が、集電体基板上に設けられるCuSnを主成分とする層と、該層の上に設けられるCuSnを主成分とする層を有し、かつ、CuKα線によるX線回折パターンにおいて、41.5〜42.5度の領域内に表れるCuSnに対応するピークAと、29.5〜30.5度の領域内に表れるCuSnに対応するピークBとの強度比(A/B)が0.03以上0.19以下であることを特徴としている。
【0010】
本発明においては、CuSnに対応するピークAと、CuSnに対応するピークBとの強度比(A/B)が0.03以上0.19以下である。0.03未満であると、CuSnを主成分とする層が薄くなり過ぎるかあるいは存在しないため、良好な充放電サイクル特性が得られない。CuSnを主成分とする層が適当な厚みで存在することにより、集電体基板に対する薄膜の密着性が良好となり、良好な充放電サイクル特性が得られるものと思われる。ピーク強度比(A/B)が0.19を超えると、CuSnを主成分とする層が厚くなり過ぎ、良好な充放電サイクル特性が得られない。CuSnは充放電反応に関与しない層であると思われ、このような層が厚くなることにより、充放電サイクル特性が低下するものと思われる。ピーク強度比(A/B)のさらに好ましい範囲は、0.07以上0.11以下である。
【0011】
本発明において、薄膜は、錫単体または錫合金からなる薄膜を集電体基板上に形成することにより設けることができる。錫合金としては、例えば、Sn−Cu合金、Sn−In合金などが挙げられる。
【0012】
薄膜の形成方法としては、電解めっき法及び無電解めっき法などのめっき法が好ましく用いられる。また、CVD法、スパッタリング法、真空蒸着法、溶射法などの物理的な薄膜形成方法により薄膜を形成してもよい。
【0013】
また、薄膜を集電体基板上に形成した後、熱処理を施してもよい。例えば、Sn単体からなる薄膜をCuからなる集電体基板上に形成した後、熱処理を施すことにより、集電体基板中のCuを薄膜中に拡散させることができる。薄膜中に拡散したCuはSnと合金を形成する。従って、熱処理条件を制御することにより、CuSn及びCuSnの割合を制御することができるので、ピーク強度比(A/B)を制御することができる。
【0014】
本発明における集電体基板は銅を含むものであり、例えば、銅箔、銅合金箔などから形成することができる。
集電体基板の表面には凹凸が形成されていることが好ましい。基板表面に凹凸が形成されることにより、基板と薄膜との密着性を向上させることができ、充放電に伴う薄膜の脱離を抑制することができる。具体的には、基板の表面粗さRaが、0.01〜2μm程度であることが好ましい。表面粗さRaは、日本工業規格(JIS B 0601−1994)に定められている。表面粗さRaは、例えば表面粗さ計により測定することができる。
【0015】
表面粗さRaが大きな銅箔としては、圧延銅箔の表面を粗面化したものや、電解銅箔が挙げられる。
本発明において、薄膜の厚みは特に限定されるものではなく、正極活物質の種類やその厚み等に応じて適宜選択される。
【0016】
本発明において集電体基板の厚みは、特に限定されるものではないが、厚みが厚くなると電極全体の厚みが厚くなり、体積当り及び重量当りの電池のエネルギー密度が低くなるので、50μm程度以下であることが好ましい。
【0017】
本発明のリチウム二次電池は、本発明の電極からなる負極と、正極と、非水電解質とを備えることを特徴としている。
本発明のリチウム二次電池に用いる非水電解質の溶媒は、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が例示される。また、上記環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。また、非水電解質の溶質としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。特に、LiXF(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがBi、Al、Ga、またはInのときyは4である)と、リチウムペルフルオロアルキルスルホン酸イミドLiN(C2m+1SO)(C2n+1SO)(式中、m及びnはそれぞれ独立して1〜4の整数である)またはリチウムペルフルオロアルキルスルホン酸メチドLiN(C2p+1SO)(C2q+1SO)(C2r+1SO)(式中、p、q及びrはそれぞれ独立して1〜4の整数である)との混合溶質が好ましく用いられる。これらの中でも、LiPFとLiN(CSOとの混合溶質が特に好ましく用いられる。さらに電解質として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質が例示される。本発明のリチウム二次電池の電解質は、イオン導電性を発現させる溶質としてのリチウム化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。
【0018】
本発明のリチウム二次電池の正極材料としては、LiCoO、LiNiO、LiMn、LiMnO、LiCo0.5Ni0.5、LiNi0.7Co0.2Mn0.1などのリチウム含有遷移金属酸化物や、MnOなどのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入、脱離する物質であれば、制限なく用いることができる。
【0019】
【発明の実施の形態】
以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更して実施することが可能なものである。
【0020】
〔電極の作製〕
厚み18μmの電解銅箔(表面粗さRa=0.5μm)の上に、電解めっき法により、厚み1μmの錫薄膜を形成し、その後乾燥した。めっき浴は、表1に示す組成のものを用いた。
【0021】
【表1】

Figure 2004111329
【0022】
次に、得られた電極を、表2に示す条件で熱処理し、その後105℃で2時間乾燥した。熱処理後の電極について、CuKα線によるX線回折パターンを測定した。
【0023】
図1は、160℃12時間熱処理した電極のX線回折パターンである。図1に示すように、41.9度にピークAが観察され、30.2度にピークBが観察される。ピークAはCuSnに対応するピークであり、ピークBはCuSnに対応するピークである。
【0024】
各電極におけるピークAとピークBの強度比(A/B)を測定し、表2に示した。
【0025】
【表2】
Figure 2004111329
【0026】
表2から明らかなように、160℃12時間及び180℃12時間熱処理したものは、ピーク強度比(A/B)が0.19より高くなっており、本発明の範囲外となっている。それ以外の電極は、ピーク強度比(A/B)が0.03〜0.19であり、本発明の範囲内となっている。
【0027】
図4は、140℃12時間熱処理した電極の断面を観察した走査型電子顕微鏡写真である。EDXによる各層のスポット組成分析の結果と、X線回折の測定結果から、銅箔の上に存在する層はCuSnを主成分とする層であり、この層の上に、CuSnを主成分とする層が存在していることがわかった。
【0028】
〔電解液の作製〕
エチレンカーボネートとジメチルカーボネートの体積比1:1の混合溶媒に、LiPFを1モル/リットル溶解させて電解液を作製した。
【0029】
〔ビーカーセルの作製〕
上記各電極を2cm×2cmの大きさに切り取ったものを作用極として用い、図3に示すようなビーカーセルを作製した。
【0030】
図3に示すように、容器1内に入れられた電解液中に、対極3、作用極4、及び参照極5を浸漬することにより構成されている。電解液2としては、上記電解液を用い、対極3及び参照極5としてはリチウム金属を用いた。
【0031】
〔サイクル試験〕
上記のようにして作製したビーカーセルを、それぞれ25℃にて1mA、0.5mA、及び0.2mAの3段階の電流密度で、0V(vs.Li/Li)まで定電流充電を行い、その後1mA、0.5mA、及び0.2mAの3段階の電流密度で、2V(vs.Li/Li)まで定電流放電を行った。これを1サイクルとして、20サイクル充放電を行い、20サイクル目の容量維持率(=20サイクル目の放電容量/1サイクル目の放電容量)を求めた。表3に結果を示す。なお、ここでは、作用極の還元を充電とし、作用極の酸化を放電としている。
【0032】
【表3】
Figure 2004111329
【0033】
表3から明らかなように、ピーク強度比(A/B)が0.03〜0.19の範囲内では、容量維持率が高くなっており、充放電サイクル特性に優れていることがわかる。特にピーク強度比(A/B)が0.07〜0.11の範囲内では容量維持率が100%となっており、充放電サイクル特性が特に優れていることがわかる。
【0034】
〔電極Aの作製〕
上記実施例と同様の集電体基板を用い、この上に錫−銅合金からなるめっき膜を形成し、電極Aを作製した。具体的には、表4に示すめっき浴を用い、錫と銅を同時にめっきすることにより錫−銅合金膜を形成した。薄膜の厚みは1μmとした。得られた電極については、熱処理を施さず、105℃で2時間の乾燥のみを行った。
【0035】
【表4】
Figure 2004111329
【0036】
〔電極Bの作製〕
電極Aと同様にして、表5に示す組成のめっき浴を用い、厚さ1μmの錫−銅合金膜を形成した後、その上にさらに表4に示す組成のめっき浴を用い、厚さ2μmの電極Aと同様の錫−銅合金膜を形成した。得られた電極は、熱処理を施さず、105℃で2時間の乾燥のみを行った。
【0037】
【表5】
Figure 2004111329
【0038】
〔ピーク強度比(A/B)の測定〕
上記の電極A及び電極Bについて、上記と同様にX線回折パターンを測定し、ピーク強度比(A/B)を測定した。測定結果を表6に示す。図2は、電極AのX線パターンを示す図である。図2に示すように、電極Aにおいては、ピークBのみが認められ、ピークAがほとんど認められない。
【0039】
また、電極Aについて走査型電子顕微鏡で断面を観察した。図5は、電極Aの断面を示す電子顕微鏡写真である。EDXによるスポット組成の結果及びX線回折パターンの結果から、銅箔の上には、CuSnを主成分とする層のみが存在していることがわかった。
【0040】
〔ビーカーセルの作製及びサイクル試験〕
上記と同様にして、電極A及び電極Bを用い、ビーカーセルをそれぞれ作製し、サイクル試験を行った。20サイクル目の容量維持率を表6に示す。
【0041】
【表6】
Figure 2004111329
【0042】
表6から明らかなように、CuSnに対応するピークAが認められない電極Aは、ピーク強度比(A/B)が0.04である電極Bに比べ、容量維持率が低くなっている。このことから、CuSnが本発明のピーク強度比となるように存在することにより、充放電サイクル特性が高められることがわかる。
【0043】
【発明の効果】
本発明によれば、充放電サイクル特性に優れたリチウム二次電池用負極とすることができる。
【図面の簡単な説明】
【図1】本発明に従う実施例の電極のX線回折パターンを示す図。
【図2】比較例の電極のX線回折パターンを示す図。
【図3】実施例において作製したビーカーセルを示す模式図。
【図4】本発明に従う実施例の電極の断面を示す走査型電子顕微鏡写真。
【図5】比較例の電極の断面を示す走査型電子顕微鏡写真。
【符号の説明】
1…容器
2…電解液
3…対極
4…作用極
5…参照極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.
[0002]
[Prior art]
In recent years, lithium secondary batteries, which have been actively researched and developed, greatly depend on battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics depending on the electrodes used. For this reason, improvement in battery characteristics has been achieved by improving the electrode active material.
[0003]
When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed. However, there is a problem that lithium is deposited in a dendrite shape during charging and causes an internal short circuit.
[0004]
On the other hand, a lithium secondary battery using aluminum, silicon, tin, or the like, which electrochemically alloys with lithium at the time of charging, as an electrode has been reported (Non-Patent Document 1).
[0005]
It is known that, in an electrode in which a thin film of simple tin or a tin alloy is formed on a current collector substrate made of copper by electrolytic plating, heat treatment after forming the thin film improves charge / discharge cycle characteristics ( Patent Document 1). It is also known that the heat treatment causes the copper component of the current collector substrate to diffuse into the thin film and form an alloy of tin and copper in the thin film.
[0006]
[Non-patent document 1]
Solid State Ionics, 113-115, p57 (1998)
[Patent Document 1]
International Publication WO01 / 84654 [0007]
[Problems to be solved by the invention]
However, even with heat-treated electrodes, some have good and poor charge-discharge cycle characteristics, and the relationship between alloy composition in thin films and charge-discharge cycle characteristics has not been studied in detail. .
[0008]
An object of the present invention is to provide a negative electrode for a lithium secondary battery in which a thin film containing tin is provided on a current collector substrate containing copper, the negative electrode for a lithium secondary battery having excellent charge / discharge cycle characteristics, and the same. An object of the present invention is to provide a lithium secondary battery.
[0009]
[Means for Solving the Problems]
The negative electrode for a lithium secondary battery of the present invention is a negative electrode in which a thin film including tin is provided on a current collector substrate including copper, and the thin film includes Cu 3 Sn provided on the current collector substrate. a layer mainly has a layer mainly composed of Cu 6 Sn 5 that is provided on the layer, and, in the X-ray diffraction pattern by CuKα line, from 41.5 to 42.5 degrees in the area And the intensity ratio (A / B) between the peak A corresponding to Cu 3 Sn 5 and the peak B corresponding to Cu 6 Sn 5 in the range of 29.5 to 30.5 degrees is 0.03 or more. It is characterized by being 19 or less.
[0010]
In the present invention, the intensity ratio (A / B) between the peak A corresponding to Cu 3 Sn and the peak B corresponding to Cu 6 Sn 5 is 0.03 or more and 0.19 or less. If it is less than 0.03, a layer containing Cu 3 Sn as a main component is too thin or not present, so that good charge / discharge cycle characteristics cannot be obtained. It is considered that the presence of the layer containing Cu 3 Sn as a main component at an appropriate thickness improves the adhesion of the thin film to the current collector substrate, and provides good charge / discharge cycle characteristics. When the peak intensity ratio (A / B) exceeds 0.19, the layer mainly composed of Cu 3 Sn becomes too thick, and good charge / discharge cycle characteristics cannot be obtained. Cu 3 Sn is considered to be a layer that does not participate in the charge / discharge reaction, and it is considered that the charge / discharge cycle characteristics are degraded by increasing the thickness of such a layer. A more preferable range of the peak intensity ratio (A / B) is 0.07 or more and 0.11 or less.
[0011]
In the present invention, the thin film can be provided by forming a thin film made of tin alone or a tin alloy on the current collector substrate. Examples of the tin alloy include a Sn—Cu alloy and a Sn—In alloy.
[0012]
As a method for forming a thin film, a plating method such as an electrolytic plating method and an electroless plating method is preferably used. Further, a thin film may be formed by a physical thin film forming method such as a CVD method, a sputtering method, a vacuum evaporation method, and a thermal spraying method.
[0013]
After the thin film is formed on the current collector substrate, heat treatment may be performed. For example, after a thin film made of Sn alone is formed on a current collector substrate made of Cu, heat treatment is performed to diffuse Cu in the current collector substrate into the thin film. Cu diffused in the thin film forms an alloy with Sn. Therefore, by controlling the heat treatment conditions, the ratio of Cu 3 Sn and Cu 6 Sn 5 can be controlled, so that the peak intensity ratio (A / B) can be controlled.
[0014]
The current collector substrate according to the present invention contains copper, and can be formed from, for example, a copper foil, a copper alloy foil, or the like.
It is preferable that irregularities are formed on the surface of the current collector substrate. By forming the unevenness on the substrate surface, the adhesion between the substrate and the thin film can be improved, and detachment of the thin film due to charge and discharge can be suppressed. Specifically, the surface roughness Ra of the substrate is preferably about 0.01 to 2 μm. The surface roughness Ra is defined in Japanese Industrial Standard (JIS B 0601-1994). The surface roughness Ra can be measured by, for example, a surface roughness meter.
[0015]
Examples of the copper foil having a large surface roughness Ra include a rolled copper foil having a roughened surface and an electrolytic copper foil.
In the present invention, the thickness of the thin film is not particularly limited, and is appropriately selected according to the type of the positive electrode active material, its thickness, and the like.
[0016]
In the present invention, the thickness of the current collector substrate is not particularly limited, but as the thickness is increased, the thickness of the entire electrode is increased, and the energy density of the battery per volume and weight is reduced. It is preferable that
[0017]
The lithium secondary battery of the present invention is characterized by comprising a negative electrode comprising the electrode of the present invention, a positive electrode, and a non-aqueous electrolyte.
Solvent of the non-aqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, and cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. A mixed solvent with a chain carbonate is exemplified. Further, a mixed solvent of the above-mentioned cyclic carbonate and an ether-based solvent such as 1,2-dimethoxyethane and 1,2-diethoxyethane is also exemplified. The solutes of the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and the like and their Mixtures are exemplified. In particular, LiXF y (where X is P, As, Sb, B, Bi, Al, Ga, or In, when X is P, As or Sb, y is 6, X is Bi, Al, Ga or a y is 4) when an in,, lithium perfluoroalkyl sulfonic acid imide LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ( wherein, m and n are each independently 1 to 4 of an integer) or lithium perfluoroalkyl sulfonic acid methide LiN (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) ( wherein, p, q and r respectively Are independently integers from 1 to 4). Among these, a mixed solute of LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 is particularly preferably used. Further, examples of the electrolyte include a gel polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as LiI and Li 3 N. The electrolyte of the lithium secondary battery of the present invention is not limited, as long as the lithium compound as a solute that exhibits ionic conductivity and the solvent that dissolves and retains the lithium compound are not decomposed at the time of charging, discharging, or storing the battery. Can be used.
[0018]
As the positive electrode material of the lithium secondary battery of the present invention, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 Examples thereof include a lithium-containing transition metal oxide such as O 2 and a metal oxide containing no lithium such as MnO 2 . In addition, any other substance capable of electrochemically inserting and removing lithium can be used without limitation.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to specific examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the gist of the present invention. It is.
[0020]
(Preparation of electrode)
A 1 μm thick tin thin film was formed on an 18 μm thick electrolytic copper foil (surface roughness Ra = 0.5 μm) by electrolytic plating, and then dried. The plating bath having the composition shown in Table 1 was used.
[0021]
[Table 1]
Figure 2004111329
[0022]
Next, the obtained electrode was heat-treated under the conditions shown in Table 2, and then dried at 105 ° C for 2 hours. For the electrode after the heat treatment, an X-ray diffraction pattern by CuKα ray was measured.
[0023]
FIG. 1 is an X-ray diffraction pattern of an electrode heat-treated at 160 ° C. for 12 hours. As shown in FIG. 1, a peak A is observed at 41.9 degrees, and a peak B is observed at 30.2 degrees. Peak A is a peak corresponding to Cu 3 Sn, and peak B is a peak corresponding to Cu 6 Sn 5 .
[0024]
The intensity ratio (A / B) between peak A and peak B at each electrode was measured and is shown in Table 2.
[0025]
[Table 2]
Figure 2004111329
[0026]
As is clear from Table 2, those subjected to heat treatment at 160 ° C. for 12 hours and 180 ° C. for 12 hours have peak intensity ratios (A / B) higher than 0.19, which are outside the range of the present invention. Other electrodes have a peak intensity ratio (A / B) of 0.03 to 0.19, which is within the range of the present invention.
[0027]
FIG. 4 is a scanning electron micrograph showing a cross section of the electrode that was heat-treated at 140 ° C. for 12 hours. From the result of spot composition analysis of each layer by EDX and the measurement result of X-ray diffraction, the layer present on the copper foil is a layer containing Cu 3 Sn as a main component, and on this layer, Cu 6 Sn 5 It was found that there was a layer mainly composed of.
[0028]
(Preparation of electrolyte solution)
1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 to prepare an electrolytic solution.
[0029]
(Preparation of beaker cell)
A beaker cell as shown in FIG. 3 was prepared by using each electrode cut out to a size of 2 cm × 2 cm as a working electrode.
[0030]
As shown in FIG. 3, the counter electrode 3, the working electrode 4, and the reference electrode 5 are immersed in the electrolytic solution contained in the container 1. As the electrolytic solution 2, the above-mentioned electrolytic solution was used, and as the counter electrode 3 and the reference electrode 5, lithium metal was used.
[0031]
[Cycle test]
The beaker cell prepared as described above was charged at a constant current to 0 V (vs. Li / Li + ) at 25 ° C. at three current densities of 1 mA, 0.5 mA, and 0.2 mA, respectively. Thereafter, constant current discharge was performed to 2 V (vs. Li / Li + ) at three current densities of 1 mA, 0.5 mA, and 0.2 mA. With this as one cycle, charge / discharge for 20 cycles was performed, and the capacity retention ratio at the 20th cycle (= discharge capacity at the 20th cycle / discharge capacity at the 1st cycle) was determined. Table 3 shows the results. Here, reduction of the working electrode is defined as charging, and oxidation of the working electrode is defined as discharging.
[0032]
[Table 3]
Figure 2004111329
[0033]
As is clear from Table 3, when the peak intensity ratio (A / B) is in the range of 0.03 to 0.19, the capacity retention ratio is high and the charge / discharge cycle characteristics are excellent. In particular, when the peak intensity ratio (A / B) is in the range of 0.07 to 0.11, the capacity retention ratio is 100%, which indicates that the charge / discharge cycle characteristics are particularly excellent.
[0034]
[Preparation of electrode A]
Using the same current collector substrate as in the above example, a plating film made of a tin-copper alloy was formed thereon, thereby producing an electrode A. Specifically, using a plating bath shown in Table 4, tin and copper were simultaneously plated to form a tin-copper alloy film. The thickness of the thin film was 1 μm. The resulting electrode was dried at 105 ° C. for 2 hours without heat treatment.
[0035]
[Table 4]
Figure 2004111329
[0036]
[Preparation of electrode B]
Similarly to the electrode A, a tin-copper alloy film having a thickness of 1 μm was formed using a plating bath having a composition shown in Table 5 and then a plating bath having a composition shown in Table 4 was further formed thereon by using a plating bath having a composition shown in Table 4. The same tin-copper alloy film as that of the electrode A was formed. The obtained electrode was dried only at 105 ° C. for 2 hours without heat treatment.
[0037]
[Table 5]
Figure 2004111329
[0038]
[Measurement of peak intensity ratio (A / B)]
The X-ray diffraction pattern was measured for the electrodes A and B in the same manner as described above, and the peak intensity ratio (A / B) was measured. Table 6 shows the measurement results. FIG. 2 is a diagram showing an X-ray pattern of the electrode A. As shown in FIG. 2, in the electrode A, only the peak B is recognized, and the peak A is hardly recognized.
[0039]
The cross section of the electrode A was observed with a scanning electron microscope. FIG. 5 is an electron micrograph showing a cross section of the electrode A. From the result of the spot composition by EDX and the result of the X-ray diffraction pattern, it was found that only the layer mainly composed of Cu 6 Sn 5 was present on the copper foil.
[0040]
(Production and cycle test of beaker cell)
In the same manner as above, a beaker cell was prepared using each of the electrodes A and B, and a cycle test was performed. Table 6 shows the capacity retention ratio at the 20th cycle.
[0041]
[Table 6]
Figure 2004111329
[0042]
As is clear from Table 6, the electrode A having no peak A corresponding to Cu 3 Sn has a lower capacity retention ratio than the electrode B having a peak intensity ratio (A / B) of 0.04. I have. This indicates that the presence of Cu 3 Sn so as to have the peak intensity ratio of the present invention improves the charge-discharge cycle characteristics.
[0043]
【The invention's effect】
According to the present invention, a negative electrode for a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing an X-ray diffraction pattern of an electrode of an example according to the present invention.
FIG. 2 is a view showing an X-ray diffraction pattern of an electrode of a comparative example.
FIG. 3 is a schematic view showing a beaker cell manufactured in an example.
FIG. 4 is a scanning electron micrograph showing a cross section of an electrode of an example according to the present invention.
FIG. 5 is a scanning electron micrograph showing a cross section of an electrode of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Electrolyte 3 ... Counter electrode 4 ... Working electrode 5 ... Reference electrode

Claims (6)

銅を含む集電体基板の上に、錫を含む薄膜が設けられたリチウム二次電池用負極であって、
前記薄膜が、前記集電体基板上に設けられるCuSnを主成分とする層と、該層の上に設けられるCuSnを主成分とする層を有し、かつ、CuKα線によるX線回折パターンにおいて、41.5〜42.5度の領域内に表れるCuSnに対応するピークAと、29.5〜30.5度の領域内に表れるCuSnに対応するピークBとの強度比(A/B)が0.03以上0.19以下であることを特徴とするリチウム二次電池用負極。
On a current collector substrate containing copper, a lithium secondary battery negative electrode provided with a thin film containing tin,
The thin film has a layer mainly composed of Cu 3 Sn provided on the current collector substrate, and a layer mainly composed of Cu 6 Sn 5 provided on the current collector substrate, and is formed by CuKα radiation. In the X-ray diffraction pattern, a peak A corresponding to Cu 3 Sn in the region of 41.5 to 42.5 degrees and a peak corresponding to Cu 6 Sn 5 in the region of 29.5 to 30.5 degrees A negative electrode for a lithium secondary battery, wherein an intensity ratio (A / B) to B is 0.03 or more and 0.19 or less.
前記薄膜が、錫単体または錫合金からなる薄膜を前記集電体基板上に形成することにより設けられた薄膜であることを特徴とする請求項1に記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 1, wherein the thin film is a thin film provided by forming a thin film made of a simple substance of tin or a tin alloy on the current collector substrate. 前記薄膜が、めっき法により前記集電体基板上に形成されていることを特徴とする請求項1または2に記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 1, wherein the thin film is formed on the current collector substrate by a plating method. 前記めっき法が、電解めっき法であることを特徴とする請求項3に記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 3, wherein the plating method is an electrolytic plating method. 前記薄膜を前記集電体基板上に形成した後、熱処理が施されていることを特徴とする請求項1〜4のいずれか1項に記載のリチウム二次電池用負極。The negative electrode for a lithium secondary battery according to claim 1, wherein a heat treatment is performed after forming the thin film on the current collector substrate. 請求項1〜5のいずれか1項に記載の電極からなる負極と、正極と、非水電解質とを備えることを特徴とするリチウム二次電池。A lithium secondary battery comprising a negative electrode comprising the electrode according to claim 1, a positive electrode, and a non-aqueous electrolyte.
JP2002275554A 2002-09-20 2002-09-20 Negative electrode for lithium secondary battery and lithium secondary battery Expired - Fee Related JP4162457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275554A JP4162457B2 (en) 2002-09-20 2002-09-20 Negative electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275554A JP4162457B2 (en) 2002-09-20 2002-09-20 Negative electrode for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004111329A true JP2004111329A (en) 2004-04-08
JP4162457B2 JP4162457B2 (en) 2008-10-08

Family

ID=32271721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275554A Expired - Fee Related JP4162457B2 (en) 2002-09-20 2002-09-20 Negative electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4162457B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082719A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Positive electrode and nonaqueous electrolyte secondary battery
WO2006082722A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Negative electrode and nonaqueous electrolyte secondary battery using same
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
JP2007035283A (en) * 2005-07-22 2007-02-08 Sanyo Electric Co Ltd Cathode and nonaqueous electrolyte secondary battery
JP2008016478A (en) * 2006-07-03 2008-01-24 Saga Sanyo Industries Co Ltd Electric double layer capacitor
JP2010009837A (en) * 2008-06-25 2010-01-14 Furukawa Electric Co Ltd:The Alloy negative electrode material for lithium secondary battery
JP2010541183A (en) * 2007-10-05 2010-12-24 パワージェニックス システムズ, インコーポレーテッド Tin and tin-zinc plated underlayer for improved performance of nickel-zinc cells
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same
JP2023035226A (en) * 2021-08-31 2023-03-13 本田技研工業株式会社 Lithium metal secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653510B2 (en) * 2005-01-04 2011-03-16 Jx日鉱日石金属株式会社 Anode material for lithium secondary battery
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
WO2006082722A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Negative electrode and nonaqueous electrolyte secondary battery using same
JP2006244976A (en) * 2005-02-07 2006-09-14 Sanyo Electric Co Ltd Negative electrode, and non-aqueous electrolyte secondary battery using it
WO2006082719A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Positive electrode and nonaqueous electrolyte secondary battery
US8815449B2 (en) 2005-02-07 2014-08-26 Sanyo Electric Co., Ltd. Positive electrode and non-aqueous electrolyte secondary battery
JP2007035283A (en) * 2005-07-22 2007-02-08 Sanyo Electric Co Ltd Cathode and nonaqueous electrolyte secondary battery
JP2008016478A (en) * 2006-07-03 2008-01-24 Saga Sanyo Industries Co Ltd Electric double layer capacitor
JP2010541183A (en) * 2007-10-05 2010-12-24 パワージェニックス システムズ, インコーポレーテッド Tin and tin-zinc plated underlayer for improved performance of nickel-zinc cells
US7931988B2 (en) * 2007-10-05 2011-04-26 Powergenix Systems, Inc. Tin and tin-zinc plated substrates to improve Ni-Zn cell performance
US8182946B2 (en) 2007-10-05 2012-05-22 Powergenix Systems, Inc. Tin and tin-zinc plated substrates to improve Ni-Zn cell performance
US8372542B2 (en) 2007-10-05 2013-02-12 Powergenix Systems, Inc. Tin and tin-zinc plated substrates including Cu3Sn and Cu6Sn5 to improve Ni-Zn cell performance
JP2010009837A (en) * 2008-06-25 2010-01-14 Furukawa Electric Co Ltd:The Alloy negative electrode material for lithium secondary battery
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same
JP2023035226A (en) * 2021-08-31 2023-03-13 本田技研工業株式会社 Lithium metal secondary battery
JP7353333B2 (en) 2021-08-31 2023-09-29 本田技研工業株式会社 lithium metal secondary battery

Also Published As

Publication number Publication date
JP4162457B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4152086B2 (en) Electrode for lithium secondary battery and lithium secondary battery
KR100530548B1 (en) Electrode for lithium secondary cell and lithium secondary cell
US9252429B2 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP4727784B2 (en) Lithium secondary battery
KR100985346B1 (en) Lithium secondary battery
US6746801B2 (en) Electrode for lithium secondary battery and lithium secondary battery
US6746802B2 (en) Electrode for lithium secondary battery and lithium secondary battery
CN110112367B (en) Three-dimensional composite metal lithium cathode, preparation method thereof, lithium metal battery and lithium sulfur battery
JP2002313319A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
JP2008147153A (en) Lithium secondary battery
JP2004146348A (en) Negative electrode for lithium secondary battery, and the lithium secondary battery containing same
JP2006147191A (en) Nonaqueous electrolyte secondary battery
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP4148665B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4162457B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP2002279972A (en) Electrode for lithium secondary battery, and the lithium secondary battery
JP2001250559A (en) Lithium secondary cell
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
JP4056278B2 (en) Non-aqueous electrolyte battery
JP2007172991A (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery
JPH11265710A (en) Lithium secondary battery and its manufacture
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees