JPH0837000A - Negative electrode, its manufacturing method, and lithium secondary battery - Google Patents

Negative electrode, its manufacturing method, and lithium secondary battery

Info

Publication number
JPH0837000A
JPH0837000A JP6191874A JP19187494A JPH0837000A JP H0837000 A JPH0837000 A JP H0837000A JP 6191874 A JP6191874 A JP 6191874A JP 19187494 A JP19187494 A JP 19187494A JP H0837000 A JPH0837000 A JP H0837000A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
tape
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6191874A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Mitsuhiro Marumoto
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6191874A priority Critical patent/JPH0837000A/en
Publication of JPH0837000A publication Critical patent/JPH0837000A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To efficiently produce a tapelike negative electrode superior in discharge capacity maintenance rate by applying a hot dip coating layer of lithium or lithium alloy on a current collection tape and forming a Li ion transmission film. CONSTITUTION:A current collection tape 1 is formed by laminating a diffusion barrier layer 12 such as nicked and a wet acceleration layer 13 such as silver and tin on a conductive support base material in this order. A hot dip coating layer 2 of lithium or/and lithium alloy is applied on the tape 1 so that a Li ion transmission thin film 3 is formed. The hot dip coating layer 2 which is formed under an inert atmosphere such as high-purity argon atmosphere has a clean surface state and the thin film 3 formed thereon has superior performance so that it shows superior discharge capacity maintenance rate in the case of used for the negative electrode. The Li secondary battery formed by winding the tapelike negative electrode and the positive electrode together via a separator has superiority in charge/discharge cycle life, charge/discharge capacity, and energy density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Liイオン透過薄膜の
性能に優れて、充放電容量やエネルギー密度、充放電の
サイクル寿命等に優れるLi二次電池、及びそのリチウ
ム系の負極と製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a Li secondary battery which is excellent in the performance of a Li ion permeable thin film and is excellent in charge / discharge capacity, energy density, charge / discharge cycle life, etc., and a lithium-based negative electrode and a manufacturing method thereof. Regarding

【0002】[0002]

【従来の技術】従来、負極に押出やその圧延方式で形成
したリチウム又はリチウム合金からなるテープの上にL
iF等からなるLiイオン透過薄膜を付設したものを用
い、電解質にLiAsF6、溶媒にジメトキシエタンを用
いた電解液等からなるLi二次電池が知られていた。か
かるLi二次電池は、高放電容量化を目的としたもので
あり、負極におけるLiイオン透過薄膜は、リチウム又
はリチウム合金と電解液が直接に接触することを防止す
る機能を担う。
2. Description of the Related Art Conventionally, L is placed on a tape made of lithium or a lithium alloy formed by extrusion or rolling on a negative electrode.
There has been known a Li secondary battery including an electrolyte containing LiAsF 6 as an electrolyte and dimethoxyethane as a solvent, which is obtained by using a Li ion permeable thin film made of iF or the like. The Li secondary battery is intended to have a high discharge capacity, and the Li ion-permeable thin film in the negative electrode has a function of preventing direct contact between lithium or a lithium alloy and the electrolytic solution.

【0003】前記において、リチウム又はリチウム合金
と電解液が直接に接触すると充放電時にそれらが反応し
て負極表面に反応生成物が堆積し、充放電を繰り返すう
ちに放電容量の維持率が順次低下する問題を発生する。
従ってLiイオン透過薄膜は、かかる反応を防止して放
電容量維持率の低下を防止することを目的とするもので
ある。
In the above, when lithium or a lithium alloy and the electrolytic solution come into direct contact with each other, they react with each other during charging and discharging, and reaction products are deposited on the surface of the negative electrode, and the maintenance rate of the discharge capacity is gradually reduced during repeated charging and discharging. To cause a problem.
Therefore, the Li ion permeable thin film is intended to prevent such a reaction and prevent the discharge capacity retention rate from decreasing.

【0004】しかしながら、従来の前記負極にあって
は、それに設けたLiイオン透過薄膜が性能に劣り、放
電容量維持率の低下を防止する効果に乏しい問題点があ
った。またリチウム又はリチウム合金からなるテープの
表面をLi2OやLiOH等が覆うためか、テープ上にLi
イオン透過薄膜を短時間に、かつ良好な膜質再現性にて
付設することが困難であり、さらにLiイオン透過薄膜
をその単相膜として形成することも困難であり、ひいて
は負極の製造効率に劣る問題点があった。
However, the conventional negative electrode has a problem in that the Li ion-permeable thin film provided on it is inferior in performance and is poor in the effect of preventing the reduction of the discharge capacity maintenance rate. Also, because the surface of the tape made of lithium or a lithium alloy is covered with Li 2 O, LiOH, etc.
It is difficult to attach the ion-permeable thin film in a short time with good film quality reproducibility, and it is also difficult to form the Li ion-permeable thin film as its single-phase film, and the production efficiency of the negative electrode is poor. There was a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、リチウム又
はリチウム合金からなる層上に性能に優れるLiイオン
透過薄膜を有し、しかもそのLiイオン透過薄膜を短時
間に、かつ良好な膜質再現性にて単相膜として付設でき
て製造効率に優れるテープ状の負極を得、放電容量の維
持率に優れて充放電のサイクル寿命に優れ、充放電容量
やエネルギー密度に優れるLi二次電池を得ることを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has a Li ion permeable thin film having excellent performance on a layer made of lithium or a lithium alloy, and the Li ion permeable thin film can be formed in a short time with good film quality reproducibility. To obtain a tape-shaped negative electrode that can be attached as a single-phase film and is excellent in manufacturing efficiency, and to obtain a Li secondary battery that has an excellent discharge capacity maintenance rate, excellent charge / discharge cycle life, and excellent charge / discharge capacity and energy density. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明は、集電体テープ
の上にリチウム又は/及びリチウム合金の溶融メッキ層
を有し、その溶融メッキ層の上にLiイオン透過薄膜を
有することを特徴とするLi二次電池用の負極、及び集
電体テープを不活性雰囲気下のリチウム又は/及びリチ
ウム合金の溶融メッキ浴に導入して前記集電体テープの
上にリチウム又は/及びリチウム合金のコーティング層
を形成した後、そのコーティング層の上にLiイオン透
過薄膜を付設することを特徴とする前記Li二次電池用
負極の製造方法、並びに前記の負極を有し、電解液が電
解質の非水溶液からなることを特徴とするLi二次電池
を提供するものである。
The present invention is characterized in that a hot-dip plated layer of lithium or / and a lithium alloy is provided on a current collector tape, and a Li ion permeable thin film is provided on the hot-dipped plated layer. And a negative electrode for a Li secondary battery, and a current collector tape are introduced into a lithium or / and lithium alloy hot-dip bath under an inert atmosphere, and lithium or / and a lithium alloy is deposited on the current collector tape. After forming a coating layer, a Li ion-permeable thin film is attached on the coating layer, and a method for producing the negative electrode for a Li secondary battery, including the above negative electrode, wherein the electrolytic solution is a non-electrolyte solution. The present invention provides a Li secondary battery characterized by comprising an aqueous solution.

【0007】[0007]

【実施態様の例示】リチウム合金が原子比率に基づいて
80%以上のリチウムを含有するものであり、リチウム
又は/及びリチウム合金の溶融メッキ層が300℃/秒
以上の冷却速度で急冷処理した急冷層からなり、集電体
テープが銅、アルミニウム又は銀のテープからなる導電
性支持基材の上に、ニッケル、コバルト又は鉄からなる
拡散バリア層と、銀、銅、亜鉛、マグネシウム、アルミ
ニウム、カルシウム、バリウム、ビスマス、インジウ
ム、鉛、白金、パラジウム又はスズからなる濡れ促進材
層を順次有し、拡散バリア層及び濡れ促進材層の各厚さ
が0.01〜5μmであると共に、導電性支持基材及び
溶融メッキ層の各厚さが10〜30μm及び10〜50
μmであるLi二次電池用の負極、及びテープ状の正極と
負極をセパレータを介して捲回物としたLi二次電池の
電池形態。
[Exemplary Embodiment] A lithium alloy contains 80% or more of lithium based on an atomic ratio, and a hot-dip layer of lithium or / and a lithium alloy is rapidly cooled at a cooling rate of 300 ° C./sec or more. And a diffusion barrier layer made of nickel, cobalt or iron, and a current collector tape made of copper, aluminum or silver tape on a conductive support substrate, and silver, copper, zinc, magnesium, aluminum, calcium. , A barium, bismuth, indium, lead, platinum, palladium, or tin sequentially has a wetting promoting layer, and each of the diffusion barrier layer and the wetting promoting layer has a thickness of 0.01 to 5 μm, and a conductive support. Each thickness of the base material and the hot-dip layer is 10 to 30 μm and 10 to 50
A battery form of a Li secondary battery in which a negative electrode for a Li secondary battery having a size of μm and a tape-shaped positive electrode and a negative electrode are wound with a separator interposed therebetween.

【0008】[0008]

【作用】溶融メッキ層は、高純度アルゴン雰囲気等の不
活性雰囲気下で形成されるため、異種物質からなる皮膜
等を伴わない極めて清浄な表面を有するリチウム又は/
及びリチウム合金からなる層が得られて表面の改質や処
理に適した表面状態を有し、その上に種々の方式で性能
に優れるLiイオン透過薄膜を形成できて放電容量の維
持率に優れる負極が得られる。またそのLiイオン透過
薄膜を短時間に、かつ良好な膜質再現性にて単相膜とし
て付設でき、テープ状の負極も製造効率よく得ることが
できる。従って厚さの均一性や表面の平坦性、性状の均
質性に優れ、活物質が脱落しにくくて品質が安定し、強
度に優れて捲回処理に有利なテープ状等の大面積の負極
を容易に得ることができ、充放電のサイクル寿命に優
れ、充放電容量やエネルギー密度に優れるLi二次電池
を得ることができる。
Since the hot-dip plated layer is formed in an inert atmosphere such as a high-purity argon atmosphere, lithium or / or lithium having a very clean surface without a film or the like made of a different kind of material is used.
And a layer composed of a lithium alloy are obtained to have a surface state suitable for surface modification and treatment, and a Li ion permeable thin film having excellent performance can be formed on it by various methods, and the discharge capacity maintenance rate is excellent. A negative electrode is obtained. Further, the Li ion permeable thin film can be attached as a single-phase film in a short time with good film quality reproducibility, and a tape-shaped negative electrode can be obtained with good production efficiency. Therefore, a large area negative electrode such as a tape, which is excellent in thickness uniformity, surface flatness, and property homogeneity, the active material does not easily fall off, the quality is stable, and the strength is excellent and is advantageous for winding treatment, A Li secondary battery that can be easily obtained, has excellent charge / discharge cycle life, and has excellent charge / discharge capacity and energy density can be obtained.

【0009】[0009]

【実施例】本発明の負極は、集電体テープの上にリチウ
ム又は/及びリチウム合金の溶融メッキ層を有し、その
溶融メッキ層の上にLiイオン透過薄膜を有するもので
あり、Li二次電池の形成に用いるものである。その例
を図1、図2に示した。1が集電体テープ、2がリチウ
ム又は/及びリチウム合金からなる溶融メッキ層、3が
Liイオン透過薄膜である。
EXAMPLE A negative electrode of the present invention has a hot-dip layer of lithium or / and a lithium alloy on a current collector tape and a Li ion-permeable thin film on the hot-dip layer. It is used for forming a secondary battery. Examples thereof are shown in FIGS. 1 and 2. 1 is a current collector tape, 2 is a hot-dip plated layer made of lithium and / or a lithium alloy, and 3 is a Li ion permeable thin film.

【0010】図1、図2から明らかな如く、溶融メッキ
層等は集電体テープの両面に設けられていてもよいし、
片面に設けられていてもよい。なお図例の集電体テープ
は、導電性支持基材11の上に拡散バリア層12と濡れ
促進材層13を順次設けたものからなる。
As is clear from FIGS. 1 and 2, the hot-dip plating layer or the like may be provided on both sides of the current collector tape,
It may be provided on one side. The current collector tape in the illustrated example is composed of a conductive support substrate 11 on which a diffusion barrier layer 12 and a wetting promoting material layer 13 are sequentially provided.

【0011】本発明の負極の製造は、例えば集電体テー
プを不活性雰囲気下のリチウム又は/及びリチウム合金
の溶融メッキ浴に導入して前記集電体テープの上にリチ
ウム又は/及びリチウム合金のコーティング層を形成し
た後、そのコーティング層の上にLiイオン透過薄膜を
付設する方法などにより行うことができる。
The negative electrode of the present invention can be produced by, for example, introducing the current collector tape into a hot-dip bath of lithium or / and a lithium alloy under an inert atmosphere and depositing lithium or / and a lithium alloy on the current collector tape. After the coating layer is formed, a Li ion permeable thin film may be attached on the coating layer.

【0012】集電体テープとしては、例えば銅、アルミ
ニウム、銀等の導電性に優れる金属などからなる導電性
支持基材や、その上に必要に応じて拡散バリア層、濡れ
促進材層等を設けたものなどが用いられる。集電体テー
プの厚さは、電極の使用目的等に応じて適宜に決定さ
れ、一般には100μm以下、就中、薄型化の点より5
〜50μm、特に10〜30μmとされる。
As the current collector tape, for example, a conductive support base material made of a metal having excellent conductivity such as copper, aluminum or silver, and if necessary, a diffusion barrier layer, a wetting promoting material layer and the like are provided thereon. Those provided are used. The thickness of the current collector tape is appropriately determined according to the purpose of use of the electrode and the like, and is generally 100 μm or less, especially 5 from the viewpoint of thinning.
˜50 μm, especially 10 to 30 μm.

【0013】導電性支持基材の上に必要に応じて設ける
拡散バリア層は、溶融メッキ時にそのメッキ成分が導電
性支持基材を侵食することの防止を目的とする。拡散バ
リア層がない場合、導電性支持基材が液体リチウム又は
液体リチウム合金と反応して半溶融状態となり破断する
場合がある。また溶融メッキ層中のリチウム等の成分が
徐々に浸透して集電体テープの電気抵抗を増大させ、電
池の内部抵抗を高くする場合がある。
The diffusion barrier layer, which is optionally provided on the conductive support substrate, is intended to prevent the plating component from eroding the conductive support substrate during hot dipping. In the absence of the diffusion barrier layer, the conductive support substrate may react with liquid lithium or a liquid lithium alloy to become a semi-molten state and break. In addition, a component such as lithium in the hot-dip plated layer may gradually penetrate to increase the electric resistance of the current collector tape and increase the internal resistance of the battery.

【0014】従って拡散バリア層の形成には、例えばニ
ッケルやコバルト、鉄などの液体リチウム又は/及び液
体リチウム合金ないしその成分と反応しにくい適宜な導
体を用いることができる。その形成は、例えば電気メッ
キ方式、無電解メッキ方式、物理的ないし化学的蒸着方
式などの適宜な方式で行うことができる。拡散バリア層
の厚さは、0.01〜5μm、就中0.05〜1μmが好
ましい。その厚さが0.01μm未満ではボイドやピン
ホール等の欠陥が発生しやすくなり、5μmを超えると
集電体テープの電気抵抗が高くなりやすい。
Therefore, for the formation of the diffusion barrier layer, for example, an appropriate conductor which is hard to react with liquid lithium such as nickel, cobalt, iron, and / or liquid lithium alloy or its components can be used. The formation can be performed by an appropriate method such as an electroplating method, an electroless plating method, and a physical or chemical vapor deposition method. The thickness of the diffusion barrier layer is preferably 0.01 to 5 μm, and more preferably 0.05 to 1 μm. If the thickness is less than 0.01 μm, defects such as voids and pinholes are likely to occur, and if it exceeds 5 μm, the electrical resistance of the current collector tape tends to increase.

【0015】拡散バリア層の上に必要に応じて設ける濡
れ促進材層は、溶融メッキ時における液体リチウム又は
/及び液体リチウム合金の濡れを促進して凹凸化などの
電極表面性状の悪化を防止し、溶融メッキによる平坦か
つ均一なコーティング層を形成して良質の負極活物質層
が形成されやすくすることを目的とする。また例えば5
0μm厚以下等の薄いコーティング層からなる負極活物
質層を形成しやすくすることを目的とする。
The wetting promoter layer, which is provided on the diffusion barrier layer as necessary, promotes the wetting of liquid lithium or / and liquid lithium alloy during hot dipping to prevent deterioration of the electrode surface properties such as unevenness. The purpose is to facilitate formation of a good quality negative electrode active material layer by forming a flat and uniform coating layer by hot dipping. Also, for example, 5
The purpose is to facilitate formation of a negative electrode active material layer composed of a thin coating layer having a thickness of 0 μm or less.

【0016】前記の負極活物質層を薄層化することで電
池内における負極活物質量の増加を抑制しつつ電極を大
面積化でき、電極面積の増加によりエネルギー密度や充
放電容量を増大でき、電流密度を低く押さえることがで
きて充電時のリチウム析出物が緻密な組織となり、充放
電の長サイクル寿命が達成できる。さらに薄層化により
捲回工程にて負極活物質層に負荷される曲げ歪を軽減で
き、活物質層の剥離、変形等を解消することもできる。
By thinning the negative electrode active material layer, the area of the electrode can be increased while suppressing an increase in the amount of the negative electrode active material in the battery, and the energy density and the charge / discharge capacity can be increased by increasing the electrode area. In addition, the current density can be suppressed to a low level, the lithium precipitate during charging has a dense structure, and a long charge / discharge cycle life can be achieved. Further, by thinning the layer, the bending strain applied to the negative electrode active material layer in the winding step can be reduced, and peeling, deformation, etc. of the active material layer can be eliminated.

【0017】従って濡れ促進材層の形成には、液体リチ
ウム又は液体リチウム合金ないしその成分と親和性の適
宜な導体、好ましくは液体リチウム又は液体リチウム合
金ないしその成分と反応しやすくてその化学親和性に優
れるものを用いうる。その例としては銀、銅、亜鉛、マ
グネシウム、アルミニウム、カルシウム、バリウム、ビ
スマス、インジウム、鉛、白金、パラジウム、スズなど
があげられる。
Therefore, in the formation of the wetting promoting material layer, a suitable conductor having an affinity with liquid lithium or a liquid lithium alloy or its components, preferably liquid lithium or a liquid lithium alloy or its components, is easily reacted with its chemical affinity. It is possible to use the one excellent in. Examples thereof include silver, copper, zinc, magnesium, aluminum, calcium, barium, bismuth, indium, lead, platinum, palladium and tin.

【0018】濡れ促進材層の形成は、例えば電気メッキ
方式や物理的ないし化学的蒸着方式などの適宜な方式で
行うことができ、その厚さは、0.01〜5μm、就中
0.1〜1μmが好ましい。濡れ促進材層の厚さが0.
01μm未満では液体リチウム又は液体リチウム合金の
濡れ促進効果に乏しく、5μmを超えると負極活物質層
の不純物として作用して充放電容量や起電力等を低下さ
せる場合がある。
The wetting promoting material layer can be formed by an appropriate method such as an electroplating method or a physical or chemical vapor deposition method, and the thickness thereof is 0.01 to 5 μm, preferably 0.1. ˜1 μm is preferred. The thickness of the wetting promoter layer is 0.
If it is less than 01 μm, the effect of promoting wetting of liquid lithium or a liquid lithium alloy is poor, and if it exceeds 5 μm, it may act as an impurity of the negative electrode active material layer to reduce charge / discharge capacity, electromotive force, and the like.

【0019】集電体テープの上に設ける溶融メッキ層
は、リチウム又は/及びリチウム合金で形成され、負極
の活物質層となるものである。本発明においては負極と
しての特性の点より100μm厚以下、就中5〜50μm
厚、特に10〜25μm厚の溶融メッキ層を設けたもの
が好ましい。
The hot-dip plated layer provided on the current collector tape is formed of lithium and / or a lithium alloy and serves as an active material layer of the negative electrode. In the present invention, from the viewpoint of the characteristics of the negative electrode, the thickness is 100 μm or less, especially 5 to 50 μm.
It is preferable to provide a hot-dip plating layer having a thickness of 10 to 25 μm.

【0020】溶融メッキ層の形成は、例えば集電体テー
プをアルゴンガスやヘリウムガス等の不活性ガスの雰囲
気下にある、リチウム又は/及びリチウム合金の溶融メ
ッキ浴に導入してそのコーティング層を形成する方式
や、コーティング層形成後そのコーティング層を急冷処
理する方式などにより行うことができる。
The hot-dip coating layer is formed by, for example, introducing the current collector tape into a hot-dip bath of lithium or / and a lithium alloy in an atmosphere of an inert gas such as argon gas or helium gas to form the coating layer. It can be performed by a method of forming or a method of quenching the coating layer after forming the coating layer.

【0021】溶融メッキ層の形成に際しては、図3、図
4に例示の如く、長尺の集電体テープ4を溶融メッキ浴
5に連続的に導入し通過させる連続方式や、所定長さの
集電体テープ9を溶融メッキ浴5に浸漬して取出すバッ
チ方式などの適宜な製造方式を採用することができる。
なお、図3又は図4中の6は方向転換ロール、7はコー
ティング厚調節手段、8は急冷処理する場合の冷却ガス
ノズル、10は錘である。
When forming the hot-dip coating layer, as shown in FIGS. 3 and 4, a continuous method in which a long collector tape 4 is continuously introduced into the hot-dip plating bath 5 and passed, or a predetermined length is used. An appropriate manufacturing method such as a batch method in which the current collector tape 9 is dipped in the hot dip plating bath 5 and taken out can be adopted.
In FIG. 3 or 4, 6 is a direction change roll, 7 is a coating thickness adjusting means, 8 is a cooling gas nozzle for rapid cooling, and 10 is a weight.

【0022】なお溶融メッキ層の急冷処理は、例えば所
定厚のコーティング層にアルゴンガスやヘリウムガス等
の冷却不活性ガスを吹き付ける方式などの適宜な方式で
行うことができる。その場合、結晶粒の微細化等による
負極特性の向上などの点より300℃/秒以上の速度で
急冷させることが好ましい。かかる急冷は、冷却ガス等
の温度や供給量などの制御で容易に達成することができ
る。また室温での溶融メッキ層の凝固時間は通例2,3
秒程度であることから、300℃/秒以上の急冷処理を
達成する点よりは、必要に応じ厚さ調節手段を介して所
定のコーティング厚とした後、1秒以内に急冷処理する
ことが好ましい。
The quenching treatment of the hot-dip plated layer can be carried out by an appropriate method such as a method of spraying a cooling inert gas such as argon gas or helium gas onto the coating layer having a predetermined thickness. In that case, it is preferable to perform rapid cooling at a rate of 300 ° C./sec or more from the viewpoint of improving the negative electrode characteristics by making the crystal grains finer. Such rapid cooling can be easily achieved by controlling the temperature and supply amount of the cooling gas or the like. Also, the solidification time of the hot-dip layer at room temperature is usually 2 or 3
From the viewpoint of achieving a quenching treatment of 300 ° C./sec or more, it is preferable to perform a quenching treatment within 1 second after setting a predetermined coating thickness through the thickness adjusting means, if necessary. .

【0023】前記の急冷処理において冷却ガス等の急冷
処理雰囲気が、コーティング厚調節手段に及ぶと当該手
段に集電体テープが固着して断線したり、また所定厚と
する前にコーティング層が冷却すると厚さのバラツキ等
の原因となることなどから、図3や図4に例示の如く、
急冷処理雰囲気が所定厚とする前のコーティング層に及
ばないようにすることが望ましい。冷却ガス等ではその
供給方向を制御し、役割を終えたものを吸引除去する方
式などによりかかる目的を容易に達成することができ
る。
In the above quenching treatment, when the quenching atmosphere such as cooling gas reaches the coating thickness adjusting means, the current collector tape is fixed to the means and the wire is broken, or the coating layer is cooled before the thickness is adjusted to a predetermined value. This may cause variations in thickness, etc., so as illustrated in FIGS. 3 and 4,
It is desirable that the quenching treatment atmosphere does not reach the coating layer before the predetermined thickness. Such a purpose can be easily achieved by a method of controlling the supply direction of the cooling gas or the like and sucking and removing the gas that has finished its role.

【0024】溶融メッキ層(コーティング層)の形成に
はリチウム又は/及びリチウム合金が用いられるが、そ
のリチウム合金としては、Liと、例えばAl、Pb、S
n、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、S
r、Teなどの金属との2元又は3元以上の合金に、必
要に応じてSi、Cd、Zn、La等を添加したものなどが
あげられ、公知物のいずれも用いうる。
Lithium and / or a lithium alloy is used for forming the hot-dip plating layer (coating layer). As the lithium alloy, Li and, for example, Al, Pb, S are used.
n, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, S
Examples include alloys of binary or ternary or more with metals such as r and Te to which Si, Cd, Zn, La and the like are added, if necessary, and any known material can be used.

【0025】ちなみに、前記したリチウム合金の具体例
としては、例えばAl、Bi、Sn又はIn等とLiと
の金属間化合物などからなるLi合金、LiとPbの合金
にLa等を添加して機械的特性を改善したもの、あるい
はAg、Al、Mg、Zn又はCaの少なくとも1種か
らなるX成分を含むLi−X−Te系合金などがあげら
れる。
Incidentally, as specific examples of the above-mentioned lithium alloy, for example, a Li alloy made of an intermetallic compound of Al, Bi, Sn or In and Li and Li, or an alloy of Li and Pb to which La or the like is added is used. And a Li-X-Te-based alloy containing an X component composed of at least one of Ag, Al, Mg, Zn, and Ca.

【0026】リチウム合金におけるリチウム以外の成分
の含有量は、原子比に基づいて40%以下、就中5〜3
0%、特に10〜20%が好ましい。その含有量が40
%を超えると負極活物質としてのエネルギー密度の低下
が著しい場合があり、20%を超えると起電力が低下す
る場合がある。また5%未満では合金化による特性の改
善効果に乏しい場合がある。
The content of components other than lithium in the lithium alloy is 40% or less based on the atomic ratio, especially 5 to 3
0%, especially 10 to 20% is preferable. Its content is 40
If it exceeds 20%, the energy density of the negative electrode active material may significantly decrease, and if it exceeds 20%, the electromotive force may decrease. If it is less than 5%, the effect of improving the properties due to alloying may be poor.

【0027】充放電のサイクル寿命、高起電力性、高放
電容量性、高エネルギー密度性などの点より特に好まし
く用いうるリチウム合金は、Li−Ag−Te系合金か
らなるLi:Ag:Teの原子比が80〜150:1〜
20:0.001〜30のものなどであり、Liを80
原子%以上含有するものである。
A lithium alloy that can be particularly preferably used from the viewpoints of charge / discharge cycle life, high electromotive force, high discharge capacity, high energy density, etc. is Li: Ag: Te composed of Li-Ag-Te alloy. Atomic ratio 80-150: 1-
20: 0.001 to 30 and the like, 80% Li
It contains at least atomic%.

【0028】溶融メッキ層の上に設けるLiイオン透過
薄膜は、Liイオンが透過するものであればよく、その
種類については特に限定はない。Liイオン透過薄膜の
例としては、LiF、Li3PO4、Li2S、LiC
l、Li2CO3等があげられる。
The Li ion permeable thin film provided on the hot-dip plated layer is not particularly limited as long as it can pass Li ions. Examples of the Li ion permeable thin film include LiF, Li 3 PO 4 , Li 2 S and LiC.
1, Li 2 CO 3 and the like.

【0029】溶融メッキ層上へのLiイオン透過薄膜の
付設は、不活性雰囲気下に形成した溶融メッキ層の表面
は清浄性に優れることから適宜な方式で行うことができ
る。その例としては、溶液浸漬方式、電解液添加物方
式、気相反応方式、低温蒸着方式などがあげられる。
The Li ion permeable thin film may be provided on the hot-dip plated layer by an appropriate method because the surface of the hot-dip plated layer formed in an inert atmosphere has excellent cleanliness. Examples thereof include a solution dipping method, an electrolytic solution additive method, a gas phase reaction method, and a low temperature vapor deposition method.

【0030】前記の溶液浸漬方式は、集電体テープに上
記の溶融メッキを施した後、それをLiイオン透過薄膜
の形成成分を溶存させた非水溶液に浸漬する方式であ
り、短時間で目的の薄膜を形成することができる。非水
溶液における膜形成成分の溶存濃度は、0.001〜1
00mモル/l、就中0.01〜10mモル/lが好ま
しい。その濃度が0.001mモル/l未満では膜形成
に長時間を要する場合があり、100mモル/lを超え
ると緻密な薄膜が形成されない場合がある。
The solution immersion method is a method in which the current collector tape is subjected to the above-mentioned hot dip plating and then immersed in a non-aqueous solution in which the components for forming the Li ion permeable thin film are dissolved. Can be formed into a thin film. The dissolved concentration of the film-forming component in the non-aqueous solution is 0.001-1.
The amount is preferably 00 mmol / l, especially 0.01 to 10 mmol / l. If the concentration is less than 0.001 mmol / l, it may take a long time to form a film, and if it exceeds 100 mmol / l, a dense thin film may not be formed.

【0031】前記における非水溶液と溶存成分の組合
せ、及びそれにより形成されるLiイオン透過薄膜の例
としては表1に示したものなどがあげられる。
Examples of the combination of the non-aqueous solution and the dissolved component described above, and the Li ion permeable thin film formed thereby include those shown in Table 1.

【表1】 [Table 1]

【0032】電解液添加物方式は、Li二次電池の製造
時にその電解液中に前記のヨウ素等の膜形成成分を添加
するものである。その場合、非水溶液における膜形成成
分の溶存濃度は、0.01〜10mモル/l、就中0.
01〜1mモル/lが好ましい。その濃度が0.01m
モル/l未満では膜が形成されない場合があり、10m
モル/lを超えると緻密な薄膜が形成されない場合があ
る。
The electrolytic solution additive system is one in which the film forming component such as iodine is added to the electrolytic solution when the Li secondary battery is manufactured. In that case, the dissolved concentration of the film-forming component in the non-aqueous solution is 0.01 to 10 mmol / l, and especially 0.1.
It is preferably from 01 to 1 mmol / l. The concentration is 0.01m
If it is less than mol / l, a film may not be formed,
If it exceeds mol / l, a dense thin film may not be formed.

【0033】気相反応方式は、集電体テープの溶融メッ
キ層を炭酸ガスや希薄HFガス、希薄HClガスや希薄
2Sガス等に暴露して溶融メッキ層の表層をLiイオン
透過薄膜に変質させる方式である。
In the gas phase reaction system, the hot-dip plated layer of the current collector tape is exposed to carbon dioxide gas, dilute HF gas, dilute HCl gas, dilute H 2 S gas or the like to make the surface layer of the hot-dip plated layer into a Li ion permeable thin film. It is a method to transform.

【0034】低温蒸着方式は、低温度の集電体テープの
溶融メッキ層上に、各種スパッタリング法、パルスプラ
ズマ法、クラスタイオン蒸着の如きイオンプレーティン
グ法などの低温で蒸着処理を施す適宜な方式で蒸着膜か
らなるLiイオン透過薄膜を形成する方式である。この
方式は、緻密なLiイオン透過薄膜を形成できる利点を
有する。
The low temperature vapor deposition method is an appropriate method in which a vapor deposition process is performed at a low temperature such as various sputtering methods, pulse plasma methods, ion plating methods such as cluster ion vapor deposition, etc. on the hot-dip layer of a low temperature collector tape. Is a method of forming a Li ion permeable thin film consisting of a vapor deposition film. This method has an advantage that a dense Li ion permeable thin film can be formed.

【0035】Liイオン透過薄膜は、集電体テープにお
ける溶融メッキ層と電解液との接触を防止するためのも
のであるからその厚さについては特に限定はない。一般
には、1μm以下、就中0.5μm以下、特に0.01〜
0.1μm程度の厚さとされる。なおLiイオン透過薄膜
も溶融メッキ層の場合と同様に、連続方式又はバッチ方
式のいずれにても形成でき、従って本発明の負極は、連
続方式又はバッチ方式のいずれにても形成することがで
きる。
The Li ion permeable thin film is for preventing contact between the hot-dip plated layer on the current collector tape and the electrolytic solution, and therefore its thickness is not particularly limited. Generally, 1 μm or less, especially 0.5 μm or less, particularly 0.01 to
The thickness is about 0.1 μm. The Li ion permeable thin film can be formed by either a continuous method or a batch method, as in the case of the hot-dip plated layer. Therefore, the negative electrode of the present invention can be formed by either a continuous method or a batch method. .

【0036】本発明の負極は、Li二次電池を形成する
ためのものであるが、形成するLi二次電池について
は、かかる負極を用い、電解液に電解質の非水溶液を用
いる点を除いて特に限定はなく、正極等のその他の点に
ついては従来に準じることができる。従ってLi二次電
池の形態なども使用目的等に応じて適宜に決定すること
ができ、例えばコイン型やボタン型、あるいは捲回体型
などのように、電解質の非水溶液含有の多孔質絶縁膜を
介して正極と負極を配置した形態等の適宜な形態とする
ことができる。ちなみに、図5にコイン型のものを例示
した。21,27は電池缶、22,26は集電用のニッ
ケル板、23は負極、24は電解質層(多孔質絶縁膜か
らなるセパレータ)、25は正極、28は絶縁封止材で
ある。
The negative electrode of the present invention is for forming a Li secondary battery. The Li secondary battery to be formed is such a negative electrode except that a non-aqueous electrolyte solution is used as the electrolytic solution. There is no particular limitation, and the other points such as the positive electrode can be the same as the conventional one. Therefore, the form of the Li secondary battery can be appropriately determined according to the purpose of use, and a porous insulating film containing a non-aqueous electrolyte solution, such as a coin type, a button type, or a wound type, can be used. An appropriate form such as a form in which a positive electrode and a negative electrode are arranged via the above can be adopted. Incidentally, the coin type is illustrated in FIG. Reference numerals 21 and 27 are battery cans, 22 and 26 are current collecting nickel plates, 23 is a negative electrode, 24 is an electrolyte layer (a separator made of a porous insulating film), 25 is a positive electrode, and 28 is an insulating sealing material.

【0037】電解液としては、エステルやエーテル等の
有機溶媒にリチウム塩を溶解させてなる非水溶液系のも
のが用いられる。その有機溶媒の代表例としては、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
As the electrolytic solution, a non-aqueous solution prepared by dissolving a lithium salt in an organic solvent such as ester or ether is used. As typical examples of the organic solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0038】リチウム塩の代表例としては、LiI、Li
CF3SO3、Li(CF2SO22、LiBF4、LiClO
4、LiAlCl4、Li2GeF6、LiPF6、LiSCN、L
iAsF6などがあげられる。電解液におけるリチウム塩
濃度は0.1〜3モル/リットルが一般的であるが、こ
れに限定されない。なお非水溶液系電解液の形成に際し
ては、寿命や放電容量、起電力等の電池特性の向上など
を目的として、必要に応じて2−メチルフラン、チオフ
ェン、ピロール、クラウンエーテル、Li錯イオン形成
剤(大環状化合物等)などの有機添加物を添加すること
もできる。
Typical examples of lithium salts are LiI and Li.
CF 3 SO 3 , Li (CF 2 SO 2 ) 2 , LiBF 4 , LiClO
4 , LiAlCl 4 , Li 2 GeF 6 , LiPF 6 , LiSCN, L
iAsF 6 and the like. The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this. In forming the non-aqueous electrolyte, 2-methylfuran, thiophene, pyrrole, crown ether, Li complex ion forming agent, if necessary, for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force. It is also possible to add organic additives such as (macrocyclic compounds).

【0039】正極については、カーボンや金属系のも
の、共役系ポリマー等の有機導電性物質系のものなどの
適宜なものを用いることができる。前記金属系正極の例
としては、Liを含有する、Ti、Mo、Cu、Nb、
V、Mn、Cr、Ni、Co、P等の金属の複合酸化
物、硫化物、セレン化物などがあげられ、その代表的具
体例としては、LiMnO2、LiCoO2、LiwCo
1-x-yxy2+z(ただし、Mは1種又は2種以上の遷
移金属、wは0<w≦2、xは0≦x<1、yは0<y
<1、zは−1≦z≦4である。)、あるいはLiない
しLi・Coのリン酸塩及び/又はCoないしLi・Coの
酸化物を成分として1モルのLiあたり0.1モル以上
のCoと0.2モル以上のPを含有するものなどを活物
質とするものがあげられる。
As the positive electrode, an appropriate one such as carbon or metal type, organic conductive substance type such as conjugated polymer or the like can be used. Examples of the metal-based positive electrode include Li, Ti, Mo, Cu, Nb,
Examples thereof include complex oxides of metals such as V, Mn, Cr, Ni, Co, P, sulfides, and selenides, and typical examples thereof include LiMnO 2 , LiCoO 2 , and Li w Co.
1-xy M x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y
<1, z is −1 ≦ z ≦ 4. ), Or a phosphate containing Li to Li · Co and / or an oxide of Co to Li · Co and containing 0.1 mol or more of Co and 0.2 mol or more of P per 1 mol of Li. The active material is, for example.

【0040】なおシート状等の正極の形成は、例えば活
物質を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料、及びポリテトラフルオロエチレン
やポリエチレン、ポリフッ化ビニリデンやエチレン・プ
ロピレン・ジエン共重合体等の結着剤と共にキャスティ
ング方式や圧縮成形方式、ロール成形方式、ドクターブ
レード方式、各種の蒸着方式や圧延方式、熱間押出方式
などの適宜な方式で成形する方法などにより行うことが
できる。また正極シートは、集電体シートに正極材をバ
インダ樹脂による塗布付着等の適宜な方式で接着してな
る補強形態物として得ることもできる。
The positive electrode in the form of a sheet may be formed, for example, by using an active material, if necessary, a conductive material such as acetylene black or Ketjen black, and polytetrafluoroethylene, polyethylene, polyvinylidene fluoride or ethylene / propylene / diene. It can be performed by a method such as casting with a binder such as a polymer, a compression molding method, a roll molding method, a doctor blade method, various vapor deposition methods, rolling methods, hot extrusion methods and the like. . The positive electrode sheet can also be obtained as a reinforced form obtained by adhering the positive electrode material to the current collector sheet by an appropriate method such as coating and adhering with a binder resin.

【0041】一方、上記した正・負極間に介在させる多
孔質絶縁膜(セパレータ)としては、例えばポリプロピ
レン等からなる多孔性ポリマーフィルムやガラスフィル
ター、不織布などの適宜な多孔性素材を用いることがで
きる。電解液含有の多孔質絶縁膜の形成は、多孔質絶縁
膜に電解液を含浸させたり、充填する方式、あるいは電
池缶内に電解液を充填する方式などの適宜な方式で行う
ことができる。
On the other hand, as the porous insulating film (separator) interposed between the positive electrode and the negative electrode, an appropriate porous material such as a porous polymer film made of polypropylene or the like, a glass filter, a non-woven fabric or the like can be used. . The porous insulating film containing the electrolytic solution can be formed by an appropriate method such as a method of impregnating or filling the porous insulating film with the electrolytic solution, or a method of filling the battery can with the electrolytic solution.

【0042】Li二次電池に対する充電は、一定電流を
連続して通電する方式のほか、適宜なパルス電源を用い
てパルス電流を供給する方式などによっても行うことが
できる。パルス電流による充電方式では、通電・停止が
繰り返されるため電解質の濃度変化が抑制されてデンド
ライトがより成長しにくい利点がある。
The charging of the Li secondary battery can be performed by a method in which a constant current is continuously applied or a method in which a pulse current is supplied by using an appropriate pulse power source. The charging method using a pulsed current has the advantage that dendrites are less likely to grow because the change in electrolyte concentration is suppressed because energization / stopping is repeated.

【0043】実施例1 幅41mm、厚さ10μmの長尺銅テープの両面に、ニッ
ケルを厚さ2μmで電気メッキした後、その上に銀を厚
さ0.5μmで電気メッキしてなる集電体テープを高純
度アルゴン雰囲気中にて、リチウムの溶融メッキ浴(2
50℃)に2m/分の速度で連続的に導入し通過させ、
絞り治具にて両面におけるコーティング厚をそれぞれ2
0μmに調節したのち、それにアルゴンガスを吹き付け
て冷却し、ついでそれを燐酸溶存(0.1mモル/l)
のプロピレンカーボネート浴に前記と同速度で連続的に
導入し通過させて、表面にLi3PO4薄膜を有する負極
テープを連続的に得た。
Example 1 A current collector made by electroplating nickel with a thickness of 2 μm on both sides of a long copper tape having a width of 41 mm and a thickness of 10 μm, and then electroplating silver with a thickness of 0.5 μm on it. Body tape in a high-purity argon atmosphere in a hot-dip lithium bath (2
50 ° C.) at a speed of 2 m / min and continuously passed,
Use a squeezing jig to set the coating thickness on each side to 2
After adjusting to 0 μm, it is cooled by blowing argon gas on it, and then it is dissolved in phosphoric acid (0.1 mmol / l)
Was continuously introduced into the above propylene carbonate bath at the same speed as above and passed through to obtain a negative electrode tape having a Li 3 PO 4 thin film on the surface continuously.

【0044】一方、炭酸リチウムと塩基性炭酸コバルト
とリン酸含有率85%のリン酸水溶液をLi:Co:P
=2:1.5:0.5の原子比で混合し、それをアルミ
ナ製坩堝に入れて900℃で24時間加熱処理し、リチ
ウムのリン酸塩とリチウム・コバルトのリン酸塩とコバ
ルト酸化物の混合物(活物質)を形成し、それをボール
ミルで粉砕して分粒したのち、その粒径20μm以下の
粉末46重量部、アセチレンブラック4重量部、ポリフ
ッ化ビニリデン2重量部、及びN−メチルピロリドン5
0重量部を混合し、それを幅39mm、長さ400mm、厚
さ20μmのアルミニウムテープの上に塗布し、真空乾
燥させて厚さ200μmの塗布層(正極層)を形成して
正極テープを得た。
On the other hand, lithium carbonate, basic cobalt carbonate, and a phosphoric acid aqueous solution having a phosphoric acid content of 85% were mixed with Li: Co: P.
= 2: 1.5: 0.5, mixed in an atomic ratio, placed in an alumina crucible and heat-treated at 900 ° C for 24 hours to obtain lithium phosphate, lithium-cobalt phosphate and cobalt oxide. After forming a mixture (active material) of the product with a ball mill and sizing it, 46 parts by weight of powder having a particle size of 20 μm or less, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride, and N- Methylpyrrolidone 5
0 parts by weight are mixed, and the mixture is applied onto an aluminum tape having a width of 39 mm, a length of 400 mm and a thickness of 20 μm, followed by vacuum drying to form a coating layer (positive electrode layer) having a thickness of 200 μm to obtain a positive electrode tape. It was

【0045】次に、前記した長さが400mmの負極テー
プと正極テープを、厚さ25μmの多孔質ポリプロピレ
ンフィルム(セパレータ)を介在させた状態で捲回して
電池缶に収納し3mlの電解液を注入して単3型の二次電
池を形成した。なお捲回物の断面積は電池缶内側の断面
積の約90%とし、電解液には1リットルのプロピレン
カーボネートに1モルのLiClO4を溶解させたものを
用いた。
Next, the negative electrode tape and the positive electrode tape having a length of 400 mm described above are wound with a porous polypropylene film (separator) having a thickness of 25 μm interposed therebetween and housed in a battery can, and 3 ml of an electrolytic solution is put therein. It was injected to form an AA type secondary battery. The cross-sectional area of the wound product was about 90% of the cross-sectional area inside the battery can, and the electrolyte used was 1 liter of propylene carbonate in which 1 mol of LiClO 4 was dissolved.

【0046】実施例2 溶融メッキ層をLi:Ag:Teの原子比が87:1
3:0.05のLi−Ag−Te系合金(浴温:350
℃)で形成し、その表面に厚さ600ÅのLi3PO4
Ag3PO4薄膜を設けたほかは実施例1に準じて負極テ
ープを得、それを用いてLi二次電池を得た。
Example 2 The hot-dip plated layer had a Li: Ag: Te atomic ratio of 87: 1.
3: 0.05 Li-Ag-Te based alloy (bath temperature: 350
℃), and the surface of Li 3 PO 4 − with a thickness of 600 Å
A negative electrode tape was obtained in the same manner as in Example 1 except that an Ag 3 PO 4 thin film was provided, and a Li secondary battery was obtained using the negative electrode tape.

【0047】比較例1 銅テープの両面に厚さ100μmの市販のリチウムテー
プをクラッドしたテープを負極に用いたほかは実施例1
に準じてLi二次電池を得た。
Comparative Example 1 Example 1 was repeated, except that a commercially available lithium tape having a thickness of 100 μm was clad on both sides of a copper tape was used as the negative electrode.
A Li secondary battery was obtained according to.

【0048】比較例2 表面にLi3PO4−Ag3PO4薄膜を有しないテープを負
極に用いたほかは実施例2に準じてLi二次電池を得
た。
Comparative Example 2 A Li secondary battery was obtained in the same manner as in Example 2 except that a tape having no Li 3 PO 4 -Ag 3 PO 4 thin film on the surface was used as the negative electrode.

【0049】評価試験 実施例、比較例で得た二次電池について、100mAの
充電電流及び放電電流にて4.2V(充電)〜2.8V
(放電:充電後1時間放置)の間で充放電サイクルを5
0回(実施例1及び比較例1)又は400回(実施例2
及び比較例2)繰返したのちの放電容量維持率を調べ
た。前記の結果を表2に示した。なお表には1サイクル
目の放電容量も示した。
Evaluation Test The secondary batteries obtained in Examples and Comparative Examples were 4.2 V (charged) to 2.8 V at a charging current and a discharging current of 100 mA.
5 charge / discharge cycles between (Discharge: 1 hour after charging)
0 times (Example 1 and Comparative Example 1) or 400 times (Example 2)
And Comparative Example 2) The discharge capacity retention rate after repetition was examined. The results are shown in Table 2. The table also shows the discharge capacity at the first cycle.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【発明の効果】本発明によれば、清浄なリチウム又はリ
チウム合金表面に良質のLiイオン透過薄膜を有して放
電容量の維持率に優れるテープ状の負極も製造効率よく
得ることができ、充放電のサイクル寿命に優れて長寿
命、高性能、高信頼性のLi二次電池を得ることができ
る。
According to the present invention, a tape-shaped negative electrode having a good Li ion permeable thin film on a clean lithium or lithium alloy surface and having an excellent discharge capacity maintenance rate can be obtained efficiently. It is possible to obtain a Li secondary battery having excellent discharge cycle life, long life, high performance, and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の断面図。FIG. 1 is a sectional view of an example.

【図2】他の実施例の断面図。FIG. 2 is a sectional view of another embodiment.

【図3】製造例の説明図。FIG. 3 is an explanatory diagram of a manufacturing example.

【図4】他の製造例の説明図。FIG. 4 is an explanatory view of another manufacturing example.

【図5】電池例の説明図。FIG. 5 is an explanatory diagram of a battery example.

【符号の説明】[Explanation of symbols]

1,4,9:集電体テープ 11:導電性支持基材 12:拡散バリア層 1
3:濡れ促進材層 2:溶融メッキ層 3:Liイオン透過薄膜 5:溶融メッキ浴 23:負極 24:電解質層(セパレータ) 25:正極
1, 4, 9: Current collector tape 11: Conductive supporting substrate 12: Diffusion barrier layer 1
3: Wetting promoter layer 2: Hot-dip plating layer 3: Li ion permeable thin film 5: Hot-dip plating bath 23: Negative electrode 24: Electrolyte layer (separator) 25: Positive electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体テープの上にリチウム又は/及び
リチウム合金の溶融メッキ層を有し、その溶融メッキ層
の上にLiイオン透過薄膜を有することを特徴とするLi
二次電池用の負極。
1. A Li tape comprising a hot-dip plated layer of lithium and / or a lithium alloy on a current collector tape, and a Li ion-permeable thin film on the hot-dipped plated layer.
Negative electrode for secondary battery.
【請求項2】 集電体テープが、導電性支持基材の上に
液体リチウム又は/及び液体リチウム合金と反応しにく
い導体からなる拡散バリア層を有し、その拡散バリア層
の上に液体リチウム又は/及び液体リチウム合金と親和
性の導体からなる濡れ促進材層を有するものである請求
項1に記載の負極。
2. The current collector tape has a diffusion barrier layer made of a conductor that does not easily react with liquid lithium or / and a liquid lithium alloy on a conductive support substrate, and the liquid lithium is placed on the diffusion barrier layer. The negative electrode according to claim 1, which further comprises a wetting promoting material layer made of a conductor having an affinity for the liquid lithium alloy and / or the liquid lithium alloy.
【請求項3】 集電体テープを不活性雰囲気下のリチウ
ム又は/及びリチウム合金の溶融メッキ浴に導入して前
記集電体テープの上にリチウム又は/及びリチウム合金
のコーティング層を形成した後、そのコーティング層の
上にLiイオン透過薄膜を付設することを特徴とする請
求項1又は2に記載のLi二次電池用負極の製造方法。
3. After introducing the current collector tape into a hot-dip bath of lithium or / and lithium alloy under an inert atmosphere to form a coating layer of lithium or / and lithium alloy on the current collector tape. The method for producing a negative electrode for a Li secondary battery according to claim 1 or 2, wherein a Li ion permeable thin film is provided on the coating layer.
【請求項4】 請求項1又は2に記載の負極を有し、電
解液が電解質の非水溶液からなることを特徴とするLi
二次電池。
4. The Li having the negative electrode according to claim 1 or 2, wherein the electrolytic solution comprises a non-aqueous solution of an electrolyte.
Secondary battery.
JP6191874A 1994-07-21 1994-07-21 Negative electrode, its manufacturing method, and lithium secondary battery Pending JPH0837000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6191874A JPH0837000A (en) 1994-07-21 1994-07-21 Negative electrode, its manufacturing method, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191874A JPH0837000A (en) 1994-07-21 1994-07-21 Negative electrode, its manufacturing method, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0837000A true JPH0837000A (en) 1996-02-06

Family

ID=16281915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191874A Pending JPH0837000A (en) 1994-07-21 1994-07-21 Negative electrode, its manufacturing method, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0837000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084654A1 (en) * 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
JP2005063978A (en) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd Manufacturing method of lithium metal anode
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
CN115189096A (en) * 2022-07-27 2022-10-14 云南中宣液态金属科技有限公司 Preparation device and preparation method of battery diaphragm and battery diaphragm
CN115621419A (en) * 2022-11-07 2023-01-17 柔电(武汉)科技有限公司 Metal lithium polymer negative electrode for secondary battery and preparation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084654A1 (en) * 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
JP3676301B2 (en) * 2000-04-26 2005-07-27 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
CN1306634C (en) * 2000-04-26 2007-03-21 三洋电机株式会社 Lithium secondary battery-use electrode and lithium secondary battery
CN1306633C (en) * 2000-04-26 2007-03-21 三洋电机株式会社 Lithium secondary battery-use electrode and lithium secondary battery
CN100421284C (en) * 2000-04-26 2008-09-24 三洋电机株式会社 Lithium secondary battery-use electrode and lithium secondary battery
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
JP2005063978A (en) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd Manufacturing method of lithium metal anode
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
CN115189096A (en) * 2022-07-27 2022-10-14 云南中宣液态金属科技有限公司 Preparation device and preparation method of battery diaphragm and battery diaphragm
CN115621419A (en) * 2022-11-07 2023-01-17 柔电(武汉)科技有限公司 Metal lithium polymer negative electrode for secondary battery and preparation method

Similar Documents

Publication Publication Date Title
JPH08171938A (en) Li secondary battery and its positive electrode
JP3812324B2 (en) Lithium secondary battery and manufacturing method thereof
JP3578015B2 (en) Lithium secondary battery
JP4152086B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JPH07176322A (en) Electrolytic solution for li secondary battery
JP2002373707A (en) Lithium secondary battery and method of manufacturing the same
JPH07240201A (en) Negative electrode and lithium secondary battery
KR20080053925A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US20020172862A1 (en) Electrode for lithium secondary battery and lithium secondary battery
US20210143433A1 (en) Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and preparation method thereof
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
EP4002517A1 (en) All-solid battery and method of preparing the same
WO2008001539A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH07296812A (en) Negative electrode and li secondary battery
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH08180853A (en) Separator and lithium secondary battery
JPH0896792A (en) Lithium battery
JP4288400B2 (en) Method for producing secondary battery electrolyte, secondary battery electrolyte, secondary battery production method, and secondary battery
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
WO2020039609A1 (en) Negative electrode for lithium battery, method for manufacturing same, and lithium battery
JP4919451B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2004111329A (en) Lithium secondary battery and negative electrode therefor