JPH08127888A - Cell structure - Google Patents

Cell structure

Info

Publication number
JPH08127888A
JPH08127888A JP6266485A JP26648594A JPH08127888A JP H08127888 A JPH08127888 A JP H08127888A JP 6266485 A JP6266485 A JP 6266485A JP 26648594 A JP26648594 A JP 26648594A JP H08127888 A JPH08127888 A JP H08127888A
Authority
JP
Japan
Prior art keywords
anode
cell
cathode
electrolyte
cell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6266485A
Other languages
Japanese (ja)
Inventor
Fumitoshi Sakata
文稔 坂田
Kenzo Hida
堅三 飛田
Yoshiaki Inoue
好章 井上
Yoshito Soma
芳人 惣万
Masahiko Inoue
雅彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6266485A priority Critical patent/JPH08127888A/en
Publication of JPH08127888A publication Critical patent/JPH08127888A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To develop highly efficient steam electrolyzer and fuel cell by laminating plural unit cells each provided with a cathode and an anode on both sides of a specified solid electrolyte so that the facing of the anodes and that of the cathodes are alternately provided. CONSTITUTION: A unit cell 13 provided with a cathode 12A and an anode 12B is laminated on both sides of a solid electrolyte 11 consisting of Y2 O3 -stabilized ZrO2 (YSZ) through a ceramic ring 21 so that the facing of the anodes and that of the cathodes are alternately provided at regular intervals in the thickness direction of the electrolyte, and further a cathode reaction passage 22A and an anode reaction passage 22B are alternately formed. Steam and air are supplied respectively to the cathode 12A and anode 12B to decompose the steam into hydrogen and oxygen by utilizing the characteristic of the YSZ permeable only to O2 , or gaseous hydrogen is passed on the cathode side and gaseous oxygen on the anode side to generate an electric power between both electrodes with high reaction efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質を用いる高
温水蒸気電解(SOE:Solid Oxide Electrolyte )及
び固体電解質燃料電池(SOFC:Solid Oxide Fuel C
ell )に用いて好適なセル構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high temperature steam electrolysis (SOE) using a solid electrolyte and a solid oxide fuel cell (SOFC).
ell) and suitable cell structure.

【0002】[0002]

【従来の技術】高温水蒸気電解セルの一例として平板型
電解セルの構造を図5に示す。同図に示すように、固体
電解質11の両面にカソード電極12A及びアノード電
極12Bを各々付着させて単セル13を構成しており、
さらにその一方を集電体14を介しインターコネクタ
(兼セパレータ)15を用い接合体を構成している。こ
のインターコネクタ15には、ガス又は水蒸気等の流体
供給用の溝部16が複数形成されて、ガス又は水蒸気が
溝方向に各々流れるようになっており、電解質11の板
厚方向に隣り合う単セルのアノードとカソードとを電気
的に接続し、且つガスを分離している。また、単セル1
3はシール剤17を介してセラミック支持板(マニホー
ルド)18に支持されており、上記インターコネクタ1
5とは図示しない締結部材(例えばセラミックス製のボ
ルト等)を介して複数の単セルを積層させて電解セルを
構成している。
2. Description of the Related Art The structure of a flat plate type electrolysis cell is shown in FIG. 5 as an example of a high temperature steam electrolysis cell. As shown in the figure, the cathode 12A and the anode 12B are attached to both surfaces of the solid electrolyte 11 to form the unit cell 13,
Further, one of them is connected to a collector 14 and an interconnector (also separator) 15 is used to form a joined body. A plurality of groove portions 16 for supplying a fluid such as gas or water vapor are formed in the interconnector 15 so that the gas or water vapor respectively flows in the groove direction, and the single cells adjacent to each other in the plate thickness direction of the electrolyte 11 are formed. The anode and the cathode are electrically connected and the gas is separated. Also, single cell 1
3 is supported by a ceramic support plate (manifold) 18 via a sealant 17, and the interconnector 1
5 is an electrolytic cell formed by stacking a plurality of single cells via a fastening member (not shown) (such as a ceramic bolt).

【0003】次に、水蒸気電解の原理図を図6に示す。
ここで使用している固体電解質11には、イットリアで
安定化させたジルコニア(YSZ)を用いている。この
YSZは、酸素イオン(O2-)だけを選択的に透過する
性質をもっており、図6に示すように、カソード電極1
2A側に水蒸気(H2 O),アノード電極12B側に酸
素(O2 )を各々供給し、外部の直流電源19より電流
を流すことにより、固体電解質11中を酸素イオン(O
2-)だけが移動する。
Next, a principle diagram of steam electrolysis is shown in FIG.
The solid electrolyte 11 used here is zirconia (YSZ) stabilized with yttria. This YSZ has a property of selectively permeating only oxygen ions (O 2− ), and as shown in FIG.
Water vapor (H 2 O) is supplied to the 2A side and oxygen (O 2 ) is supplied to the anode electrode 12B side, and a current is supplied from an external DC power source 19 to generate oxygen ions (O 2 ) in the solid electrolyte 11.
2- ) Only move.

【0004】供給された水蒸気(H2 O)は酸素イオン
(O2-)をうばわれ、水素(H2 )のみとなり、固体電
解質11中を移動した酸素イオン(O2-)は、アノード
電極12Bで電子(e- )を放出し、酸素ガス(O2
となる。このようにして、固体電解質11にYSZを用
いて水蒸気(H2 O)を酸素ガス(O2 )と、水素ガス
(H2 )とに分解(電解)することができ、電解により
酸素(O2 )と水素(H2 )とを得ることができる。
The supplied water vapor (H 2 O) is depleted of oxygen ions (O 2− ) and becomes only hydrogen (H 2 ), and the oxygen ions (O 2− ) moved in the solid electrolyte 11 are the anode electrodes. Emitting electron (e ) at 12B, oxygen gas (O 2 )
Becomes In this way, water vapor (H 2 O) can be decomposed (electrolyzed) into oxygen gas (O 2 ) and hydrogen gas (H 2 ) by using YSZ for the solid electrolyte 11, and oxygen (O 2 ) can be generated by electrolysis. 2 ) and hydrogen (H 2 ) can be obtained.

【0005】また、固体高分子電解質燃料電池も同様な
構成を有しており、その原理図を図7に示す。ここで使
用している固体電解質11にはイットリアで安定化させ
たジルコニア(YSZ)を用いている。このYSZは、
酸素イオン(O2-)だけを選択的に透過する性質をもっ
ており、各々の電極12A,12Bに水素、酸素(又は
空気)を供給し、酸素分圧差を与えると固体電解質中を
酸素イオン(O2-)だけが移動し、電極での電子の受授
を外部にとり出すことにより、発電し、ランプ等を点灯
することができる。
A solid polymer electrolyte fuel cell has a similar structure, and its principle is shown in FIG. The solid electrolyte 11 used here is zirconia (YSZ) stabilized with yttria. This YSZ is
It has a property of selectively permeating only oxygen ions (O 2− ), and when hydrogen and oxygen (or air) are supplied to each of the electrodes 12A and 12B and an oxygen partial pressure difference is given, oxygen ions (O 2 Only 2- ) moves and takes out the transfer of electrons at the electrodes to the outside, so that power can be generated and the lamp etc. can be turned on.

【0006】[0006]

【発明が解決しようとする課題】ところで従来技術にお
いては、図5に示すように、インターコネクタ(セパレ
ータ)15を介して該セルの板厚方向と同一方向に複数
積層し、その電流経路が電解質の板厚方向の一方向に流
れるため、各セルの間にガスを分離するためのセパレー
タ15が必要となる。この場合、ガス流路はセパレータ
と単セルとにより構成されるが、該セパレータ15は単
なるガスの分離膜であるから、一つのガス流路のうち半
分の面積しか反応面として作用していないという問題が
ある。上述したことは、電解セルと類似するセル構造を
有する図7に示す燃料電池のセル構造においても同様で
ある。
By the way, in the prior art, as shown in FIG. 5, a plurality of layers are laminated in the same direction as the plate thickness direction of the cell via an interconnector (separator) 15, and the current path thereof is an electrolyte. Since it flows in one direction of the plate thickness direction, a separator 15 for separating gas is required between each cell. In this case, the gas flow path is composed of a separator and a single cell, but since the separator 15 is merely a gas separation membrane, only half the area of one gas flow path acts as a reaction surface. There's a problem. The above is the same for the cell structure of the fuel cell shown in FIG. 7, which has a cell structure similar to that of the electrolysis cell.

【0007】本発明は上記問題に鑑み、電極面積を有効
に利用することができ、セルの単位体積当たりの出力の
向上を図り、反応効率の高いセル構造を提供することを
目的とする。
In view of the above problems, it is an object of the present invention to effectively utilize the electrode area, improve the output per unit volume of the cell, and provide a cell structure with high reaction efficiency.

【0008】[0008]

【課題を解決するための手段】前記目的を達成する本発
明に係るセル構造は、電解質の両面にカソード電極及び
アノード電極を各々配すると共に、これら電極にカソー
ド用の流体及びアノード用の流体を各々供給してなるセ
ル構造において、電解質の両面にカソード電極及びアノ
ード電極を各々配して単セルを構成すると共に、該単セ
ルをカソード同士の対向とアノード同士の対向とが交互
に配設されるように所定の間隔をおいて積層してカソー
ド反応通路及びアノード反応通路を形成してなり、上記
単セルの積層方向には、カソード電極及びアノード電極
に各々流体を供給・排出するカソード用及びアノード用
の流体供給通路及び流体排出通路を貫通して形成してな
ると共に、該カソード用及びアノード用の流体供給通路
及び流体排出通路が各々上記カソード反応通路及びアノ
ード反応通路とそれぞれカソード同士・アノード同士で
連通されており、且つ、積層される各電解質には、電流
流路となる孔を形成し、導電性材料を介してカソード電
極及びアノード電極と電気的に接続していることを特徴
とする。
A cell structure according to the present invention which achieves the above object has a cathode electrode and an anode electrode disposed on both surfaces of an electrolyte, and a cathode fluid and an anode fluid are provided to these electrodes. In the cell structure in which each is supplied, a cathode electrode and an anode electrode are arranged on both surfaces of the electrolyte to form a single cell, and the single cell is alternately arranged with the cathodes facing each other and the anodes facing each other. As described above, the cathode reaction passage and the anode reaction passage are formed by stacking at a predetermined interval. In the stacking direction of the unit cell, for the cathode and the cathode for supplying and discharging the fluid to the cathode electrode and the anode electrode, respectively. A fluid supply passage and a fluid discharge passage for the anode are formed so as to penetrate therethrough, and a fluid supply passage and a fluid discharge passage for the cathode and the anode are formed. Cathode electrodes and anode electrodes are connected to the cathode reaction passage and the anode reaction passage, respectively, and holes are formed in each electrolyte to be a current passage, and a cathode electrode is formed through a conductive material. And is electrically connected to the anode electrode.

【0009】上記構成のセル構造において、上記積層す
る複数の単セルは、カソード同士及びアノード同士が対
向するようにセラミックリングを介して所定の間隔をお
いて積層してなることを特徴とする。
In the cell structure having the above structure, the plurality of laminated single cells are characterized in that they are laminated at a predetermined interval via ceramic rings so that cathodes and anodes face each other.

【0010】上記構成のセル構造において、上記電気的
接続がインタコネクタ及び導電剤を介しておこなわれて
いることを特徴とする。
In the cell structure having the above configuration, the electrical connection is made through an interconnector and a conductive agent.

【0011】上記構成のセル構造において、複数の積層
した単セルにおいて、第一層の単セルの電解質に設けら
れたアノード電極は、第二層の単セルのカソード電極と
電気的に接続され、第二の単セルの電解質に設けられた
アノード電極は、第二層の単セルのカソード電極と電気
的に接続され、この接続が順次なされていることを特徴
とする。
In the cell structure having the above structure, in a plurality of stacked unit cells, the anode electrode provided on the electrolyte of the unit cell of the first layer is electrically connected to the cathode electrode of the unit cell of the second layer, The anode electrode provided on the electrolyte of the second unit cell is electrically connected to the cathode electrode of the unit cell of the second layer, and this connection is sequentially performed.

【0012】上記構成のセル構造において、電解質がY
SZ(Yttria Stabilized Zirconia)とした平板型高温
水蒸気電解セルに用いてなることを特徴とする。
In the cell structure having the above structure, the electrolyte is Y
It is characterized by being used for a flat plate type high temperature steam electrolysis cell made of SZ (Yttria Stabilized Zirconia).

【0013】上記構成のセル構造において、電解質が固
体電解質とした燃料電池のセルに用いてなることを特徴
とする。
The cell structure of the above construction is characterized in that the electrolyte is used in a cell of a fuel cell using a solid electrolyte.

【0014】[0014]

【作用】上記構成において、ガスの分離は電解質板によ
りなされるので、従来のようにガス分離のための仕切り
板・セパレータ等を設けることを要さず、且つガス流路
の両面を反応面に使用することがきるので、セルの単位
堆積当たりの出力を向上することができる。
In the above structure, since the gas is separated by the electrolyte plate, it is not necessary to provide a partition plate, a separator or the like for gas separation as in the conventional case, and both sides of the gas flow path are connected to the reaction surface. Since it can be used, the output per unit deposition of the cell can be improved.

【0015】[0015]

【実施例】以下、本発明に係るセル構造の好適な一実施
例を図1〜図4を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the cell structure according to the present invention will be described in detail below with reference to FIGS.

【0016】図1は本実施例にかかるセル構造の断面概
略図であり、図2のA−A断面図を示し、図2は本実施
例にかかるセル構造の上面からの透視図である。また、
図3は図2のB−B断面の概略を、及び図4は図2のC
−C断面の概略を各々示す。
FIG. 1 is a schematic cross-sectional view of the cell structure according to this embodiment, showing the AA cross-sectional view of FIG. 2, and FIG. 2 is a perspective view from the top of the cell structure according to this embodiment. Also,
3 is a schematic sectional view taken along the line BB of FIG. 2, and FIG. 4 is a cross section of FIG.
The outline of each -C cross section is shown.

【0017】これらの図面に示すように、電解質11の
両面には、カソード電極12A及びアノード電極12B
を各々配して単セル13を構成しており、セラミックリ
ング21を介して電解質11の板厚方向に所定間隔をお
いて積層してセル構造を形成している。よって、該単セ
ル13は、アノード同士の対向とカソード同士の対向と
が、交互に配設されるように所定の間隔をおいてセラミ
ックリング21を介して積層されることとなり、カソー
ド反応通路22A及びアノード反応通路22Bが交互に
形成されている。
As shown in these drawings, a cathode electrode 12A and an anode electrode 12B are provided on both surfaces of the electrolyte 11.
Are arranged to form a unit cell 13, and a cell structure is formed by laminating the electrolyte 11 at predetermined intervals in the plate thickness direction via a ceramic ring 21. Therefore, in the single cell 13, the anodes and the cathodes are laminated via the ceramic rings 21 at predetermined intervals so that the anodes and the cathodes are alternately arranged. The anode reaction passages 22B are alternately formed.

【0018】上記単セル13の積層方向には、図3及び
図4に示すように、カソード電極12A及びアノード電
極12Bに各々流体(本実施例では、カソード側流体と
して「水蒸気(H2 O) 」、アノード側流体として「空
気(Air)」)を供給・排出するカソード用の流体供
給通路23A及び流体排出通路24A並びにアノード用
の流体供給通路23B及び流体排出通路24Bを各々貫
通して形成してなると共に、該カソード用及びアノード
用の流体供給通路23A,23B及び流体排出通路24
A,24Bが各々上記カソード反応通路21A及びアノ
ード反応通路21Bとそれぞれカソード同士・アノード
同士で連通されている。
In the stacking direction of the unit cell 13, as shown in FIGS. 3 and 4, a fluid is applied to each of the cathode electrode 12A and the anode electrode 12B (in this embodiment, "steam (H 2 O)" is used as the cathode side fluid. , A cathode fluid supply passage 23A for supplying / discharging “air (Air)” as an anode side fluid and a fluid discharge passage 24A, and an anode fluid supply passage 23B and a fluid discharge passage 24B are formed so as to penetrate therethrough. In addition, the cathode and anode fluid supply passages 23A and 23B and the fluid discharge passage 24 are provided.
A and 24B communicate with the cathode reaction passage 21A and the anode reaction passage 21B, respectively, such that the cathodes and the anodes communicate with each other.

【0019】図3においては、カソード電極12A同士
が対向してカソード反応通路22Aを形成している状態
図の概略を示し、図中右側の縦方向の通路はカソード用
の流体供給通路23Aを、一方の左側の縦方向の通路は
その排出通路24Aを示しており、各々の通路23A,
24Aはカソード反応通路22Aと連通孔25Aを介し
て連通している。また、一方、図4においては、アノー
ド電極12B同士が対向してアノード反応通路22Bを
形成している状態図の概略を示し、図中左側の縦方向の
通路はアノード用の流体供給通路23Bを、一方の右側
の縦方向の通路はその排出通路24Bを示しており、各
々の通路23B,24Bはアノード反応通路22Bと連
通孔25Bを介して連通している。
FIG. 3 shows an outline of a state diagram in which the cathode electrodes 12A face each other to form a cathode reaction passage 22A, and the vertical passage on the right side of the drawing is a cathode fluid supply passage 23A. One of the passages in the vertical direction on the left side shows the discharge passage 24A, and each passage 23A,
24A communicates with the cathode reaction passage 22A through a communication hole 25A. On the other hand, in FIG. 4, an outline of a state diagram in which the anode electrodes 12B face each other to form an anode reaction passage 22B is shown, and the vertical passage on the left side of the drawing is the anode fluid supply passage 23B. The one vertical passage on the right side shows the discharge passage 24B, and each passage 23B, 24B communicates with the anode reaction passage 22B through a communication hole 25B.

【0020】また、図1に示すように、積層される各単
セル13の電解質11には、電流流路となる孔26が形
成されており、インタコネクタ27,カソード導電材2
8A、アノード導電材28B及び接合中間材29等の導
電用部材を介してアノード電極12A及びカソード電極
12Bを電気的に接続している.
As shown in FIG. 1, the electrolyte 11 of each of the stacked unit cells 13 is provided with a hole 26 serving as a current flow path, and the interconnector 27 and the cathode conductive material 2 are formed.
The anode electrode 12A and the cathode electrode 12B are electrically connected via a conductive member such as 8A, the anode conductive material 28B, and the bonding intermediate material 29.

【0021】本実施例においては、図1に示すように、
複数の積層した単セル13において、第一層の単セル1
3−1の電解質11に設けられたアノード電極12B
は、第二層の単セル13−2のカソード電極12Aと電
気的に接続され、第二の単セル13−2の電解質11に
設けられたアノード電極12Bは、第三層の単セル13
−2のカソード電極12Aと電気的に接続され、この接
続が順次なされている。すなわち、奇数層の単セル13-
1,13-3 ・・・を「Aグループ」とし、偶数層の単セル1
3-2,13-4 ・・・を「Bグループ」とした場合、Aグル
ープの単セルのアノード電極12Bはその単セルのカソ
ード方向に隣り合うBグループのカソード電極12Aと
電気的に接続する。また一方Aグループのカソード電極
12Aはその単セルのアノード方向に隣り合うBグルー
プのアノード電極12Bと電気的に接続することとな
る。なお、単セル13の積層方向は本実施例では鉛直方
向にしているが、本発明はこれに限定されることはな
く、鉛直方向と直交する方向に亙って複数並べられてい
るセル構造にも適応できる。
In this embodiment, as shown in FIG.
In the plurality of stacked unit cells 13, the first layer unit cell 1
3-1 Anode electrode 12B provided on the electrolyte 11
Is electrically connected to the cathode electrode 12A of the second layer single cell 13-2, and the anode electrode 12B provided on the electrolyte 11 of the second single cell 13-2 is the third layer single cell 13A.
-2 cathode electrode 12A is electrically connected, and this connection is sequentially made. That is, the odd-numbered single cells 13-
1,13-3 ··· are defined as “A groups” and even-numbered single cells 1
When 3-2, 13-4 ... Are "B groups", the anode electrodes 12B of the unit cells of the A group are electrically connected to the cathode electrodes 12A of the group B adjacent in the cathode direction of the unit cells. . On the other hand, the cathode electrodes 12A of the A group are electrically connected to the anode electrodes 12B of the B group which are adjacent to each other in the anode direction of the unit cell. Although the stacking direction of the unit cells 13 is the vertical direction in the present embodiment, the present invention is not limited to this, and a plurality of cell structures are arranged in the direction orthogonal to the vertical direction. Can also be adapted.

【0022】次に、本実施例にかかるセル構造の製造法
の一例を説明する。
Next, an example of a method of manufacturing the cell structure according to this embodiment will be described.

【0023】図1〜図4に示すように、積層した際に、
流体供給通路23A,24及び流体排出通路23B,2
4Bを構成する孔と電流流路となる孔とを各々有する平
板状の電解質11と、導電性セラミックス製のインタコ
ネクタ27との間に、絶縁性又は低い導電性を有する接
合中間材29を挟み込んで、両者を接着剤で仮止めし、
その電解質11の片面であるその上面側に、アノード電
極12Bとなるアノード剤からなるスラリーを塗布した
後、高温下で電解質の板厚方向に加圧することにより、
これらの部品を接合及び焼成する。
As shown in FIGS. 1 to 4, when laminated,
Fluid supply passages 23A, 24 and fluid discharge passages 23B, 2
4B and a flat plate-shaped electrolyte 11 each having a hole serving as a current flow path, and an interconnector 27 made of conductive ceramics, a bonding intermediate material 29 having insulating property or low conductivity is sandwiched. Then, temporarily fix both with an adhesive,
By applying a slurry made of an anode agent to be the anode electrode 12B to one surface of the electrolyte 11 which is one surface thereof, and then applying pressure in the thickness direction of the electrolyte at high temperature,
These parts are joined and fired.

【0024】また、上記アノード電極12Bを焼成した
電解質11の下面側にカソード電極12Aとなるカソー
ド剤からなるスラリーを用いて同様にしてカソードを塗
布・焼成を行い、第一層目の単セル13−1を構成し
た。
Further, a cathode is applied and fired on the lower surface side of the electrolyte 11 obtained by firing the anode electrode 12B in the same manner by using a slurry made of a cathodic agent which becomes the cathode electrode 12A. -1 was constructed.

【0025】次に、第一層の単セル13−1とは逆に、
カソード電極12Aを電解質11の上面側にまたアノー
ド電極12Bを下面側に焼成してなる第二層目の単セル
13−2を構成した。
Next, contrary to the single cell 13-1 of the first layer,
A second-layer single cell 13-2 was formed by firing the cathode electrode 12A on the upper surface side of the electrolyte 11 and the anode electrode 12B on the lower surface side.

【0026】このようにして奇数層の単セル13-1,13-3
・・・はカソード電極12Aを電解質の上面側に、一方
の偶数層の単セル13-2,13-4 ・・・はアノード電極12
Bを電解質11の上面側に、各々形成したものを用い、
セラミックリング21を用いて電解質11の板厚方向
に、順次積層し、接着剤で仮止めした。この時、電解質
同士はカソード面とカソード面とが、アノード面とアノ
ード面とが各々対向するように配置されることとなる。
In this way, the odd-numbered unit cells 13-1, 13-3
... is the cathode electrode 12A on the upper surface side of the electrolyte, and one even-layer single cell 13-2, 13-4 is the anode electrode 12
Using B formed on the upper surface side of the electrolyte 11,
Using the ceramic ring 21, the electrolyte 11 was sequentially laminated in the plate thickness direction and temporarily fixed with an adhesive. At this time, the electrolytes are arranged such that the cathode surface and the cathode surface face each other and the anode surface and the anode surface face each other.

【0027】また、図1に示すように、例えば第一層の
単セル13−1の電解質11と隣接する第二層の単セル
13−2の電解質とに接合された、向かい合うインタコ
ネクタ27,27の間には、両者のインタコネクタ2
7,27を電気的に接続するように、カソード側ではカ
ソード側導電剤28Aをアノード側ではアノード側導電
剤28Bをそれぞれ挟み込むようにしている。また、電
解質13をユニット化したものを組み合わせて積層する
ようにしてもよい。
Further, as shown in FIG. 1, for example, the interconnectors 27 facing each other, which are joined to the electrolyte 11 of the unit cell 13-1 of the first layer and the electrolyte of the unit cell 13-2 of the second layer adjacent thereto, Between 27, the interconnector 2 of both
In order to electrically connect 7 and 27, the cathode side conductive agent 28A is sandwiched between the cathode side and the anode side conductive agent 28B is sandwiched between the anode side. Moreover, you may make it laminate | stack by combining what formed the electrolyte 13 into a unit.

【0028】以上の積層体を、高温下で電解質の板厚方
向に加圧することにより、これら材料を接合及び焼成し
て、電解セルを製作する。
By pressing the above-mentioned laminated body in the plate thickness direction of the electrolyte at a high temperature, these materials are bonded and fired to manufacture an electrolytic cell.

【0029】これにより、流体であるガスの分離は電解
質板によりなされるので、該ガスの分離のための仕切り
板、セパレータ等の部材をを必要とせず、且つガス流路
の両面を反応面とするため、セルの単位面積当たりの出
力を向上することができる。
As a result, since the gas that is a fluid is separated by the electrolyte plate, no members such as a partition plate and a separator for separating the gas are required, and both surfaces of the gas flow path are used as reaction surfaces. Therefore, the output per unit area of the cell can be improved.

【0030】また、電解質とインタコネクタとの間に絶
縁性の接合中間材を配置することにより、セル作動時の
通電劣化による、電解質とインタコネクタとの接合部の
損傷を防止し、セルの耐久性を向上することができる。
Further, by disposing an insulating joining intermediate material between the electrolyte and the interconnector, damage to the joining portion between the electrolyte and the interconnector due to deterioration of current flow during operation of the cell is prevented, and durability of the cell is improved. It is possible to improve the property.

【0031】[0031]

【発明の効果】以上、実施例と共に述べたように、ガス
の分離は電解質板によりなされるので、ガス分離のため
の板を必要とせず、且つガス流路の両面を反応面とする
ため、セルの単位面積当たりの出力を向上することがで
きる。また、その製造も簡易な方法で効率よく製造する
ことができる。
As described above with reference to the embodiments, since the gas separation is performed by the electrolyte plate, a plate for gas separation is not required and both surfaces of the gas flow passage are used as reaction surfaces. The output per unit area of the cell can be improved. Further, the manufacturing can be efficiently performed by a simple method.

【0032】また、電解質とインタコネクタとの間に絶
縁性の接合中間材を配置することにより、セル作動時の
通電劣化による、電解質とインタコネクタとの接合部の
損傷を防止し、セルの耐久性を向上することができる。
Further, by disposing an insulating joining intermediate material between the electrolyte and the interconnector, damage to the joining portion between the electrolyte and the interconnector due to deterioration of current flow during cell operation is prevented, and durability of the cell is improved. It is possible to improve the property.

【0033】また、本発明にかかる電解セルは平板形高
温水蒸気電解セル及び燃料電池のセルに用いて各々の効
率を向上させることができる。
Further, the electrolysis cell according to the present invention can be used in a plate type high temperature steam electrolysis cell and a cell of a fuel cell to improve the efficiency of each.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかるセル構造の断面概略図であ
る。
FIG. 1 is a schematic cross-sectional view of a cell structure according to this example.

【図2】本実施例にかかるセル本体の上面からの透視図
である。
FIG. 2 is a perspective view from the upper surface of the cell body according to the present embodiment.

【図3】図2のB−B断面の概略図である。FIG. 3 is a schematic view of a BB cross section of FIG.

【図4】図2のC−C断面の概略図である。FIG. 4 is a schematic view of a CC cross section of FIG.

【図5】従来の電解セル構造の概略図である。FIG. 5 is a schematic view of a conventional electrolytic cell structure.

【図6】水蒸気電解の原理図である。FIG. 6 is a principle diagram of steam electrolysis.

【図7】燃料電池の原理図である。FIG. 7 is a principle diagram of a fuel cell.

【符号の説明】[Explanation of symbols]

11 電解質 12A カソード電極 12B アノード電極 13 単セル 21 セラミックリング 22A カソード反応通路 22B アノード反応通路 23A カソード用の流体供給通路 23B アノード用の流体供給通路 24A カソード用の流体排出通路 24B アノード用の流体排出通路 25A,25B 連通孔 26 孔 27 インタコネクタ 28A カソード導電材 28B アノード導電材 29 接合中間材 11 Electrolyte 12A Cathode Electrode 12B Anode Electrode 13 Single Cell 21 Ceramic Ring 22A Cathode Reaction Passage 22B Anode Reaction Passage 23A Cathode Fluid Supply Passage 23B Anode Fluid Supply Passage 24A Cathode Fluid Discharge Passage 24B Anode Fluid Discharge Passage 25A, 25B Communication hole 26 Hole 27 Interconnector 28A Cathode conductive material 28B Anode conductive material 29 Joining intermediate material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 惣万 芳人 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 井上 雅彦 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshihito Souman 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Masahiko Inoue, Kobe, Hyogo Prefecture Hyogo 1-1-1 Wadazaki-cho, Tokyo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質の両面にカソード電極及びアノー
ド電極を各々配すると共に、これら電極にカソード用の
流体及びアノード用の流体を各々供給してなるセル構造
において、 電解質の両面にカソード電極及びアノード電極を各々配
して単セルを構成すると共に、 該単セルをカソード同士の対向とアノード同士の対向と
が交互に配設されるように所定の間隔をおいて積層して
カソード反応通路及びアノード反応通路を形成してな
り、 上記単セルの積層方向には、カソード電極及びアノード
電極に各々流体を供給・排出するカソード用及びアノー
ド用の流体供給通路及び流体排出通路を貫通して形成し
てなると共に、該カソード用及びアノード用の流体供給
通路及び流体排出通路が各々上記カソード反応通路及び
アノード反応通路とそれぞれカソード同士・アノード同
士で連通されており、 且つ、積層される各電解質には、電流流路となる孔を形
成し、導電性材料を介してカソード電極及びアノード電
極と電気的に接続していることを特徴とするセル構造。
1. A cell structure in which a cathode electrode and an anode electrode are provided on both surfaces of an electrolyte, and a cathode fluid and an anode fluid are supplied to these electrodes, respectively. In the cell structure, the cathode electrode and the anode are provided on both surfaces of the electrolyte. The electrodes are arranged to form a single cell, and the single cells are laminated at a predetermined interval so that the cathodes and the anodes are alternately arranged, and the cathode reaction passage and the anode are laminated. A reaction passage is formed, and in the stacking direction of the unit cell, a fluid supply passage and a fluid discharge passage for the cathode and the anode for supplying / discharging the fluid to / from the cathode electrode and the anode electrode are formed, respectively. In addition, the cathode and anode fluid supply passages and the fluid discharge passages are respectively connected to the cathode reaction passage and the anode reaction passage, respectively. The cathodes and the anodes are communicated with each other, and holes to be a current flow path are formed in each of the stacked electrolytes, and the electrolytes are electrically connected to the cathode electrode and the anode electrode through a conductive material. A cell structure characterized by that.
【請求項2】 請求項1のセル構造において、上記積層
する複数の単セルは、カソード同士及びアノード同士が
対向するようにセラミックリングを介して所定の間隔を
おいて積層してなることを特徴とするセル構造。
2. The cell structure according to claim 1, wherein the plurality of single cells to be stacked are stacked with a predetermined space therebetween through a ceramic ring so that cathodes and anodes face each other. Cell structure.
【請求項3】 請求項1〜2のセル構造において、上記
電気的接続がインタコネクタ及び導電剤を介しておこな
われていることを特徴とするセル構造。
3. The cell structure according to claim 1 or 2, wherein the electrical connection is made through an interconnector and a conductive agent.
【請求項4】 請求項1〜3のセル構造において、複数
の積層した単セルにおいて、第一層の単セルの電解質に
設けられたアノード電極は第二層の単セルのカソード電
極と電気的に接続され、第二の単セルの電解質に設けら
れたアノード電極は第三層の単セルのカソード電極と電
気的に接続され、この接続が順次なされていることを特
徴とするセル構造。
4. The cell structure according to any one of claims 1 to 3, wherein, in a plurality of stacked single cells, the anode electrode provided on the electrolyte of the first layer single cell is electrically connected to the cathode electrode of the second layer single cell. The cell structure characterized in that the anode electrode provided on the electrolyte of the second unit cell is electrically connected to the cathode electrode of the unit cell of the third layer, and the connection is sequentially made.
【請求項5】 請求項1〜4のセル構造において、電解
質がYSZ(YttriaStabilized Zirconia)とした平板
型高温水蒸気電解セルに用いてなることを特徴とするセ
ル構造。
5. The cell structure according to any one of claims 1 to 4, which is used in a flat plate type high temperature steam electrolysis cell in which an electrolyte is YSZ (Yttria Stabilized Zirconia).
【請求項6】 請求項1〜4のセル構造において、電解
質が固体電解質とした燃料電池のセルに用いてなること
を特徴とするセル構造。
6. The cell structure according to any one of claims 1 to 4, wherein the electrolyte is a solid electrolyte and is used for a cell of a fuel cell.
JP6266485A 1994-10-31 1994-10-31 Cell structure Withdrawn JPH08127888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266485A JPH08127888A (en) 1994-10-31 1994-10-31 Cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266485A JPH08127888A (en) 1994-10-31 1994-10-31 Cell structure

Publications (1)

Publication Number Publication Date
JPH08127888A true JPH08127888A (en) 1996-05-21

Family

ID=17431595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266485A Withdrawn JPH08127888A (en) 1994-10-31 1994-10-31 Cell structure

Country Status (1)

Country Link
JP (1) JPH08127888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048997A3 (en) * 2005-10-28 2007-08-02 Rolls Royce Plc Electrolysis
EP1930975A1 (en) * 2005-09-07 2008-06-11 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
JP2009019272A (en) * 2007-06-15 2009-01-29 Toshiba Corp High-temperature steam electrolyzer
JP2013133480A (en) * 2011-12-26 2013-07-08 Sumitomo Electric Ind Ltd Method and device for removing moisture from aprotic polar solvent
KR101353662B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Unit cell for solid oxide electrolysis cell and stack for solid oxide electrolysis cell comprising the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930975A1 (en) * 2005-09-07 2008-06-11 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
EP1930975A4 (en) * 2005-09-07 2009-01-21 Ngk Insulators Ltd Electrochemical device and electrochemical apparatus
WO2007048997A3 (en) * 2005-10-28 2007-08-02 Rolls Royce Plc Electrolysis
US8048276B2 (en) 2005-10-28 2011-11-01 Rolls-Royce Plc Electrolysis apparatus
KR101326105B1 (en) * 2005-10-28 2013-11-20 롤스-로이스 퓨얼 셀 시스템즈 리미티드 Electrolysis
JP2009019272A (en) * 2007-06-15 2009-01-29 Toshiba Corp High-temperature steam electrolyzer
JP2013133480A (en) * 2011-12-26 2013-07-08 Sumitomo Electric Ind Ltd Method and device for removing moisture from aprotic polar solvent
KR101353662B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Unit cell for solid oxide electrolysis cell and stack for solid oxide electrolysis cell comprising the same

Similar Documents

Publication Publication Date Title
US4648955A (en) Planar multi-junction electrochemical cell
US6551735B2 (en) Honeycomb electrode fuel cells
US7695845B2 (en) Fuel cell
JP2006036633A (en) Electric insulating support material for electrochemical device for separation of oxygen and method for producing the material
JPH01502993A (en) Solid electrolyte single oxygen pump
KR101053227B1 (en) Stack for Solid Oxide Fuel Cell Using Flat Tubular Structure
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
KR20230057424A (en) electrochemical cell stack
US10991956B2 (en) Water electrolysis reactor (SOEC) or fuel cell (SOFC) with an increased rate of water vapour use or fuel use, respectively
JPH08127888A (en) Cell structure
JP2893238B2 (en) Water electrolyzer using polymer electrolyte membrane
JP2009041044A (en) Reaction cell, its production method, and reaction system
JP2599810B2 (en) Solid electrolyte fuel cell
US20120052410A1 (en) High-Volume-Manufacture Fuel Cell Arrangement and Method for Production Thereof
JP2014506721A (en) Flat tube type solid oxide fuel cell and flat tube type solid oxide water electrolyzer
US8338047B2 (en) Solid oxide fuel cell
JP7368402B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP3102806B2 (en) Hollow solid electrolyte fuel cell
JPS61121265A (en) Fuel cell
JPH05275096A (en) Close board for solid electrolytic fuel cell, and solid electrolytic fuel cell using same and manufacture thereof
JPH10189024A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JP7288928B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPS6237507B2 (en)
JP3062540B2 (en) Bipolar plate for water electrolysis tank and cell using the same
JP2761108B2 (en) Steam electrolysis cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115